tokcycle Package Examples
October 1, 2020

Contents

1 Examples, examples, and more examples 1
1.1 Application basics L 1
1.1.1 Using the CGMS directives 1
1.1.2 Escaping text e e 2

1.1.3 Unexpandable, unexpanded, and expanded Character directives 2
1.1.4 Unexpanded vs. pre-expanded input stream 4

1.2 Grouping oL 4
1.2.1 Treatment options for implicit groups 4
1.2.2 Treatment options for explicit groups 5
123 Group nesting 6

1.3 Direct use of tokeycle L 6
1.3.1 Modifying counters as part of the Character directive 7

1.4 Macro encapsulation of tokcycleo oL 7
1.4.1 Spacingout text 7
1.4.2 Alternate presentation of detokenized content 7
1.4.3 Capitalize all words, including compound and parenthetical words 8
1.4.4 Scaling rule dimensions oo 9
1.4.5 String search, including non-regex material 10

1.5 tokcycle-based environmentso Lo 11
1.5.1 “Removing” spaces, but still breakable/hyphenatable 11
1.5.2 Remapping text L e 12

1.6 Advanced topics: implicit tokens and catcode changes 13
1.6.1 Trap Active Characters (catcode 13) 13
1.6.2 Trap Catcode 6 (explicit & implicit) tokens 14
1.6.3 Trap implicit tokens in general 15
1.6.4 Changing grouping tokens (catcodes 1,2) 17
1.6.5 Catcode 10 space tokens Lo 18
1.6.6 Changes tocatcode 0 L 20

1 Examples, examples, and more examples

Often, the best way to learn a new tool is to see examples of it being used. Here, a number of
examples are gathered that span the spectrum of tokcycle usage.

1.1 Application basics

1.1.1 Using the CGMS directives

Apply different directives to Characters (under-dot), Groups (visible braces), Macros (boxed, deto-
kenized), and Spaces (visible space).

The \underdot macro
\newcommand\underdot [1]{\ooalign{#1\cr\hfil{\raisebox{-5pt}{.}}\hfil}}

\tokcycle{\addcytoks{\underdot{#1}}}
{\addcytoks{\{}\processtoks{#1}
\addcytoks{\}}}
{\addcytoks{\fbox{\detokenize{#1}}}} This_| \textit [{is_| \textbf |{a}}_test.
{\addcytoks{\textvisiblespacel}} U v ' T
{This \textit{is \textbf{al}} test.}
\the\cytoks

1.1.2 Escaping text

Text between two successive escape characters is bypassed by tokcycle and instead echoed to the
output register. Default escape character is |. One can change it with \settcEscapechar macro.

The unexpandable \plusl macro

\newcommand\plusl[1]{\char\numexpr‘#1+1\relax}

Escaping text in the input stream

\tokcycle
{\addcytoks{\plus1{#1}}}
{\processtoks{#1}}
{\addcytoks{#1}}
{\addcytoks{#1}}
{This \fbox{code is a test
| (I can also escape text) |}
of |\rule{lem}{.5em}|
{\bfseries mine}.}
\the\cytoks

Uijt | dpef jt b uftu (I can also escape text) ‘ pg = njof/

1.1.3 TUnexpandable, unexpanded, and expanded Character directives

This section concerns the issue of whether the characters of the input stream are transformed
before or after being placed in the output token register (\cytoks).

Transform characters (+1 ASCII) via unexpandable macro:

Unexpandable Character directive

\tokcycle
{\addcytoks{\plus1{#1}}}
{\processtoks{#1}}
{\addcytoks{#1}} Uijt dpef jt b uftu pg njof/
{\addcytoks{#1}}{/
This \textit{code \textup{is} a test} of mine.}
\the\cytoks

\cytoks altdetokenization:

\plus1l{TH\plusl{h}\plusl{i}\plusl{s} \textit{\plusl{c}\plusl{o}\plusl{d}\plusl{e} \textup{\plusl{i}
\plusl{s}} \plusl{a} \plusl{t}\plusl{e}\plusl{s}\plusl{t}} \plusl{o}\plusl{f} \plusl{m}\plusl{i}
\plusl{n}\plusl{e}\plusl{.}

Capitalize vowels (but don’t expand the character directive)

The expandable\vowelcap macro

\newcommand\vowelcap [1]{/
\ifx a#1A\else
\ifx e#1E\else
\ifx i#1I\else
\ifx o#10\else
\ifx u#1U\else
#ANFINFI\Ffi\fi\fi

}

\ J

Not expanded Character directive

\tokcycle
{\addcytoks{\vowelcap{#1}}}
{\processtoks{#1}}
{\addcytoks{#1}} Thls cOdE Is A tEst Of mInE.
{\addcytoks{#1}}{/
This \textit{code \textup{is} a test} of mine.}
\the\cytoks

\cytoks altdetokenization:

\vowelcap{T}\vowelcap{h}\vowelcap{i}\vowelcap{s} \textit{\vowelcap{c}\vowelcap{o}\vowelcap{d}
\vowelcap{e} \textup{\vowelcap{i}\vowelcap{s}} \vowelcap{a} \vowelcap{t}\vowelcap{e}\vowelcap{s}
\vowelcap{t}} \vowelcap{o}\vowelcap{f} \vowelcap{m}\vowelcap{i}\vowelcap{n}\vowelcap{e}\vowelcap{.}

Capitalize vowels (expanding the character directive)

Expanded Character directive

\tokcycle
{\addcytoks [x]{\vowelcap{#1}}}
{\processtoks{#1}}
{\addcytoks{#1}} Thls cOdE Is A tEst Of mInE.
{\addcytoks{#1}}{/
This \textit{code \textup{is} a test} of mine.}
\the\cytoks

\cytoks altdetokenization:
ThIs \textit{cOdE \textup{Is} A tEst} Of mInE.

1.1.4 TUnexpanded vs. pre-expanded input stream

Normal token cycle (input stream not pre-expanded)

\tokcycle
{\addcytoks [x]{\vowelcap{#1}}}
{\processtoks{#1}}
{\addcytoks{#1}}
{\addcytoks{#1}}4 This | cOdE Ts A tEst October 1, 2020 | Of mInE.
{This \fbox{code
is a test \todayl} of
{\bfseries mine}.}
\the\cytoks

\cytoks altdetokenization:
ThIs \fbox{cOdE Is A tEst \today} Of {\bfseries mInE}.

Note that, when pre-expanding the input stream, one must \noexpand the macros that are not to
be pre-expanded.

Pre-\expanded token cycle input stream

\expandedtokcyclexpress
{This \noexpand\fbox{code
is a test \today} of Thils | cOdE Is A tEst OctObEr 1, 2020 | Of mInE.
{\noexpand\bfseries mine}.}
\the\cytoks

\cytoks altdetokenization:
ThIs \fbox{cOdE Is A tEst OctObEr 1, 2020} 0f {\bfseries mInE}.

1.2 Grouping

Differentiating explicit groups, e.g., {...}, from implicit groups, e.g. \bgroup...\egroup, is done
automatically by tokcycle. The user has options on how tokcycle should treat these tokens. The
desired options are to be set prior to the tokcycle invocation.

1.2.1 Treatment options for implicit groups

The macro \stripimplicitgroupingcase can take three possible integer arguments: 0 (default)
to automatically place unaltered implicit group tokens in the output register; 1 to strip implicit
group tokens from the output; or —1 to instead pass the implicit group tokens to the Character
directive (as implicit tokens) for separate processing (typically, when detokenization is desired).

Using \stripimplicitgroupingcase to affect treatment of implicit grouping tokens

\resettokcycle

\Characterdirective{\addcytoks [x]{/
\vowelcap{#1}}}

\def\z{Announcement :

N Tm o AnnOUncEmEnt: TOdAy It Is October 1, 2020,
Today \egroup it is} \today, A WEdnEsdAy

2 Deimeadg) AnnOUncEmEnt: {\bfseries \bgroup \itshape
\eXPandafter\tOkencyde}{pr‘?‘ss\z TOdAy \egroup It Is} \today , A WEdnEsdAy
\endtokencyclexpress\medskip
AnnOUncEmEnt: TOdAy It Is October 1, 2020,
A WEdnEsdAy

AnnOUncEmEnt: {\bfseries \itshape TOdAy It
\stripimplicitgroupingcase{1} Is} \today , A WEdnEsdAy

\expandafter\tokencyclexpress\z
\endtokencyclexpress\medskip

\detokenize\expandafter{\the\cytoks}
\bigskip

\detokenize\expandafter{\the\cytoks}

1.2.2 Treatment options for explicit groups

For explicit group tokens, e.g., { }, there are only two options to be had. These are embodied in the
if-condition \ifstripgrouping (default \stripgroupingfalse). Regardless of which condition is
set, the tokens within the explicit group are still passed to the Group directive for processing.
Permutations of the following code are used in the subsequent examples. Group stripping, brought
about by \stripgroupingtrue, involves removing the grouping braces from around the group.
The choice of \processtoks vs. \addcytoks affects whether the tokens inside the group are
recommitted to tokcycle for processing, or are merely sent to the output register in their original
unprocessed form.

Note that, in these examples, underdots and visible spaces will only appear on characters and
spaces that have been directed to the Character and Space directives, respectively. Without
\processtoks, that will not occur to tokens inside of groups.

Code permutations on group stripping and inner-group token processing

\stripgroupingfalse OR \stripgroupingtrue

\tokcycle{\addcytoks{\underdot{#1}}}
{\processtoks{#1}} OR {\addcytoks{#1}}}
{\addcytoks{#1}}
{\addcytoks{\textvisiblespacel}}

{This \fbox{is a \fbox{token}} test.}

\the\cytoks

\stripgroupingfalse \processtoks

This_|is_a_| token ||_test.

L J

\stripgroupingfalse \addcytoks
This_|is a _test.

\ J

\stripgroupingtrue \processtoks

Thisusuauokenutest.

\stripgroupingtrue \addcytoks

This.[if & [token | test

Note that the content of groups can be altogether eliminated if neither \processtoks{#1} nor
\addcytoks{#1} are used in the Group directive.

1.2.3 Group nesting

The \reducecolor and \restorecolor macros

\newcounter{colorindex}

\newcommand\restorecolor{\setcounter{colorindex}{100}}

\newcommand\reducecolor[1]{/
\color{red!\thecolorindex!cyan}/
\addtocounter{colorindex}{-#1}/
\ifnum\thecolorindex<1l\relax\setcounter{colorindex}{1}\fi}

Group nesting is no impediment to tokcycle

\restorecolor
\tokcycle
{\addcytoks{(#1)}}
{\addcytoks{\reducecolor{11}}/
\addcytoks{[}\processtoks{#1}/ N e T
\addcztoks{] }}p [((WIGIG)(T] @GO
{\addcytoks{#1}}
{7
{1{{3{{6{{7{{9{1{}0}}8}}6}}4}}2}}}
\the\cytoks

1.3 Direct use of tokcycle

tokcycle (in regular or xpress form) may be invoked directly from the document, without being
first encapsulated within a macro or environment.

1.3.1 Modifying counters as part of the Character directive

Using a period token (.) to reset a changing color

\restorecolor
\tokencycle
{\addcytoks{\bgroup\reducecolor{3}#1\egroup}/

\ifx.#1\addcytoks{\restorecolor}\fi} This right here is a sentence

{\processtoks{#1}} o
{\addcytoks{#1}} 70 e Ail(‘l %lere we have
{\addcytoks{#1}}/ another sentence

NOW IN A NEW PARAGRAPH, THE
SENTEN Now, it is
short.

This right \textit{here is a sentence in italic}.
And \textbf{here we have another sentence in bold}.

{\scshape Now in a new paragraph, the sentence
is long.} Now, it is short.
\endtokencycle

,
\

1.4 Macro encapsulation of tokcycle

1.4.1 Spacing out text

The \spaceouttext macro

\newcommand\spaceouttext [2]{/

\tokcycle
{\addcytoks{##1\nobreak\hspace{#1}}}/
{\processtoks{##1}}
{\addcytoks{##1}}/
{\addcytoks{##1\hspace{#1}}}

{#2}/

\the\cytoks\unskip}

\ J

\spaceouttext demo

\spaceouttext{3pt plus 3pt}{This
\textit{text \textbf{is}
very} spaced out}. Back This

text 18 wery spaced out.
to regular text.

Back to regular text.
This text 1s somewhat spaced out. Back

\spaceouttext{l.5pt}{This
to regular text.

\textit{text \textbf{is}
somewhat} spaced out}.
Back to regular text.

\ J

1.4.2 Alternate presentation of detokenized content

This macro attempts to give a more natural presentation of \detokenize’d material. It is not
to be confused as a replacement for \detokenize. In certain applications, it may offer a more
pleasingly formatted typesetting of detokenized material.

It is an unusual application of tokcycle in that it does not actually use the \cytoks token register
to collect its output. This is only possible because all macros in the input stream are detokenized,
rather than executed.

The \altdetokenize macro

\newif\ifmacro
\newcommand\altdetokenize[1] {\begingroup\stripgroupingtrue\macrofalse
\tokcycle
{\ifmacro\def\tmp{##1}\ifcat\tmp A\else\unskip\allowbreak\fi\macrofalse\fi
\detokenize{##1}}
{\ifmacro\unskip\macrofalse\fi\{\processtoks{##1}\ifmacro\unskip\fi\}\allowbreak}
{\tctestifx{\\##1}{\\}{\ifmacro\unskip\allowbreak\fi
\allowbreak\detokenize{##1}\macrotrue}}
{ \hspace{Opt plus 3em minus .3ex}}
{#1}/
\unskip
\endgroup}

\altdetokenize demo

\string\altdetokenize: \\

\texttt{\altdetokenize{a\mac a \mac2 \altdetokenize
{\mac}\mac{a\mac\mac}\mac}}! a\mac a \mac2 {\mac}\mac{a\mac\mac}\mac!
\detokenize:
\string\detokenize: \\ a\mac a \mac 2 {\mac }\mac {a\mac \mac
\texttt{\detokenize{a\mac a \mac2 F\mac !

{\mac}\mac{a\mac\mac}\mac}}!

r
\

1.4.3 Capitalize all words, including compound and parenthetical words

The \Titlecase and \nextcap macros

\newcommand\TitleCase[1]{/
\def\capnext{T}
\tokcycle
{\addcytoks{\nextcap{##1}}}
{\processtoks{##1}}
{\addcytoks{##1}}
{\addcytoks{##1\def\capnext{T}}}
{#1}/
\the\cytoks
}
\newcommand\nextcap [1]{/
\edef\tmp{#1}/
\tctestifx{-#1}{\def\capnext{T}}{}/
\tctestifcon{\if T\capnext}/
{\tctestifcon{\ifcat\tmp A}/
{\uppercase{#1}\def\capnext{F}}/
{#13}/
{#1}/

,
\

A demo of \Titlecase showing raw (escaped) input and processed output

\TitleCase{/

|here, {\bfseries\today{}, is [myl}
really-big-test here, October 1, 2020, is [my] really-big-
(\textit{capitalizing} words).| test (capitalizing words).

Here, October 1, 2020, Is [My] Really-
here, {\bfseries\today{}, is [myl} Big-Test (Capitalizing Words).
really-big-test
(\textit{capitalizing} words).}

1.4.4 Scaling rule dimensions

@@ This example only applies if one can guarantee that the input stream will contain only text and

rules...

The \growdim macro

\newcommand\growdim[2]{/
\tokcycle{\addcytoks{##1}}
{\addcytoks{#1\dimexpr##1}}
{\addcytoks{##1}}
{\addcytoks{##1}}{/
#2}/
\the\cytoks}

Using tokcycle to change \rule dimensions

\growdim{2}{This rule is exactly 4pt:
\rule|{4pt}{4pt}| , whereas this
rule is 2x bigger than 4pt:
\rule{4pt}{4pt} .}\par

\growdim{4}{This rule is exactly bpt:
\rule|{5pt}{bpt}| , whereas this
rule is 4x bigger than 5pt:
\rule{5pt}{6pt} .}

\ J

This rule is exactly 4pt: m, whereas this rule
is 2x bigger than 4pt: Il .
This rule is exactly 5pt: m , whereas this rule

is 4x bigger than 5pt:

1.4.5 String search, including non-regex material

The \findinstring macro for string searches

\newcommand\findinstring[2]{\begingroup/
\stripgroupingtrue
\setcounter{runcount}{0}/
\tokcycle
{\nextctltok{##1}}
{\nextctltok{\opengroup}\processtoks{##1}\nextctltok{\closegroup}}
{\nextctltok{##1}}
{\nextctltok{\tcspace}}
{#1}/
\edef\numlet{\theruncount}/
\expandafter\def\expandafter\searchword\expandafter{\the\cytoks}/
i
\aftertokcycle{\matchfound}/
\setcounter{runcount}{0}/
\def\matchfound{F}/
\tokcycle
{\nextcmptok{##1}}
{\nextcmptok{\opengroup}\processtoks{##1}\nextcmptok{\closegroup}}
{\nextcmptok{##1}}
{\nextcmptok{\tcspace}}
{#2}/
\endgroup}
\newcounter{runcount}
\makeatletter
\newcommand\rotcytoks [1] {\cytoks\expandafter\expandafter\expandafter{/
\expandafter\tcQgobble\the\cytoks#1}}
\makeatother
\newcommand\testmatch[1] {\ifx#1\searchword\gdef\matchfound{T}\fi}/
\newcommand\rotoradd[2] {\stepcounter{runcount}/
\ifnum\theruncount>\numlet\relax#1\else#2\fi
\expandafter\def\expandafter\tmp\expandafter{\the\cytoks}}
\newcommand\nextcmptok [1]{\rotoradd{\rotcytoks{#1}}{\addcytoks{#1}}\testmatch{\tmpl}}
\newcommand\nextctltok[1]{\stepcounter{runcount}\addcytoks{#1}}

J

Demo of the \findinstring macro

1. \findinstring{this}{A test of the times}
\findinstring{the} {A test of the timesl}\par
2. \findinstring{This is}{Here, This is a test}

\findinstring{Thisis} {Here, This is a test}\par LEFT
3. \findinstring{the} {This is the\bfseries{} test} 2.TF
\findinstring{he\bfseries}{This is the\bfseries{} testl}\par 3.TT
4. \findinstring{a{bc}} {gf{vf{a{b c}g}gh}thn} 4. FT
\findinstring{a{b c}}{gf{vi{a{b c}g}gh}thn}\par 5 FT
5. \findinstring{a\notmymac{b c}}{gf{vf{a\mymac{b c}g}gh}thn} 6. FT

\findinstring{a\mymac{b c}} {gf{vf{a\mymac{b c}glgh}hn}\par
6. \findinstring{\textit{Italic}}{this is an \textit{italic} test}
\findinstring{\textit{italic}}{this is an \textit{italic} test}

10

1.5 tokcycle-based environments

The \tokcycleenvironment macro allows users to define their own tokcycle environments. Here
are some examples.

1.5.1 “Removing” spaces, but still breakable/hyphenatable

The \spaceBgone environment

\tokcycleenvironment\spaceBgone
{\addcytoks{##1}}
{\processtoks{##1}}
{\addcytoks{##1}}
{\addcytoks{\hspace{.2pt plus .2pt minus .8pt}}}/

\

\spaceBgone
Here we have a \textit{test} of
whether the spaces are removed.

We are choosing to use the Herewehaveatestofwhetherthespacesareremoved. We
tokencycle environment. arechoosingtousethetokencycleenvironment.
Wearealsotestingtheuseofparagraphbreaksintheen-
We are also testing the use of vironment.
paragraph breaks in the
environment.
\endspaceBgone

11

1.5.2 Remapping text

The \remaptext environment with supporting macros

\tokcycleenvironment\remaptext

{\addcytoks [x]{\tcremap{##1}}}

{\processtoks{##1}}

{\addcytoks{##1}}

{\addcytoks{##1}}
\newcommand*\tcmapto [2] {\expandafter\def\csname tcmapto#l\endcsname{#2}}
\newcommand#*\tcremap[1]{\ifcsname tcmapto#1\endcsname

\csname tcmapto#l\endcsname\else#1\fi}
\tcmapto am \tcmapto bf \tcmapto cz \tcmapto de \tcmapto ey
\tcmapto f1 \tcmapto gx \tcmapto hb \tcmapto ic \tcmapto jn
\tcmapto ki \tcmapto lr \tcmapto mh \tcmapto nt \tcmapto ok
\tcmapto ps \tcmapto qa \tcmapto ro \tcmapto sq \tcmapto tw
\tcmapto uj \tcmapto vp \tcmapto wd \tcmapto xg \tcmapto yu

\tcmapto zv

Demo of \remaptext

\remaptext

]]) Wbmw zmt’w dy mzzkhsregb cl dy
What can’t we \textit{accomplish} if we try?

wou?
Lyw jq fy kl xkke gscocw mte sjw

Let us be of good spirit and put our minds to it! :
kjo hcteq wk cw!

\endremaptext

Because \tcremap is expandable, the original text is totally absent from the processed output:

\cytoks altdetokenization:
Wbmw zmt’w dy \textit{mzzkhsrcqb} cl dy wou? \par Lyw jq fy kl xkke gqscocw mte sjw kjo hcteq wk cw!

12

1.6 Advanced topics: implicit tokens and catcode changes
1.6.1 Trap Active Characters (catcode 13)

Active characters in the tokcycle input stream are processed in their original form. Their active
substitutions arising from \defs only occur afterwards, when the tokcycle output is typeset. They
may be identified with the \ifactivetok test. If \let to a character, they may be identified in the
Character directive; If \1et to a control sequence or defined via \def, they may be identified in the
Macro directive. For information on how to process active spaces, please refer to section 1.6.5.

Processing active characters

\resettokcycle
\tokencyclexpress
This is a test!!\endtokencyclexpress

\catcode‘!=\active

\def !'{7}

\tokencyclexpress

This is a test!!\endtokencyclexpress

This is a test!!

\Characterdirective{\tctestifcon\ifactivetok This is a test??

{\addcytoks{\fbox{#1-chr}}}{\addcytoks{#1}}} This is a tQSt

\Macrodirective{\tctestifcon\ifactivetok his is a test
{\addcytoks{\fbox{#1-mac}}}{\addcytoks{#1}}} \fbox {T-chr}his is a test\fbox {!-

\tokencyclexpress mac}\fbox {!_mac}
This is a test!!\endtokencyclexpress

\catcode‘T=\active

\let T+

\tokencyclexpress

This is a test!!\endtokencyclexpress

\detokenize\expandafter{\the\cytoks}

J

@@ If the input stream is pre-ezpanded, any active substitutions that are expandable (i.e., those in-
volving \def as well as those \let to something expandable) are made before reaching tokcycle
processing. They are, thus, no longer detected as active, unless \noexpand is applied before the
pre-expansion. In this example, the ! that is not \noexpanded is converted to a ? prior to reaching
tokcycle processing (and thus, not detected as \active):

Expanded input stream acts upon active \defed characters unless \noexpand is applied

dedtokcycl This i ..
o o o EE
\the\cytoks\par \fbox {T-chr}his is a test?\fbox {!-
\detokenize\expandafter{\the\cytoks} mac}

However, pre-tokenization does not suffer this behavior:

Pre-tokenized input stream does not affect active characters

\def\tmp{This is a test!!} .. _
- ?_ P
\expandafter\tokcyclexpress\expandafter{\tmp} +-chr fhis is a teSt

\the\cytoks\par \fbox {T-chr}this is a test\fbox {I-
\detokenize\expandafter{\the\cytoks} mac}\fbox {!-mac}

13

@@ One aspect of TEX to remember is that catcodes are assigned at tokenization; however, for active
characters, the substitution assignment is evaluated only upon execution. So, if a cat-13 token is
placed into a \def, it will remain active even if the catcode of that character code is later changed.
But if the cat-13 active definition is changed prior to the execution of the \def’ed token, the revised
token assignment will apply.

The following example demonstrates this concept, while showing, without changing the input in
any way, that tokcycle can properly digest active and implicit grouping (cat-1,2) characters:

Active and implicit grouping tokens digestible by tokcycle

\catcode‘Y=13
\catcode‘Z=13
\let Y{
\let Z}
\let\Y{
\let\Z}

\def\tmp{\textit YabcZ de\Y\itshape f\Zg}/ [NEW]abe defe

\def Y{\bgroup[NEW]}/ APPLIES AT EXECUTION \textit YabcZ de\Y \itshape f\Zg

\catcode‘Y=11/ DOES NOT AFFECT Y IN \tmp

\expandafter\tokcyclexpress\expandafter{\tmp}
\the\cytoks

\detokenize\expandafter{\the\cytoks}

1.6.2 Trap Catcode 6 (explicit & implicit) tokens

Typically, cat-6 tokens (like #) are used to designate the following digit (1-9) as a parameter. Since
they are unlikely to be used in that capacity inside a tokcycle input stream, the package behavior
is to convert them into something cat-12 and set the if-condition \catSIXtrue. In this manner,
\ifcatSIX can be used inside the Character directive to convert cat-6 tokens into something of
the user’s choosing.

As to this cat-12 conversion, explicit cat-6 characters are converted into the same character with
cat-12. On the other hand, implicit cat-6 control sequences (e.g., \let\myhash#) are converted
into a fixed-name macro, \implicitsixtok, whose cat-12 substitution text is a \string of the
original implicit-macro name.

Treatment of cat-6 tokens

\resettokcycle
\Characterdirective{\ifcatSIX

\addcytoks{\fbox{#1}} : : |
\else\addcytoks{#1}\fi} Thls isQ a test] \myhash !

\let\myhash#)))
\tokcyclexpress{This# isQ This\fbox {#} isQ \textit {a Q\fbox {#}
\textit{a Q# test\myhash}!'} teSt\beX {\inlpﬁcﬂSixtok }}!

\the\cytoks\bigskip\par
\detokenize\expandafter{\the\cytoks}

14

Multiple explicit cat-6 tokens are not a problem

\catcode‘Q=6
\tokcyclexpress{This# isQ . . |

\textit{a Q# test\myhash}'} ThlS ls a‘ QI #‘ t684 \myhash ‘
\the\cytoks

@@ For what is, perhaps, a rare situation, one can even process input streams that contain cat-
6 macro parameters. A package macro, \whennotprocessingparameter#i{<directive when not
a parameter>}, can be used inside of the Character directive to intercept parameters. In this
example, a macro is defined and then executed, subject to token replacements brought about by
the expandable Character directive.

Preserving parameters (e.g. #1, #2) in the tokcycle input stream

\Characterdirective{/
\whennotprocessingparameter#1{/
\addcytoks [x] {\vowelcap{#1}}}}

\tokcyclexpress{/
\def\zQ#1#2{ [one:#1] (two:#2)} Thls Is A [OnE:b](twO:I)g tEst.
This is a \zQ big test. Thls Is A [t](E)st.

\renewcommand\zQ[2] {\ifx t#1[#1]1\fi(#2)}
This is a \zQ test.}
\the\cytoks

\cytoks altdetokenization:
\def\zQ#1#2{[OnE: #1] (tw0:#2)} ThIs Is A \zQ bIg tEst. \par\renewcommand\zQ[2]{\ifx t#1[#1]\fi(#2)}
ThIs Is A \zQ tEst.

1.6.3 Trap implicit tokens in general

Implicit control sequences (assigned via \let to characters) were already mentioned in the context
of cat-6. However, implicit control sequences can be of any valid catcode (except for cat-0, which
we instead call macros or primitives). The condition \ifimplicittok is used to flag such tokens
for special processing, as well as active tokens that are \let to anything unexpandable.

In the next example, implicit, cat-6 and implicit-cat-6 tokens may all be differentiated, shown here
with a multiplicity of \fboxes.

15

Implicit = single box, cat-6 = double box, implicit-cat-6 = triple box

\catcode‘Q=\active \let QN

\let\littlet=t

\let\littlel=1

\let\svhash#

\Characterdirective{\ifimplicittok
\ifcatSIX\addcytoks{\fbox{\fbox{\fbox{#1}}}}/

\else\addcytoks{\fbox{#1}}\fi\else\ifcatSIX We Wi make a [test

\addcytoks{\fbox{\fbox{#1}}}\else This 4s a big [tlest.

\addcytoks{#1}\fi\fi} [Nlext paagraph ending with im-
\tokencyclexpress We willittlel\littlel# plicit cat six |||\svhash|]||.

\textit{ make a \littlet est #} \littlet

This \textit{is a \textbf{big}} \littlet est.

Qext pa#agraph ending with implicit cat six
\svhash.\endtokencyclexpress

\ J

In the following example, we use both control sequences and active characters in \def and \let
capacities, to demonstrate how tokcycle digests things. Implicit tokens (tokens \let to characters)
are shown in a box, with both the token name and the implicit value (note that tokens \let to
macros and primitives are not considered implicit). Active tokens processed through the character
directive are followed with a T, whereas those processed through the macro directive are followed
with a 1.

Non-active vs. active \def & \let

\Characterdirective{\ifimplicittok
\addcytoks{\fbox{\detokenize{#1}:#1}}/
\else\addcytoks{#1}\fi\ifactivetok
\addcytoks{\rlap{\dag}}\fi\addcytoks{~\,}}

\Macrodirective{\ifimplicittok
\addcytoks{\fbox{\detokenize{#1}}}/
\else\addcytoks{#1}\fi\ifactivetok
\addcytoks{\rlap{\ddag}}\fi
\ifx\par#1i\else\addcytoks{~\,}\fi}

\def\A{a} a October 1,2020 a b

\let\B i ai[W:wlf October 1, 2020f1ta b
\let\C\today

\let\D\relax

\def\E{\relax}

\catcode‘V=13 \def V{a}

\catcode‘W=13 \let Ww

\catcode‘X=13 \let X\today

\catcode‘Y=13 \let Y\relax

\catcode‘Z=13 \def Z{\relax}
\tokcyclexpress{\A\B\C\D\E ab\par VWXYZab}
\the\cytoks

L J

@@ If the input stream is subject to pre-expansion, one will require \noexpand for macros where no
pre-expansion is desired.

16

@@ If the input stream is provided pre-tokenized via \def, TEX convention requires cat-6 tokens to
appear in the input stream as duplicate, e.g. ##.

1.6.4 Changing grouping tokens (catcodes 1,2)

Changing grouping tokens (catcodes 1,2) may require something more, if the output stream is to
be detokenized. In the following examples, pay attention to the detokenized grouping around the
argument to \fbox.

As we will see, the issues raised here only affect the situation when detokenization of the output
stream is required.

tokcycle defaults grouping tokens to braces:

\tokencycle

{\addcytoks{(#1)}}

{\processtoks{#1}}

{\addcytoks{#1}} i)(s) |(D)(s) (a e)(s .
{\addeytoreta) M HE [DE @] OEE) 00

This \fbox{is a} test. (T)(h)(@)(s) \fbox {(i)(s) (2)} (t)(e)(s)(t)(-)
\endtokencycle\medskip

\detokenize\expandafter{\the\cytoks}

One can make brackets cat-1,2, redefining bgroup/egroup to [|. However, while one can now use
brackets in input stream, braces will still appear in the detokenized tokcycle output stream:

tokcycle will not automatically change its grouping tokens

\catcode‘\[=1

\catcode ‘\]=2

\let\bgroup[

\let\egroup]

\tokencycle

{\addcytoks{(#1)}} i i

DT MmO [DE @] OE)E 00
{\addcytoks{#1}} (T)(h)(D)(s) \fbox {(i)(s) (a)} (t)(e)(s)(t)(.)
{\addcytoks{ }}

This \fbox[is al] test.

\endtokencycle\medskip

\detokenize\expandafter{\the\cytoks}

J

If it is necessary to reflect revised grouping tokens in the output stream, the \settcgrouping
macro is to be used.

17

Redefine tokcycle grouping tokens as angle brackets using \settcGrouping

\catcode‘\<=1
\catcode‘\>=2
\catcode‘\{=12
\catcode‘\}=12
\let\bgroup<
\let\egroup>
\settcGrouping<<#1>>

\tokencycle (T)()(@)(s) [()(s) ()] (t)(e)(s)(t)(-)
<\addcytoks<(#1)>> . .

P b (D)D) \ox <)) (2)> OEE)
<\addcytoks<#1>>

<\addcytoks< >>

This \fbox<is a> test.

\endtokencycle\medskip

\detokenize\expandafter<\the\cytoks>

\ J

Angle brackets are now seen in the above detokenization. Until subsequently changed, cat-1,2
angle brackets now appear in detokenized tokcycle groups, even if other cat-1,2 tokens were used
in the input stream. Bottom line:

e adding, deleting, or changing catcode 1,2 explicit grouping tokens, e.g., {}, (in conjunction
with their associated implicit \bgroup\egroup) tokens will not affect tokcycle’s ability to
digest proper grouping of the input stream, regardless of which tokens are catcode 1,2 at the
moment.

e The grouping tokens used in tokcycle’s output default to {} braces (with cat-1,2), but can
be changed deliberately using \settcGrouping.

e The package, currently, has no way to reproduce in the output stream the actual grouping
tokens that occur in the input stream, but one should ask, for the particular application, if
it really matters, as long as the the proper catcodes-1,2 are preserved?

1.6.5 Catcode 10 space tokens

Here we demonstrate that tokcycle can handle arbitrary redesignation of tokens to cat-10, as well
as implicit space tokens (both implicit macro spaces and active-implicit character spaces).

@@ While it should seem natural, we note that implicit space tokens are directed to the Space directive
rather than the Character directive. However, \ifimplicittok may still be used to differentiate
an explicit space from an implicit one.

@@ Also, if the implicit space is an active character, \ifactivetok is also set, for the user’s benefit.
Likewise, \ifactivechar is also checked for active spaces, to see if the charcode of the active space
is still, indeed, active. While #1 may be used to represent the space in the space directive, a special
technique is required to recover the detokenized name of the active space character. In particular,
#1 will, for active spaces, contain a generic implicit space token, \tc@sptoken. However, the
name of the associated active character in the input stream will be defined as a cat-12 token in
\theactivespace.

Note in the following examples that cat-10 tokens do not get under-dots. The next three examples
all use the same input, but with different catcode settings for the space and the underscore.

18

space cat-10, underscore cat-12

\catcode‘_=12 /
\catcode‘\ =10 /

\tokencycle{\addcytoks{\underdot{#1}}}/

{\processtoks{#1}}/ b_gf
{\addcytoks{#1}}/

{\addcytoks{#1}}/

\fbox{a_c d} b_g\itshape f\upshape\endtokencycle

\ J

space cat-10, underscore cat-10

\catcode‘_=10 /
\catcode‘\ =10 /

\tokencycle{\addcytoks{\underdot{#1}}}/ db
{\processtoks{#1}}/ . gf
{\addcytoks{#1}}/

{\addcytoks{#1}}/

\fbox{a_c d} b_g\itshape f\upshape\endtokencycle

\ J

space cat-12, underscore cat-10

\catcode‘_=10 /
\catcode‘\ =12 /

\tokencycle{\addcytoks{\underdot{#1}}}/ d b
{\processtoks{#1}}/ h-'- gh’f
{\addcytoks{#1}}/

{\addcytoks{#1}}/

\fbox{a_c d} b_g\itshape f\upshape\endtokencycle

J

The next two examples introduce implicit and active-implicit spaces. The latter example also
demonstrates detokenization of such spaces.

Here is a useful macro for detokenizing space tokens in the context of tokcycle. It can process not
only explicit cat-10 spaces, but also implicit and active-implicit spaces. To add it to the \cytoks
token list, make sure you use the [x] fully expanded option to \addcytoks.

The \detokenizespacetok macro for handling implicit and active-implicit spaces

\newcommand\detokenizespacetok[1]{\tctestifcon{\ifimplicittok}/
{\tctestifcon{\ifactivetok}{\theactivespace}{\string#1}}{\detokenize{#1}}}

\ J

Implicit spaces also work

\resettokcycle
\Characterdirective{\addcytoks{\underdot{#1}}}
\def\:{\let\z= } \: 7/

\catcode‘_=10 /

\catcode‘\ =12 / ;t_) g.,f

\tokencyclexpress
\fbox{a\z{}c d} b_g\itshape f\upshape
\endtokencyclexpress

\ J

19

Active Implicit spaces work, too

\resettokcycle

\def\:{\let\z= } \: /
\catcode‘Q=\active /
\def\:{\let Q= } \: 7/
\catcode‘_=10 /

\tokencyclexpress
x0x x_x\z{}x/

\endtokencyclexpress
\resettokcycle

\addcytoks [x] {(\detokenizespacetok{#1})}/
\addcytoks{\egroup}}

\medskip
\tokencyclexpress
xQx x_x\z{}x/

\endtokencyclexpress

\

\Characterdirective{\addcytoks{\underdot{#1}}}

\Spacedirective{\addcytoks{\textcolor{cyan}\bgroup}/

1.6.6 Changes to catcode 0

Cat-0 changes are not a hindrance to tokcycle

\let\littlet=t

\catcode‘\! O !catcode‘!\ 12

!Characterdirective{!ifimplicittok
taddcytoks{!fbox{#1}}!else!ifcatSIX
'addcytoks{!fbox{!fbox{#1}}}
'else!addcytoks{#1}!fi!fi}

'tokencyclexpress Here, {!scshape!bgroup
on !today!itshape{} we are !egroup
'littlet es!littlet ing} cat-0
changes{!bgroup}!egroup

!endtokencyclexpress!medskip

'detokenize!expandafter{!the!cytoks}

.

Here, oN OCTOBER 1, 2020 we are

[TIES[TING cat-0 changes

Here, {\scshape \bgroup on \today \itshape
{} we are \egroup \fbox {\littlet }es\fbox
{\littlet }ing} cat-0 changes{\bgroup
Pegroup

20

