
Librarian Paul Isambert
zappathustra@free.fr

Introduction
Librarian is a set of macros that handles bibliographic references
without BibTEX. It reads bibliographic files, extracts information
about entries, and sorts lists of entries according to that information
and the user's specifications. TEX code can then be written to
typeset citations and bibliographies or more generally to write the
equivalent of bst files, and absolutely no knowledge of the BibTEX
language is needed, nor is BibTEX itself.
The package is low-level in the sense that it doesn't do much more
than what's said above and offers little syntactic sugar to typeset
bibliographies. It is meant to make as few meaningful decisions
as possible, where `meaningful decisions' means operations that
influence the output or what the user can do. The way librarian
extracts information is immaterial (barring efficiency, of course)
to the typesetting of a bibliography, which depends strictly on the
user's knowledge in TEX programming. On the contrary, prede-
fined styles, for instance, would be easier indeed but also more
limited.
Besides, librarian is format-independent, relying on plain TEX's
usual allocation macros only (which are similar in other formats,
as far as I can tell). Thus, a well-written bibliographic style should
work equally well in all formats; by `well written' I mean that it does
not use any format-specific commands, and at worst defines aliases
to those commands at the beginning of the file.
The first part of this document is a reference manual where librarian
is explained thoroughly. The second part spells out a pair of ex-
amples of bibliographic styles; the second example gives details on
the important parts of the file authoryear.tex, which is distributed
with the package and can be used as is.

Reference manual

• How to load librarian
In plain, the package is loaded in the good old way:

\input librarian

In LaTEX you must use the associated style file:

\usepackage{librarian}

And in ConTEXt you must load librarian with the third-party
file:

\usemodule[librarian]

Commands •

\Cite{<entry key>}{<list>}{<code1>}{<code2>}

This adds <entry key> to <list> (if the latter doesn't exist, it is
created on the fly), unless it has already been added previously.
If <entry key> has already been read in the bibliography (most
likely in a previous compilation), \EntryKey is set to <entry key>

and <code1> is executed. Otherwise, librarian will read the biblio-
graphic files to retrieve information about <entrykey>, and for the
moment <code2> is executed (without redefining \EntryKey). With
complex bibliographic styles, this command is better embedded in
macros.

\BibFile{<list of files>}

The <list of files> is a comma-separated list of bibliographic files
in which librarian will dig information about the requested entries.
The .bib extension is implicit, but you can give another one, as in
\BibFiles{mybib,myotherbib.tex}. The information is passed to
the next compilation thanks to an external file called <jobname>.lbr

(the culprit to delete if things seem wrong to you). If there remains
no requested entry then the files aren't read. \BibFile can occur
several times in a document, but on each call, only those entries that
have been \Cite'd before will be searched for in the bibliographic
files, because calls to \Cite aren't passed from one compilation to
the next. Most complex bibliographic styles generally require three
compilations to get everything right.

\SortingOrder{<list of fields>}{<name parts>}

This sets the order in which lists will be sorted. The fields in <list

of fields> are the ones you find in BibTEX entries, plus the ones
librarian adds to entries (like name), and they should be separated
by commas. Any field can be prefixed with `-', which indicates
that when it comes to this field entries will be sorted in reverse

order. The sorting works as follows: when comparing two entries,
librarian compares their values for the first field; if they are the
same, it tries the second field, and so on. If <list of fields> is
exhausted, the entries are sorted according to the order of citation
in the document relative to the list that's being scanned (i.e. the
value of \EntryNumber). The <name parts> are concatenated letters,
with `f' denoting first name, `l' denoting last name, `v' referring
to the von part and `j' referring to the junior part; it sets how
names are compared, and although there seems to be only two
meaningful orders (vlfj and lfvj), differing in how the von part is
taken into account, you can do whatever you want. Thus, \Sortin-
gOrder{name,year,title}{vlfj} sorts entries in the `author year'
style, with titles differentiating entries by the same author(s) written
the same year, and with the von part taking precedence in the last
name. Instead, \SortingOrder{name,-year}{lfvj} will produce a
bibliography sorted by names, with most recent references first, and
similar references sorted according to their order in the document,
while the von part doesn't matter in last names (and thus Lud-
wig van Beethoven is sorted before Franz Schubert). In any case,
<name parts> have nothing to do with how names are typeset in
the bibliography. (In these examples, name is used instead of author
or editor on purpose. See below about the name field.) By default,
librarian doesn't sort entries.

\SortList{<list>}

This sorts <list> according to the latest value of \SortingOrder.
Thus different lists can be sorted with different orders. If \SortList
is called before \BibFile, then new entries will be sorted on the
next compilation only. From one compilation to the next, librarian
retains the previous sorted entries and sorts only new entries, and
entries that are equal according to \SortingOrder (because their rela-
tive order may have changed). This saves time (especially in LuaTEX
where the many calls to \directlua are quite time-consuming).
However, if the value of \SortingOrder when \SortList is called
has changed from the previous compilation, all entries are sorted
again.

\ReadList{<list>}

This loops over entries in <list>, and for each it stores its key in
\EntryKey and calls \MakeReference, which by default does noth-

ing, and should be redefined to typeset the entry. For each entry
you can use the \ifequalentry conditional, which is true if the
current entry is part of a set of entries that are equal with regard to
\SortingOrder and are thus distinguished by citation order only,
and false otherwise. If the list is unsorted (i.e. \SortingOrder is
empty), then \ifequalentry is always false, even though all entries
are equal.

\SortDef{<command>}{<definition>}

This defines <command> as <definition> at sorting time. Indeed,
macros shouldn't hinder sorting. However, \TeX won't be read as
`TeX' and TEXbook won't be sorted after Tao Te Ching but rather
after Typographic Investigations, because macros separate letters. So
\SortDef\TeX{tex} is the proper way to get good sorting (everything
is sorted in lowercase, so no need to use `TeX'). \SortDef can't define
with parameter text, but a macro can be defined to another one
taking arguments, although it is generally unnecessary: all braces are
removed at sorting time. It is probably very important to redefine
accents (librarian doesn't), e.g. \SortDef\'{} is vital if you want to
see Bézier between Bernoulli and Boole.

\WriteInfo{<arg>}

\WriteImmediateInfo{<arg>}

Since librarian reads and rewrites an external file on each compila-
tion, you can use it too. This writes <arg> to that file, so that it is
made available for the next compilation; <arg> is expanded as in
any \write statement. \WriteInfo writes at output time, whereas
\WriteImmediateInfo writes immediately.

\Preamble

This holds everything that has been encountered in @preamble

entries when reading bibliographies. It isn't passed from one com-
pilation to the next.

\CreateField{<field>}

If a field is unknown to librarian (there is no restriction in biblio-
graphic entries), librarian complains when asked to retrieve it with
the commands below. This command just enables it to work with
unknown fields. By default, librarian knows the common BibTEX
fields and its own, of course.

\AbbreviateFirstname

This turns first names into initials, e.g. John into J. and Jean-Luc into
J.-L. In order to get Ch. from Charles, the name in the bibliographic
file should be `{Ch}arles', which is already the case for BibTEX. Note
that librarian sorts full names and thus J(ohn) Doe and J(ack) Doe
are different in this respect, even though they'll be indistinguishable
in your bibliography.

The following macros all come in pairs made of \Command and
\CommandFor, where \Command is \CommandFor with <entry key> set
to \EntryKey. All along, I refer to bibliographic entries, naturally,
and field and value are to be understood in that context (see the
next two sections for details).

\RetrieveField{<field>}

\RetrieveFieldFor{<field>}{<entry key>}

This produces the value of <field> for <entry key>. The command
uses \lowercase, so you should use it with care, and basically avoid
it unless for typesetting fields. The following command should be
preferred if anything must be manipulated.

\RetrieveFieldIn{<field>}{<command>}

\RetrieveFieldInFor{<field>}{<entry key>}{<command>}

This one defines <command> as the value of <field> for <entry key>.
If <field> doesn't exist in <entry key>, or else if <entry key> doesn't
exist, then <command> is defined as an empty command and is equiv-
alent to \empty if the latter is defined as \def\empty{}. Quite con-
venient for testing.

\EntryNumber{<list>}

\EntryNumberFor{<entry key>}{<list>}

This returns n if <entry key> is the nth entry in <list>, i.e. if it is
the nth entry to be cited for the first time in <list>.

\EntryNumberIn{<list>}{<command>}

\EntryNumberInFor{<entry key>}{<list>}{<command>}

This defines <command> as n, where n is defined as above. (Beware
that <command> is a macro whose expansion produces a number, not
an integer denotation.) This is safer than the previous command for
the same reason as with \RetrieveFieldFor, and is emptily defined
under the same circumstances.

\ReadName{<code>}

\ReadNameFor{<entry key>}{<code>}

For each person in the name field for <entry key>, this stores the
first name in \Firstname (abbreviated if \AbbreviateFirstname

was called), the last name in \Lastname, the von part in \Von and
the junior part in \Junior. There is also a number \NameCount,
which holds the place of the person in the name field (i.e. the first
author has \NameCount=1). Finally, <code> is called with those val-
ues. There are aliases \ReadNames and \ReadNamesFor. \ReadAuthor,
\ReadAuthorFor, \ReadEditor and \ReadEditorFor, and the versions
with plural as well, are defined equivalently for the author and
editor fields respectively. You can still use \RetrieveField{author},
for instance, but those fields aren't designed for typesetting in their
basic form, hence this command.

\TypesetField{<field>}{<command>}{<code>}

\TypesetFieldFor{<field>}{<entry key>}{<command>}{<code>}

If <field> isn't empty in <entry key>, <command> is executed with
the value of <field> as its argument. So <command> should be a
macro that takes one (and only one) argument. If <field> is empty,
<code> is executed instead.

Fields •
Beside the fields that are found in bibliographic entries, librarian
adds some of its own, which can be convenient for dealing with
references. Here they are.
The entrytype field contains the type of the entry as recorded in bib

files at the beginning of each entry after the @ sign. Thus

@Book{Coover2002,

 ...

}

has `book' as the value for entrytype. Note that lowercase is always
used, whatever the actual case in the bib file. The number of authors
in the author field is the value of the authornumber field, each
author being distinguished from the next by the customary `and'.
An equivalent field, editornumber, does the same for editor. Most
importantly, the name field holds the same value as author if there is
such a field in the entry, or the value of editor it it exists and there is
no author. Thus edited books can be cited along with normal books.

That's why name appeared in \SortingOrder above: if it had been
author, then collective works wouldn't have been sorted correctly.
Along with name, namenumber holds the value either of authornumber
or of editornumber, according to the same rule. Finally, nametype
takes one out of two values: author or editor. It takes the former if
the name field is set to the value of the author field, and the latter
if it is set to the value of the editor field. Thus, when referencing
collective works in a bibliography, you can add `(ed.)' for instance
after the value of name if nametype is editor.

• A crash course in bibliographic entries (and how librarian reads them)
This section is not necessary to the understanding of librarian
but it can be useful if in trouble. Suppose you have the following
entry:

@Book{Coover2002,

 author = {Coover, Robert},

 title = {The Adventures of Lucky Pierre},

 subtitle = {Director's Cut},

 publisher = "Grove Press",

 Address = {New York},

 year = 2002,

}

Then librarian stores all the fields for the `coover2002' entry key.
This key is in lowercase, and thus you can't distinguish two entries
by case only (this is how BibTEX works). This doesn't mean that
you can't use \Cite{Coover2002}{list}: librarian does the necessary
conversion. The entrytype field is set to `book', in lowercase once
again, and this time you must be careful: `book' is a value, and
since you'll probably test it to know how the reference should be
typeset in the bibliography, you shouldn't compare it to, say, `Book',
of course. And to finish with lowercase, `New York' is the value of
the address field, not Address, but once again librarian does the
conversion so you can call \RetrieveField{Address}{cooVEr2002}.
Finally, the subtitle field is no customary field, but you can use it.
Up to there, librarian works exactly like BibTEX.
But there are differences too. For one thing, librarian has no restric-
tion on the type of the entry, so you could have:

@novel{Coover2002,

 author = {Coover, Robert},

 title = {The Adventures of Lucky Pierre},

 subtitle = {Director's Cut},

 publisher = "Grove Press",

 Address = {New York},

 year = 2002,

}

That's perfectly fine with librarian, although not with BibTEX.
There are no restrictions on fields either, and unlike BibTEX fields
aren't labelled as required or optional or ignored; in a bibliographic
style you can issue an error message if a field is missing, but librarian
won't do it for you. And there are annoying differences too. They
occur in the way librarian reads the values of fields. Here's how it
works: if the first character (disregarding space) after the `=' sign is
a {, then everything up to the next balanced } is taken as the value,
and everything up to the comma is discarded. (The last value of the
entry may have no comma, but librarian adds one before reading
the entry.) If the first character is a ", then everything up to the
next ", with balanced braces, is taken as the value, and everything up
to the comma is discarded once again. Finally, if the first character
is none of the above, then librarian takes everything up to the next
comma as the value (while balancing braces, of course). The latter
case differs from BibTEX. Normally, only numerical values (like the
value of year in our example) can be given as such, unless strings
are used. But librarian is totally unable to understand strings. The
following

@string{ny = "New York"}

@Book{Coover2002,

 author = {Coover, Robert},

 title = {The Adventures of Lucky Pierre},

 subtitle = {Director's Cut},

 publisher = "Grove Press",

 Address = ny,

 year = 2002,

}

would yield `New York' as the value of address in BibTEX, whereas
with librarian it gives `ny' (and the @string entry is simply ignored).
In a situation as simple as the present one, you can make do with

macros in you document, i.e. a macro which when fed with `ny'
returns `New York' (problems arise if `ny' is the real value of a field,
though), but it becomes more serious when you concatenate strings
with the # operator. No way to hide the truth: librarian will get
everything wrong. So if you're heavy on strings, better stick to
BibTEX.

Examples
Although librarian doesn't use many commands, it might be hard
to understand them from scratch. This section details a pair of
example styles so you can get familiar with how things work. The
first example is stripped to the minimum just to learn the basic use
of librarian's macros. The second example is an Author (Year) style
with some refinements, dealing in particular with entries that have
the same author and the same year and should thus be distinguished
by a suffix, and it also shows how to handle cross-references. This
style is thoroughly defined in the file authoryear.tex, distributed
with librarian.
Remember, though, that what you can do in librarian is what
you can do in TEX. There's nothing arcane in librarian, and what
you can achieve depends really on your skill in TEX. So don't feel
limited; for instance, suppose you want to make a list of your
publications like:

2010
`My fascinating paper', Journal of Science, volume 55
(22), 210–224.
The book I finally wrote, Good Publishing House: City-
ville.
2009
`A talk on something', presented at...

That is, you want the year to be set above the entries, not repeated
each time: then, for each entry, retrieve its year in a macro, and
on the next one, compare with the current year. If it has changed,
print the new value. (Of course entries should be sorted by date,
otherwise it doesn't make sense.)
Another example: librarian doesn't abbreviate journal titles. But if
you think in TEX, it is easily solved: just create a function from a
journal title to its abbreviation (if any), and call it on the value of
the journal field... and so on and so forth...

A simple unsorted list with numerical references, which gets sorted later •
Our first example simply doesn't sort entries, and they are cited
with the number they get when they appear. To make things a little
funnier, though, we'll have a case of multiple bibliographies, e.g. one
bibliography per chapter. In each chapter we set \currentchapter,
and \cite is as follows:

\def\cite#1{%

 \Cite{#1}{\currentchapter}%

 {[\EntryNumber{\currentchapter}]}{[??]}%

 }

...

\def\currentchapter{chapter1}

And at the end of the chapter we'll have:

\ReadList{\currentchapter}

whereas the \BibFile command will appear at the end of the book.
What \cite does is: store the entry in the list associated with the
chapter, print `[??]' if there's no information associated with that
entry (probably because it hasn't been read in the bibliographic file
yet) and `[n]' instead, where n is its number in that list, e.g. `[3]' if
that's the third entry in that chapter.
When \ReadList is called, we need to have \MakeReference ready,
so here it is:

\def\empty{}

\def\MakeReference{%

 \par \noindent

 \llap{[\EntryNumber{\currentchapter}]~}%

 \RetrieveFieldIn{namenumber}\tempcount

 \ifx\tempcount\empty

 \def\tempcount{0}%

 \fi

 \ReadName\makerefname.

 \RetrieveField{title}.

 \RetrieveField{year}.\par

 }

This produces `[n]' in the left margin (with plain TEX's \llap

macro), and prints the name, the title, the year, separated by dots
and a space. To put it simply, that's an utterly boring citation
style, which doesn't take the entry type into account. The thing
about \tempcount is: we'll need it in \ReadName with \makerefname to
check whether we're at the last author. So we need it as a number;
however, on the first compilation, since \BibFile appears after
\ReadList, entries have no namenumber field, and thus \tempcount is
empty... which is a very bad idea in an \ifnum test. In that case we
set it to 0. Now here how names are typeset:

\def\space{ }

\def\makerefname{%

 \ifnum\NameCount>1

 \ifnum\NameCount=\tempcount\relax \space and \else , \fi

 \fi

 \Firstname

 \unless\ifx\Von\empty \Von\space \fi

 \space\Lastname

 \unless\ifx\Junior\empty , \Junior \fi

 }

We check for the existence of the von and junior parts and put them
conditionally. Names are separated by a comma except the last one
which takes `and' instead. Note the crucial \relax after \tempcount:
the latter is a macro expanding to a number, and it would gobble the
next \space if \relax wasn't there. I could have swapped \NameCount

and \tempcount, since the former is a real integer denotation, but we
would have missed this fascinating conversation.
Now we're done with that style. Suppose however we want sorted
entries. For instance:

\SortingOrder{name,year,title}{lfvj}

Now, citing entries with the citation number isn't very convenient.
Instead, we want a number associated with the entry in the sorted
list. We need a new count, and on each chapter it should be reset
to 0. For instance:

\newcount\entrycount

...

\def\currentchapter{chapter24}

\entrycount=0

Next, we redefine \cite as follows:

\def\cite#1{%

 \Cite{#1}{\currentchapter}%

 {[\csname\EntryKey @\currentchapter\endcsname]}%

 {[??]}%

 }

Now \cite calls a command associated with the key (note that \En-
tryKey is useless, we could have used #1 directly) and the chapter,
which holds the number we want. The latter was set in \MakeCita-

tion, redefined as:

\def\MakeReference{%

 \par \noindent

 \advance\entrycount1

 \WriteImmediateInfo{%

 \noexpand\expandafter\def

 \noexpand\csname\EntryKey @\currentchapter

 \noexpand\endcsname{\the\entrycount}%

 }%

 \llap{[\the\entrycount]~}%

% ... same as before

 }

This means: on each entry, advance \entrycount and store its value
as the expansion of the command seen above, thanks to \WriteIm-

mediateInfo. The rather clumsy code in the latter just means that
the following will be written to the external file:

\expandafter\def\csname coover2002@chapter24\endcsname{13}

And of course, it is the value of \entrycount that we put into the
left margin. Note that this style takes three compilations to get
everything right: in the first one, a new entry can't be sorted, because
\SortList appears before \BibFile. In the second compilation, the
entry is sorted and its number is written to the external file. In
the last one, that number is read and used when the entry is cited.
Here's the style it produces:

Wallace's last book [2] was published eight years after
his cult novel [1].
...

[1] David Foster Wallace. Infinite Jest. 1996.
[2] David Foster Wallace. Oblivion. 2004.

• An Author (Year) style, with similar entries and cross-references
The basic idea here is to have a command \cite{entry key} that
produces an Author (Year) citation in the main document (rather
Name (Year), but whatever). References are thus sorted according
to names and then year, and if two entries are equal with regard to
these fields, they should be sorted according to their relative order
of appearance in the document and distinguished with a suffixes,
e.g. `Wallace (2003a)' and `Wallace (2003b)'. To do so we'll use
\ifequalentry and \WriteImmediateInfo.
However, such a simple \cite is definitely not very fun. So let's
make it harder: it will take any number of entry keys and separate
them with commas (e.g. `Wallace (1996), Coover (2002)') unless
the name field is identical, in which case it won't be repeated and the
year will be put between the same parentheses as the previous entry
(e.g. `Wallace (1996, 2003)'). So \cite actually calls a recursive
macro (\readcite) on its argument. Here's how it goes. (Since li-
brarian requires eTEX, we can use it too; if you don't know anything
about it, the only important thing is that you can prefix a condi-
tional with \unless to reverse its evaluation; i.e. \unless\ifwhatever
A\else B\fi is the same as \ifwhatever B\else A\fi. It's useful to
write \unless\ifwhatever instead of \ifwhatever\else when you're
interested in the false condition only.)

\def\terminator{\terminator} \def\empty{}

\def\cite#1{%

 \def\prevauthor{}%

 \readcite#1,\terminator,%

 }

\def\readcite#1,{%

 \def\temp{#1}%

 \ifx\temp\terminator

)%

 \let\tail\relax

 \else

 \let\tail\readcite

 \unless\ifx\temp\empty

 \Cite{#1}{main}\makecitation{}%

 \fi

 \fi\tail

 }

Since we don't know what the next entry will be, if any, the final
parenthesis is typeset when \readcite meets the terminator. (We
take care of empty entries in case one writes `\cite{entry1,en-
try2,}' by mistake, which becomes `entry1,entry2„\terminator,'
for \readcite.) Note that in authoryear.tex, `(' and `)' are actually
replaced by macros (\leftcitemark and \rightcitemark) that are
defined as parentheses; it simply makes the switch to another style
easier.
All entries are added to the main list, and at the end of the document
we'll have to write:

% Perhaps some \SortDef's?

\BibFile{myfiles}

\SortingOrder{name,year}{lfvj}

\SortList{main}

\ReadList{main}

But back to citation. \readcite calls \makecitation in case there are
fields for the entry. Here it is. If the current author is the same as
in the previous entry (recorded in \prevauthor), then we just add a
command and a space to the previous date:

\def\makecitation{%

 \RetrieveFieldIn{name}\temp

 \ifx\temp\prevauthor ,

On the other hand, if authors differ (unless the previous one is
empty, which means we're on the first citation), we close the paren-
thesis (always added by the next entry to the previous one, remem-
ber?), adds a comma and a space to separate entries, and typeset
the name with \ReadName (which will make use of \tempcount). We
also typeset an opening parenthesis preceded by a hard space to
welcome the upcoming year.

 \else

 \unless\ifx\prevauthor\empty),\fi

 \RetrieveFieldIn{namenumber}\tempcount

 \ReadName\makecitename~(%

 \fi

And in any case we set \prevauthor to the current value of name,
typeset the year and add the suffix associated with that entry if it
exists (it is created when we use \ReadList), somehow like the entry
number in the previous example.

 \RetrieveFieldIn{name}\prevauthor

 \RetrieveField{year}\csname\EntryKey @suffix\endcsname

 }

Now here's how names are typeset: they are separated by commas,
except the last one which is separated by and (e.g. `Jackson, Jameson
and Johnson (1980)'). Besides, if there are more than 3 authors, only
the first one is typeset, followed by et alii. The number 3 is of course
totally arbitrary. Finally, each name is typeset as \Von~\Lastname
with the \Von part optional, of course (maybe that makes too many
hard spaces, though). Remember that \tempcount holds the value of
the namenumber field and that \NameCount is the place of the author
under investigation in the entire field. Hence, if they are more
authors than allowed:

\chardef\namelimit=3

\def\makecitename{%

 \ifnum\tempcount>\namelimit

 \ifnum\NameCount=1

 \unless\ifx\Von\empty \Von~\fi

 \Lastname\space {\italics{et alii}}%

 \fi

Otherwise we typeset all names preceded by different markers:
nothing for the first author, and for the last one, and commas in
between.

 \else

 \unless\ifnum\NameCount=1

 \ifnum\NameCount=\tempcount\relax \space and

 \else , \fi

 \fi

 \unless\ifx\Von\empty \Von~\fi

 \Lastname

 \fi

 }

And we're done with the \cite command. We could add variation,
e.g. \citeauthor to typeset the name field, \citeyear for the date,
remove parentheses when needed, etc., but basically we've done
the hardest part. The \makecitename macro shown here is slightly
simpler than the real one in authoryear.tex. The latter first checks
whether \Lastname is `others', in which case it typesets the et alii
phrase (a basic feature of BibTEX).
Now we have to define \MakeCitation. It begins with \ReadName

called with \makerefname as in the previous example. Even though
\makrefname is slightly different (the first author is typeset as von
Last, Jr, First whereas the other authors remain in the First von Last,
Jr style), I won't show it here, because there's nothing much to
learn.

\def\MakeReference{%

 \par\noindent

 \RetrieveFieldIn{namenumber}\tempcount

 \ReadName\makerefname

In \MakeReference still, we add a usual marker for collective works
(\editor is simply defined as `editor' elsewhere).

 \RetrieveFieldIn{nametype}\temp

 \ifx\temp\editor

 \RetrieveFieldIn{namenumber}\temp

 \ifnum\temp>1 \space (eds.)\else \space (ed.)\fi

 \fi

Then we typeset the date between parentheses with a suffix, which
will be set by \comparentries (and actually probably empty). This
suffix is meant to distinguish entries that are equal according to
\SortingOrder.

 \space (\RetrieveField{year}%

 \csname\EntryKey @suffix\endcsname)

 \compareentries

Typesetting the rest of the entry depends on the entry type, which is
fed to \typesetref. At the end of the entry we call \conditionalstop,
a stop that appears if and only if there was no stop before (see
authoryear.tex for details).

 \RetrieveFieldIn{entrytype}\temp

 \typesetref\temp \conditionalstop

 }

The \comparentries macro tests whether we are in equal entries
relative to sorting and if so gives them a suffix.

\newcount\sameentrycount

\def\compareentries{%

 \ifequalentry

 \advance\sameentrycount1

 \WriteImmediateInfo{%

 \noexpand\expandafter\def

 \noexpand\csname\EntryKey @suffix\noexpand\endcsname

 {\toletter}}%

 \else \sameentrycount=0 \fi

 }

The \toletter macro turns \sameentrycount into a letter and is
quite uninteresting, so it isn't shown here. Note that this version of
\compareentries works because the first argument of \SortOrder is
set to `name,year', and hence two references written the same year
by the same author are equal according to librarian, which can set
the \ifequelentry conditional to the requested value. However, if
\SortOrder was `name,year,title', then not only would the same
two entries be sorted according to their titles, but most importantly
they wouldn't be equal at all as far as librarian is concerned (unless
they have identical titles, of course), although in this bibliographic
style they should be seen as such. In that case, \compareentries
should be more refined and store each entry's name and year fields
in a macro to be compared to the next one.
But we were calling \typesetref on the entrytype field. It launches
a macro which typesets the rest of the entry according to its type,

and \createtype is meant to define such a macro:

\def\typesetref#1{%

 \ifcsname#1@entrytype\endcsname

 \csname#1@entrytype\endcsname

 \else

 \errmessage{Unknown entry type: `#1'}%

 \fi

 }

\def\createtype#1{%

 \expandafter\def\csname#1@entrytype\endcsname

 }

Before creating entries, here are some useful macros to be used with
\TypesetField. Indeed, to typeset references properly, punctuation
should be added if and only if the corresponding field exists.

\def\booktitle#1{\setbooktitle{\RetrieveField{#1}}}

\def\setbooktitle#1{\italics{#1}}

\def\articletitle#1{\setarticletitle{\RetrieveField{#1}}}

\def\setarticletitle#1{`#1'}

\def\addcomma#1{, #1}

\def\addjournal#1{\addcomma{{\setbooktitle{#1}}}}

\def\addcolon#1{: #1}

\def\addpar#1{(#1)}

\def\addbook#1{, in \setbooktitle{#1}}

\def\addeditor#1{%

 \RetrieveFieldIn{editornumber}\tempcount

 , edited by \ReadEditor\makeedname}

The \italics macro in \setbooktitle should be set to whatever you
use to typeset italics. Now, we can create entries:

\createtype{book}{%

 \booktitle{title}%

 \TypesetField{publisher}\addcomma{}%

 \TypesetField{address}\addcolon{}%

 }

\createtype{article}{%

 \articletitle{title}%

 \TypesetField{journal}\addjournal{}%

 \TypesetField{volume}\addcomma{}%

 \TypesetField{number}\addpar{}%

 \TypesetField{pages}\addcomma{}%

 }

\createtype{incollection}{%

 \articletitle{title}%

 \TypesetField{crossref}\crossref{%

 \TypesetField{booktitle}\addbook{}%

 \TypesetField{editor}\addeditor{}%

 \TypesetField{pages}\addcomma{}%

 \TypesetField{publisher}\addcomma{}%

 \TypesetField{address}\addcolon{}%

 }%

 }

... and many more! That's the basic job of a bibliographic style.
Note that we make good use of \TypesetField, but not with the
title field, because it is very unlikely to be missing. Now, give a
look at the incollection entry; once the title is typeset, it reads as
follows: call the \crossref macro on the value of the crossref field
if it has any, otherwise, typeset the information about the book.
And \crossref is:

\def\crossref#1{%

 , in \cite{#1}%

 \WriteImmediateInfo{\noexpand\Cite{#1}{main}{}{}}%

 }

Since the value of the crossref field is an entry key, we simply \cite

that entry. However, this is not enough; \SortList can deal with
entries if and only if they are cited before it is called; on the other
hand, \ReadList, where the cross-reference happens, must appear
after \SortList. That's why we pass a \Cite command to the next
compilation; note that the third argument does nothing.
Thus, supposing the reference `Gaddis1994' has a crossref field
to `Gass2000', \cite{Gaddis1994} in a document will produce the
following in the bibliography:

Gaddis, William (1994) `Old Foes with New Faces', in
Gass and Cuoco (2000).
Gass, William H. and Lorin Cuoco (eds.) (2000) The

Writer and Religion, Southern Illinois University Press:
Carbondale.

What if we don't want to see the `Gass2000' reference in the bibli-
ography and instead want something like this:

Gaddis, William (1994) `Old Foes with New Faces',
in The Writer and Religion, edited by William H. Gass
and Lorin Cuoco, Southern Illinois University Press:
Carbondale, 2000.

Then \crossref should be something like this:

\def\crossref#1{%

 \bgroup

 \lowercase{\def\EntryKey{#1}}%

 \TypesetField{title}\addbook{}%

 \TypesetField{editor}\addeditor{}%

 \TypesetField{pages}\addcomma{}%

 \TypesetField{publisher}\addcomma{}%

 \TypesetField{address}\addcolon{}%

 \TypesetField{year}\addcomma{}%

 \egroup

 \WriteImmediateInfo{\noexpand\Cite{#1}{crossref}{}{}}%

 }

That is: we apply the same macros to a different entry by redefining
\EntryKey temporarily (hence the group). Note that this redefini-
tion must happen in \lowercase, because there we're away from
librarian's handling of entry keys. Note also that we still \Cite the
entry in the external file, because the citation is necessary to retrieve
fields in the bibliographic files; however the entry is added to a
secondary list `crossref' that we'll never sort nor read.

Typeset with LuaTEX v.0.6
in Garamond Pro (Robert Slimbach)

and Inconsolata (Raph Levien)

	Introduction
	Reference manual
	How to load librarian
	Commands
	Fields
	A crash course in bibliographic entries (and how librarian reads them)

	Examples
	A simple unsorted list with numerical references, which gets sorted later
	An Author (Year) style, with similar entries and cross-references

