The preview Package for IXTEX
Version 12.2

David Kastrup*

2017/04,/24

1 Introduction

The main purpose of this package is the extraction of certain environments (most
notably displayed formulas) from IATEX sources as graphics. This works with DVI
files postprocessed by either Dvips and Ghostscript or dvipng, but it also works
when you are using PDFTEX for generating PDF files (usually also postprocessed
by Ghostscript).

Current uses of the package include the preview-latex package for WYSI-
WYG functionality in the AUCTEX editing environment, generation of previews
in LyX, as part of the operation of the pst-pdf package, the tbook XML system
and some other tools.

Producing EPS files with Dvips and its derivatives using the -E option is not a
good alternative: People make do by fiddling around with \thispagestyle{empty}
and hoping for the best (namely, that the specified contents will indeed fit on sin-
gle pages), and then trying to guess the baseline of the resulting code and stuff,
but this is at best dissatisfactory. The preview package provides an easy way to
ensure that exactly one page per request gets shipped, with a well-defined baseline
and no page decorations. While you still can use the preview package with the
‘classic’

dvips -E -i

invocation, there are better ways available that don’t rely on Dvips not getting
confused by PostScript specials.

For most applications, you’ll want to make use of the tightpage option. This
will embed the page dimensions into the PostScript or PDF code, obliterating the
need to use the ~E -1 options to Dvips. You can then produce all image files with
a single run of Ghostscript from a single PDF or PostScript (as opposed to EPS)
file.

*bug-auctex@gnu.org

Various options exist that will pass TEX dimensions and other information
about the respective shipped out material (including descender size) into the log
file, where external applications might make use of it.

The possibility for generating a whole set of graphics with a single run of
Ghostscript (whether from KTEX or PDFETEX) increases both speed and robust-
ness of applications. It is also feasible to use dvipng on a DVI file with the options

-picky -noghostscript

to omit generating any image file that requires Ghostscript, then let a script
generate all missing files using Dvips/Ghostscript. This will usually speed up the
process significantly.

2 Package options

The package is included with the customary
\usepackage [{options)] {preview’}

You should usually load this package as the last one, since it redefines several
things that other packages may also provide.
The following options are available:

active is the most essential option. If this option is not specified, the preview
package will be inactive and the document will be typeset as if the preview
package were not loaded, except that all declarations and environments de-
fined by the package are still legal but have no effect. This allows defining
previewing characteristics in your document, and only activating them by
calling INTEX as

latex ’\PassOptionsToPackage{active}{preview}
\input{(filename)}’

noconfig Usually the file prdefault.cfg gets loaded whenever the preview pack-
age gets activated. prdefault.cfg is supposed to contain definitions that
can cater for otherwise bad results, for example, if a certain document class
would otherwise lead to trouble. It also can be used to override any settings
made in this package, since it is loaded at the very end of it. In addition,
there may be configuration files specific for certain preview options like
auctex which have more immediate needs. The noconfig option suppresses
loading of those option files, too.

psfixbb Dvips determines the bounding boxes from the material in the DVI file
it understands. Lots of PostScript specials are not part of that. Since the
TEX boxes do not make it into the DVT file, but merely characters, rules and
specials do, Dvips might include far too small areas. The option psfixbb will
include /dev/null as a graphic file in the ultimate upper left and lower right
corner of the previewed box. This will make Dvips generate an appropriate
bounding box.

dvips If this option is specified as a class option or to other packages, several
packages pass things like page size information to Dvips, or cause crop marks
or draft messages written on pages. This seriously hampers the usability of
previews. If this option is specified, the changes will be undone if possible.

pdftex If this option is set, PDFTEX is assumed as the output driver. This mainly
affects the tightpage option.

xetex If this option is set, XeTEX is assumed as the output driver. This mainly
affects the tightpage option.

displaymath will make all displayed math environments subject to preview pro-
cessing. This will typically be the most desired option.

floats will make all float objects subject to preview processing. If you want
to be more selective about what floats to pass through to a preview, you
should instead use the \PreviewSnarfEnvironment command on the floats
you want to have previewed.

textmath will make all text math subject to previews. Since math mode is used
throughly inside of IATEX even for other purposes, this works by redefining
\(, \) and $ and the math environment (apparently some people use that).
Only occurences of these text math delimiters in later loaded packages and
in the main document will thus be affected.

graphics will subject all \includegraphics commands to a preview.
sections will subject all section headers to a preview.

delayed will delay all activations and redefinitions the preview package makes
until \begin{document}. The purpose of this is to cater for documents
which should be subjected to the preview package without having been
prepared for it. You can process such documents with

latex ’\RequirePackage[active,delayed, (options)]{preview}
\input{(filename)}’

This relaxes the requirement to be loading the preview package as last
package.

(driver) loads a special driver file pr(driver).def. The remaining options are
implemented through the use of driver files.

auctex This driver will produce fake error messages at the start and end of ev-
ery preview environment that enable the Emacs package preview-latex in
connection with AUCTEX to pinpoint the exact source location where the
previews have originated. Unfortunately, there is no other reliable means of
passing the current TEX input position in a line to external programs. In
order to make the parsing more robust, this option also switches off quite a
few diagnostics that could be misinterpreted.

You should not specify this option manually, since it will only be needed
by automated runs that want to parse the pseudo error messages. Those
runs will then use \PassOptionsToPackage in order to effect the desired
behaviour. In addition, prauctex.cfg will get loaded unless inhibited by
the noconfig option. This caters for the most frequently encountered prob-
lematic commands.

showlabels During the editing process, some people like to see the label names in
their equations, figures and the like. Now if you are using Emacs for editing,
and in particular preview-latex, I’d strongly recommend that you check
out the RefTEX package which pretty much obliterates the need for this
kind of functionality. If you still want it, standard IXTEX provides it with
the showkeys package, and there is also the less encompassing showlabels
package. Unfortunately, since those go to some pain not to change the
page layout and spacing, they also don’t change preview’s idea of the TEX
dimensions of the involved boxes. So if you are using preview for determing
bounding boxes, those packages are mostly useless. The option showlabels
offers a substitute for them.

tightpage It is not uncommon to want to use the results of preview as graphic
images for some other application. One possibility is to generate a flurry of
EPS files with

dvips -E -i -Pwww -o (outputfile).000 (inputfile)

However, in case those are to be processed further into graphic image files
by Ghostscript, this process is inefficient since all of those files need to be
processed one by one. In addition, it is necessary to extract the bounding
box comments from the EPS files and convert them into page dimension
parameters for Ghostscript in order to avoid full-page graphics. This is not
even possible if you wanted to use Ghostscript in a single run for generating
the files from a single PostScript file, since Dvips will in that case leave no
bounding box information anywhere.

The solution is to use the tightpage option. That way a single command
line like

gs —sDEVICE=pngl6m -dTextAlphaBits=4 -r300
-dGraphicsAlphaBits=4 -dSAFER -q -dNOPAUSE
-sOutputFile=(outputfile)ld.png (inputfile).ps

will be able to produce tight graphics from a single PostScript file generated
with Dvips without use of the options -E -1i, in a single run.

The tightpage option actually also works when using the pdftex option
and generating PDF files with PDFTEX. The resulting PDF file has separate
page dimensions for every page and can directly be converted with one run
of Ghostscript into image files.

If neither dvips or pdftex have been specified, the corresponding option
will get autodetected and invoked.

If you need this in a batch environment where you don’t want to use
preview’s automatic extraction facilities, no problem: just don’t use any of
the extraction options, and wrap everything to be previewed into preview
environments. This is how LyX does its math previews.

If the pages under the tightpage option are just too tight, you can adjust by
setting the length \PreviewBorder to a different value by using \setlength.
The default value is 0.50001bp, which is half of a usual PostScript point,
rounded up. If you go below this value, the resulting page size may drop
below 1bp, and Ghostscript does not seem to like that. If you need finer con-
trol, you can adjust the bounding box dimensions individually by changing
the macro \PreviewBbAdjust with the help of \renewcommand. Its default
value is

\newcommand \PreviewBbAdjust {-\PreviewBorder
-\PreviewBorder \PreviewBorder \PreviewBorder}

This adjusts the left, lower, right and upper borders by the given amount.
The macro must contain 4 TEX dimensions after another, and you may not
omit the units if you specify them explicitly instead of by register. PostScript
points have the unit bp.

lyx This option is for the sake of LyX developers. It will output a few diagnostics
relevant for the sake of LyX’ preview functionality (at the time of writing,
mostly implemented for math insets, in versions of LyX starting with 1.3.0).

counters This writes out diagnostics at the start and the end of previews. Only
the counters changed since the last output get written, and if no counters
changed, nothing gets written at all. The list consists of counter name and
value, both enclosed in {3} braces, followed by a space. The last such pair
is followed by a colon (:) if it is at the start of the preview snippet, and by
a period (.) if it is at the end. The order of different diagnostics like this
being issued depends on the order of the specification of the options when
calling the package.

Systems like preview-latex use this for keeping counters accurate when
single previews are regenerated.

footnotes This makes footnotes render as previews, and only as their footnote
symbol. A convenient editing feature inside of Emacs.

The following options are just for debugging purposes of the package and similar
to the corresponding TEX commands they allude to:

tracingall causes lots of diagnostic output to appear in the log file during the
preview collecting phases of TEX’s operation. In contrast to the similarly
named TEX command, it will not switch to \errorstopmode, nor will it
change the setting of \tracingonline.

preview

nopreview

\PreviewMacro

showbox This option will show the contents of the boxes shipped out to the DVI
files. It also sets \showboxbreadth and \showboxdepth to their maximum
values at the end of loading this package, but you may reset them if you
don’t like that.

3 Provided Commands

The preview environment causes its contents to be set as a single preview image.
Insertions like figures and footnotes (except those included in minipages) will typ-
ically lead to error messages or be lost. In case the preview package has not been
activated, the contents of this environment will be typeset normally.

The nopreview environment will cause its contents not to undergo any special
treatment by the preview package. When preview is active, the contents will
be discarded like all main text that does not trigger the preview hooks. When
preview is not active, the contents will be typeset just like the main text.

Note that both of these environments typeset things as usual when preview
is not active. If you need something typeset conditionally, use the \ifPreview
conditional for it.

If you want to make a macro like \includegraphics (actually, this is what is
done by the graphics option to preview) produce a preview image, you put a
declaration like

\PreviewMacro[*[[!]{\includegraphics}
or, more readable,
\PreviewMacro [{*[] [J{}}]{\includegraphics}

into your preamble. The optional argument to \PreviewMacro specifies the argu-
ments \includegraphics accepts, since this is necessary information for properly
ending the preview box. Note that if you are using the more readable form, you
have to enclose the argument in a [{ and }] pair. The inner braces are necessary
to stop any included [] pairs from prematurely ending the optional argument,
and to make a single {} denoting an optional argument not get stripped away by
TEX’s argument parsing.
The letters simply mean

* indicates an optional * modifier, as in \includegraphicsx*.

[indicates an optional argument in brackets. This syntax is somewhat baroque,
but brief.

[1 also indicates an optional argument in brackets. Be sure to have encluded
the entire optional argument specification in an additional pair of braces as
described above.

! indicates a mandatory argument.

\PreviewMacrox*

{} indicates the same. Again, be sure to have that additional level of braces
around the whole argument specification.

?(delimiter){(true case)}{(false case)} is a conditional. The next character
is checked against being equal to (delimiter). If it is, the specification (true
case) is used for the further parsing, otherwise (false case) will be employed.
In neither case is something consumed from the input, so {{true case)} will
still have to deal with the upcoming delimiter.

@{(literal sequence)} will insert the given sequence literally into the executed
call of the command.

- will just drop the next token. It will probably be most often used in the true
branch of a ? specification.

#{(argument)}{(replacement)} is a transformation rule that calls a macro with
the given argument and replacement text on the rest of the argument list.
The replacement is used in the executed call of the command. This can
be used for parsing arbitrary constructs. For example, the [] option could
manually be implemented with the option string ? [{#{[#1]1}{[{#1}]13}}{}.
PStricks users might enjoy this sort of flexibility.

:{(argument)}{(replacement)} is again a transformation rule. As opposed to
#, however, the result of the transformation is parsed again. You'll rarely
need this.

There is a second optional argument in brackets that can be used to declare
any default action to be taken instead. This is mostly for the sake of macros
that influence numbering: you would want to keep their effects in that respect.
The default action should use #1 for referring to the original (not the patched)
command with the parsed options appended. Not specifying a second optional
argument here is equivalent to specifying [#1].

A similar invocation \PreviewMacro* simply throws the macro and all of its
arguments declared in the manner above away. This is mostly useful for having
things like \footnote not do their magic on their arguments. More often than
not, you don’t want to declare any arguments to scan to \PreviewMacro* since
you would want the remaining arguments to be treated as usual text and typeset
in that manner instead of being thrown away. An exception might be, say, sort
keys for \cite.

A second optional argument in brackets can be used to declare any default
action to be taken instead. This is for the sake of macros that influence numbering:
you would want to keep their effects in that respect. The default action might
use #1 for referring to the original (not the patched) command with the parsed
options appended. Not specifying a second optional argument here is equivalent
to specifying [] since the command usually gets thrown away.

As an example for using this argument, you might want to specify

\PreviewMacrox [{[]1}] [#1{}]1{\footnote}

\PreviewEnvironment
\PreviewEnvironment*

\PreviewSnarfEnvironment

\PreviewOpen
\PreviewClose

\ifPreview

This will replace a footnote by an empty footnote, but taking any optional parame-
ter into account, since an optional paramter changes the numbering scheme. That
way the real argument for the footnote remains for processing by preview-latex.

The macro \PreviewEnvironment works just as \PreviewMacro does, only
for environments. And the same goes for \PreviewEnvironment* as compared to
\PreviewMacrox.

This macro does not typeset the original environment inside of a preview box,
but instead typesets just the contents of the original environment inside of the
preview box, leaving nothing for the original environment. This has to be used
for figures, for example, since they would

1. produce insertion material that cannot be extracted to the preview properly,
2. complain with an error message about not being in outer par mode.

Those Macros form a matched preview pair. This is for macros that behave
similar as \begin and \end of an environment. It is essential for the operation of
\PreviewOpen that the macro treated with it will open an additional group even
when the preview falls inside of another preview or inside of a nopreview environ-
ment. Similarly, the macro treated with \PreviewClose will close an environment
even when inactive.

In case you need to know whether preview is active, you can use the conditional
\ifPreview together with \else and \fi.

