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Dependency graph for the xint bundle components: modules pointed to by arrows automatically
import the modules originating the continuous line ended by an arrow. Dashed lines indicate a
partial dependency, and to enable the corresponding functionalities of the lower module it is thus
necessary to use a suitable \usepackage (LATEX) or \input (Plain TEX.)

bnumexpr is a separate (LATEX only) package by the author which uses (by default) xintcore as
its mathematical engine.

polexpr is a separate (LATEX only) package by the author which requires xintexpr.
xinttrig and xintlog are loaded automatically by xintexpr; they will refuse to be loaded directly

(but see \xintreloadxinttrig).
poormanlog is a TEX and LATEX package by the author which is loaded automatically by xintlog.
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1. Start here
• To use with etex, pdftex, ..., i.e. with TEX engines activating the eTEX extensions:

\input xintexpr.sty

\xinteval{sqrt(13, 60)}% get it with 60 digits (correctly rounded)

• To use with the LATEX macro layer (latex, pdflatex, ...):

\usepackage{xintexpr}

% and here you have to wait for \begin{document}...

% or rather you can start playing immediately:

\typeout{\xinteval{sqrt(13, 60)}}

xintexpr is a package to do expandable computations, either exactly (i.e. with fractions) or
in the sense of floating point numbers at an arbitrary (reasonable1) precision. It supports user
definition of variables and functions. Its interface allows multiple comma separated expressions
and nested structures:
\xinteval{1, 2, [3, [4, 5]], 6}

1, 2, [3, [4, 5]], 6 is impressive. No?

I am thinking about providing a console interface (using rlwrap etex as sadly the e-TEX binaries

are not linked with the readline library) which would mimick sessions with Maple or Python.

For a quick impression of the package abilities, check (not yet, else you will never come back

here) the tables of its built-in operators and functions.

The formatted source code is available in file sourcexint.pdf (texdoc sourcexint).

Warning: I don't have the time to maintain perfectly such large documentation. In preparing

the 1.4 release I may have missed updating some bits which got randomly shuffled to new places

(at least I did delete large sections, which was a hard decision to take, almost breaking the

palimpsest quality of the document). Reports welcome.2

1.1. Features added since the 1.4 release
For bugfixes and possibly more details check CHANGES.html:

texdoc --list xint

• The function zip().

• The function flat().

1 Trigonometrical functions are currently supported only up to about 58 decimal digits, and generally speaking expansion starts
taking really too much time at about 500 digits. It looks as if 100 digits is a reasonable upper limit for floating point (this is
already a lot to fit on one single line of text) and future development of the package will not attempt to support floating point
calculations efficiently beyond that limit. 2 Thanks to Jürgen Gilg for keeping the author motivated and helping proof-read the
documentation.
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• Chaining of comparison operators à la Python (no short-circuit, though) and l3fp.

• \xintPFloatE to specify like \xintFracToSciE does for \xinteval since 1.4 the separator to

use between mantissa and exponent in the output of \xintfloateval output.

• \xintthespaceseparated (serves to provide suitable input to PS-Tricks \listplot).

• The optional argument [D] to \xintiexpr (or \xintieval) can be negative, with the same meaning

as the non-negative case, i.e. rounding to an integer multiple of 1e-D (as formerly, for D

positive the output uses fixed point notation with decimal digits and with D=0 the output is

an integer with no decimal separator; with D<0 scientific notation is used3).

• The same applies to the functions trunc() and round(). And matching updates to \xintTrunc,

\xintRound, \xintiTrunc, and \xintiRound.

• Support by add() and mul() for omit, abort and break().4

1.2. The 1.4 release of 2020/01/31
1.4 brought some new features (involving significant evolution of the xintexpr.sty source code)

and a few (but important) breaking changes. See CHANGES.html which contains information which may

not yet have been included into this PDF documentation.

The main new feature was (initial) support for nested structures. For a quick idea of already

available related abilities check for example ndseq() or \xintdefufunc. See also \xintthealign.

However, please grant the author a few decades to finish absorbing Python/NumPy.

The main breaking changes were:

• xintexpr 1.4 requires the \expanded primitive, which is provided by all major TEX engines

since TEXLive 2019. The macro packages xint, xintfrac, xinttools et al. do not (yet) re-

quire \expanded.

It is probable also \pdfstrcmp (\strcmp) will be required at some point but it has been

provided by major TEX engines for a long time already.

• \xinteval (and \xintexpr) output does not use anymore the xintfrac ``raw'' format A/B[N⤸
], rather it uses scientific notation AeN/B, dropping the exponent and/or denominator if

they are respectively 0 and/or 1. This means that output can now be copied pasted directly

to competing software on the market, such as Python or Maple. The output format of \xint-

floatexpr (which uses macro \xintPFloat) was left un-modified although the prettifying

done by it is not necessarily the best choice when displaying a nested structure via \xint-

thealign (perhaps next major release will reconsider that choice); and the way the zero

value is output by \xintfloateval, currently 0. is yet to be chosen definitely. The used

(expandable) macro for output can be specified by user.

• Syntax such as x*[a, b, c] or [a, b, c]+x for itemwise operation on «lists» has been (pro-

visorily) dropped. Indeed, the brackets [...] are now genuine constructors of nestable

structures, and implementing the feature (analogous to NumPy's concepts) will require

overloading all scalar infix operators. Alternative already exist in the syntax for exam-

ple seq(x*y, y = a,b,c). Actually in future x*[a, b, c] will be as [x*a, x*b, x*c] i.e.

will keep the brackets, which prior to 1.4 on their own were no different from parentheses.

3 This was introduced at 1.4a but due to a bug the e was by error of catcode 12, and \xintFracToSciE had no effect on it. Fixed
at 1.4b 4 Feature supposedly added at 1.4 but broken there.
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1.3. License and installation instructions
xint is made available under the LaTeX Project Public License 1.3c and is included in the major TEX

distributions, thus there is probably no need for a custom install: just use the package manager

to update if necessary xint to the latest version available.

Else, CTAN access provides xint.tds.zip which has all source code and documentation in a TDS-

compliant archive, only waiting to be unzip -d <DIR> into some suitable hierarchical structure.

Else, etex xint.dtx extracts all source code. A Makefile is also provided with targets such as x⤸
int.pdf or sourcexint.pdf. Even if your system does not allow executing make, the rules it contains

can be imitated manually (if possible using Latexmk).

Back to TEX distributions with a "texdoc" or similar utility,

texdoc --list xint

gives the choice to display one of:

• xint.pdf (this file),

• sourcexint.pdf (source code),

• README.md,

• CHANGES.html.

1.4. Printing big numbers on the page
When producing very long numbers there is the question of printing them on the page, without going

beyond the page limits. In this document, I have most of the time made use of these macros (not

provided by the package:)
\def\allowsplits #1{\ifx #1\relax \else #1\hskip 0pt plus 1pt\relax

\expandafter\allowsplits\fi}%

\def\printnumber #1{\expandafter\allowsplits \romannumeral-`0#1\relax }%

% \printnumber thus first ``fully'' expands its argument.

It may be used like this:
\printnumber{\xintiieval{100!^3}}\newline

81285103704665697929058034741394527800954175275203119077085794747670888482337305968567201883⤸
75050478138776220712647125923141159206411609199354037545836490698436012619000519089702481351⤸
07234498895796609463150334493880799668742586291763030205250590988746228607583652771623341365⤸
91629009247695685942955467213561895127511100771737329147330105403484204308951158469957099274⤸
14697054763835474153299936479805440000000000000000000000000000000000000000000000000000000000⤸
00000000000000

The rendering here uses extra decoration.
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2.1. Oples and nut-ples: terminology for the 1.4 xint generation
Skip this on first reading, else you will never start using the package. SKIP THIS! (understood?)

In this section I will describe a mathematical terminology appropriate to understand the core

functioning of the package in so far as it regards its numerical mode of operation. The description

requires some adaptations to also cover the functioning during function declarations and this is

not covered here.

We have atoms, which represent numeric data. In TEX syntax such atoms are always braced, more

precisely, currently they look like {raw xintcore or raw xintfrac format within TEX braces}. Such

TEX braces are not to be confused with set-theoretical braces: atoms are elements and not sets.
Our category C of «oples» is the smallest collection of totally ordered finite sets verifying

these properties:

1. The empty set ∅ belongs to C.

2. Each singleton set whose element is an atom qualifies as an ople.

3. C is stable by concatenation.

4. If O is an ople, then the singleton {O} having O as unique element is also an ople.

Notes:

• We denote the empty set ∅ by nil. There is actually a built-in variable with this name. At 1.4,

\xintexpr\relax is legal and also generates the nil.

• Concatenation is represented in the syntax by the comma. Thus repeated commas are like only

one and nil is a neutral element.

• A singleton ople {atom} whose single element is an atom is called a number.

• The operation of constructing {O} from the ople O is called bracing (set theory, TEX), or brack-
eting (xintexpr input syntax, Python lists), or packing (as a reverse to Python's unpacking

of sequence type objects).

• A braced ople is called a nut-ple. Among them {nil} is a bit special. It is called the not-ple.
It is not nil!

It is perhaps important to reflect on the following:

The notation 3,5,7 can be seen in two distinct but related ways:

• each one of 3, 5, 7 is an ople (singleton) and 3,5,7 is their union or rather concatenation
(order matters),

6
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• or each one of 3, 5, 7 refers to an atom and 3,5,7 is an enumeration of the atoms of the ople it

represents.

The second view is tempting, but recall that really the comma stands for concatenation of totally
ordered sets, thus the first view is more correct. This first view maps to TEX notations where the

value 3 is stored as {{3}}. But under \xintverbosetrue regime, the external brace pair, which is

both a TEX brace pair and a set-theoretical notation gets removed. There only remains one, and what

is shown is actually a view of an atom, where the braces are only TEX braces. But more complicated

nested objects will have TEX braces representing also set-theoretical braces. If you are still

here you can go on reading.

Each ople has a length which is its cardinality. The oples of length 1 are called one-ples. There

are two types of one-ples:

• numbers,

• packed oples: the nut-ples.

As said before the not-ple {{}} is special. It can be input as []. Recall that a number as an ople
is a singleton whose sole element is an atom. It is convenient to put the empty set nil on the same

footing as atoms. Then the not-ple is analogous to an empty number.
We say that the empty set nil and atoms are leaves. Indeed, we can associate with any ople a

tree. The root is the ople. In the case of the nil, there is nothing else than the root, which we

then consider also a leaf. Else the children at top level are the successive items of the ople.

Among the items some are atoms giving leaves of the tree, others are nut-ples which in turn have

children. In the special case of the not-ple we consider it has a child, which is the empty set and

this why we consider the empty set nil a leaf. We then proceed recursively. We thus obtain from the

root ople a tree whose vertices are either oples or leaves. Only the empty set nil is both a leaf
and an ople.

Considering the empty set nil as an atom fits with the xintexpr internal implementation based

on TEX: nil is an empty pair of braces {}, whereas an atom is a braced representation of a numeric

value using digits and other characters. We construct oples by putting one after the other such

constituents and bracing them, and then repeating the process recursively.
Considering the empty set as an atom has also an impact on the definition of the depth (a.k.a

as maximal dimension) of an ople. For example the ople {{}A1A2} with three elements, among them
the empty set and two atoms is said to have depth 1, or to have maximal dimension 1. And {{∅}A1A2}
is of depth 2 because it has a leaf (the empty set) which is a child of a child of the ople. NumPy
ndarrays have a more restricted structure for example {{A00A01}{A10A11}} is a 2-dimensional array,
where all leaves are at the same depth. When slicing empties the array from its atoms, NumPy keeps
the shape information but prints the array as []. This will not be the case with xintexpr, which
has no other way to indicate the shape than display it.
\xinteval{[[],[]]}

[[], []]
\xinteval{[[0,1],[10,11]][:,2:]}

[[], []]

«Set-theoretical» slicing of an ople means replacing it by a subset. This applies also if it is

a number. Then it can be sliced only to itself or to the empty set (indeed it has only one element,

which is an atom). Similarly the not-ple can only be sliced to give itself or the empty set. And

more generally a nut-ple is a singleton so also can only be set-sliced to either the empty set or

itself.

xintexpr extends «Python-like» slicing to act on oples:
• if they are not nut-ples set-theoretical slicing applies,

• if they are nut-ples (only case having a one-to-one correspondance in Python) then the slicing

happens within brackets: i.e. the nut-ple is unpacked then the set-theoretical slicing is

applied, then the result is repacked to produce a new nut-ple.
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With these conventions the not-ple for example is invariant under slicing: unpacking it gives the

empty set, which has only the empty set as subset and repacking gives back the not-ple. Slicing a

general nut-ple returns a nut-ple but now of course in general distinct from the first one.

The syntax for Python slicing is to postfix a variable or a parenthesized ople with [a:b]. See

subsection 2.9 for more. There are never any out-of-range errors when slicing or indexing. All

operations are licit and resolved by the nil, a.k.a. empty set.

«Set-theoretical» item indexing of an ople means reducing it to a subset which is a singleton.

It is thus a special case of set-theoretical slicing (which is the general process of selecting a

subset as replacement of a set).

xintexpr extends «Python-like» indexing to act on oples:
• if they are not nut-ples set-theoretical item indexing applies,

• if they are nut-ples (only case having a one-to-one correspondance in Python) then the mean-

ing becomes extracting: i.e. the nut-ple is unpacked then the set-theoretical indexing is

applied, but the result is not repacked.
For example when applied to the not-ple we always obtain the nil. Whereas as we saw slicing the

not-ple always gives back the not-ple. Indexing is denoted in the syntax by postfixing by [N].

Thus for nut-ples (which are analogous to Python objects), there is genuine difference between

the [N] extractor and the [N:N+1] slicer. But for oples which are either nil, a number, or of

length at least 2, there is no difference.

Nested slicing is a concept from NumPy, which is extended by xintexpr to trees of varying depths.

We have a chain of slicers and extractors. I will describe only the case of slicers and letting them

act on a nut-ple. The first slicer gives back a new nut-ple. The second slicer will be applied to

each of one of its remaining items. However some of them may be atoms or the empty set. In the NumPy

context all leaves are at the same depth thus this can happen only when we have reached beyond the

last dimension (axis). This is not permitted by NumPy and generates an error. xintexpr does not

generate an error. But any attempt to slice an atom or the empty set (as element of its container)

removes it. Recall we call them leaves. We can not slice leaves. We can only slice non-leaf items:

such items are necessarily nut-ples. The procedure then applies recursively.

If we handle an extractor rather than a slicer, the procedure is similar: we can not extract

out of an atom or the empty set. They are thus removed. Else we have a nut-ple. It is thus un-

packed and replaced by the selected item. This item may be an atom or the empty set and any further

slicer or extractor will remove them, or it is a nut-ple and the procedure applies with the next

slicer/extractor.

xintexpr allows to apply such a [a:b,c:d,N,e:f,...] chain of slicing/extracting also to an ople,
which is not a nut-ple. We simply apply the first step as has been described previously and succes-

sive steps will only get applied to either nut-ples or leaves, the latter getting silently removed

by any attempted operation.

One last thing. In the syntax of xintexpr, variables as well as functions have a name and a value.

The value is an ople. We can always use a variable whose value is an ople in a function call, it

will occupy the place of as many arguments as its length indicates. But in a function declaration,

the variables must stand for one-ples, i.e. either numbers or nut-ples.

The * unpacks a nut-ple. The last positional argument in a function declaration can have a spe-

cial form *⟨name⟩. This means that ⟨name⟩ is a nut-ple which receives as items all arguments in the

function call beyond the first ones corresponding to the function declaration.

In case things were too clear, let's try to add a bit of confusion with an extra word on leaves.
When we discuss informally (particularly to compare with NumPy) an input such as
[[1, 2], [3, 4]]

we may well refer to 1, 2, 3, and 4 as being «the leaves of the 2d array». But obviously we have here
numbers and previously we explained that a number is not a leaf, its atom is. Well, the point here
is that we must make a difference between the input form as above and the actual constructed ople
the parser will obtain out of it. In the input we do have numbers. The comma is a concatenator, it
is not a separator for enumeration! The ople which corresponds to it has a TEX representation like
this:

8
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{{{1}{2}}{{3}{4}}}

where we don't have the numbers anymore (which would look like {{1}}, {{2}}, ...) but numeric atoms
{1}, {2}, {3}, {4} where the braces are TEX braces and not set-theoretical braces (the other braces

are both). Hence we should see the above as the ople {{A00A01}{A10A11}} with atoms A00 = {1}, ...,

being the leaves of the tree associated to (or which is) the ople.
Numbers may be called the leaves of the input, but once parsed, the input becomes an ople which

is (morally) a tree whose leaves are atoms (and the empty set).

I hope this is clear to everyone. If not, maybe time to say this section was absolutely not needed

to understand the rest of the manual, but I needed to write it for my own satisfaction. Believe me,

you need this section if you want to write the underlying software!

2.2. The three parsers
xintexpr provides three numerical expression parsers and two subsidiary ones. They are designed

to be compatible with expansion only context. All computations ultimately rely on (and reduce to)

usage of the \numexpr primitive from 𝜀-TEX
5. These 𝜀-TEX extensions date back to 1999 and are by

default incorporated into the pdftex etc... executables from major modern TEX installations for

more than fifteen years now.

• \xinteval{⟨expression⟩} handles integers, decimal numbers, numbers in scientific notation
and fractions. The algebraic computations are done exactly, and in particular / simply con-
structs fractions. Use // for floored division.

\xinteval{add(x/(x+1), x = 1000..1014)}\par

4648482709767835886400149017599415343/310206597612274815392155150733157360

In this example, the fraction obtained by addition is already irreducible, but this is not

always the case:

By default, basic operations on fractions do not automatically reduce to smallest terms

the output: A/B multiplied by C/D returns AC/BD, and A/B added to C/D uses lcm(B, D) as

denominator.

Arbitrarily long numbers are allowed in the input. The space character (contrarily to the

situation inside \numexpr) and also the underscore character (as allowed in Python too) can

serve to separate groups of digits for better readability. But the package currently provides

no macros to let the output be formatted with such separators.

Formatting of numeric output is apart from some minimal facilities such as \xintFrac, \xint-
DecToString, \xintPRaw, \xintFracToSci or \xintPFloat left to user macros or third-party
packages6.

\xinteval{123_456_789_012^5}

28679718616935524442942783005582105858543331562763768832

• \xintiieval{⟨expression⟩} does exact computations on (big) integers only. It is (of course)
slightly faster than \xinteval for equivalent operations. The forward slash / does the rounded
integer division to match behaviour of \numexpr. The // operator does floored division as in
\xinteval. The /: is the associated modulo operator (we could easily let the catcode 12 %
character be an alias, but using such an unusual percent character would be a bit cumbersome
in a TEX workflow, if only for matters of syntax highlighting in TEX-aware text editors).

5 It can handle only integers, and they must be at most 231 -1 = 2147483647. Thus some work has to be done to handle arbitrarily
big integers or arbitrary float precision. 6 For example I hesitated whether to let \xintFracToSciE be actually a macro with one
mandatory argument as this would give a hook to customize formatting the scientific exponent. But then, why not also wrap the
mantissa or the denominator in hook macros? and should the / or the decimal separator also be customizable? It was reasonable
to provide a way to use E in place of e for the scientific part, as E is accepted input in \xinteval or \xintfloateval. It looked however
better to leave additional formatting to external utilities.
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\xintiieval{add((i/:7)?{omit}{i^5}, i=1000..1020)}% only add fifth powers of multiples of 7

3122939154402144

• \xintfloateval{⟨expression⟩} does floating point computations with a given precision P, as
specified via a prior assignment \xintDigits:=P\relax. The / will compute the correct round-
ing of the exact fraction. Again // is floored division and /: its associated modulo (see also
divmod()).

\begingroup

\xintDigits:=64\relax

\xintfloateval{sqrt(3)}

\endgroup

1.732050807568877293527446341505872366942805253810380628055806979

The default is with P=16 digits. The four basic operations and the square root realize correct
rounding.7

It can be used with an optional argument [Q] which means to do a final float rounding to man-

tissas of Q digits (this makes sense only if Q<P). ATTENTION: the optional argument [Q] is to

be located within the braces at the start of the expression.

When Q is negative it means to round to P+Q digits only. Current implementation of trigonomet-

rical functions (xinttrig) is provisory and does not use guard digits, using [-2] will trim

the last two, probably wrong, digits.

On output, \xintfloateval uses \xintPFloat for each number. This can be modified (cf. \xint-

floatexprPrintOne).

The user can define variables and functions. Definition of functions is either per parser

(\xintdeffunc, \xintdeffloatfunc, ...), but there are some restrictions, or generic (\xint-

NewFunction) but the latter is only syntactic sugar for function-like disguise of a TEX macro hav-

ing not done any pre-parsing.

Two derived parsers:

• \xintieval{⟨expression⟩} does all computations like \xinteval but rounds the result to the

nearest integer. If there is an optional positive argument [D], the rounding is to:

– if D>0: the nearest fixed point number with D digits after the decimal mark,

– if D=0: the nearest integer,

– if D<0: the nearest multiple of 10^(-D) (this case is new with 1.4a and uses scientificNew with
1.4a notation).

ATTENTION: the optional argument [D] is to be located within the braces at the start of the

expression.

• \xinttheboolexpr⟨expression⟩\relax does all computations like \xinteval then converts all

(non-empty) leaves8 to True or False (cf. \xintboolexprPrintOne). There is no \xintbooleval.

These macros are wrappers for a more core syntax:

• \xintexpr⟨expression⟩\relax,
• \xintiiexpr⟨expression⟩\relax,
• \xintfloatexpr⟨expression⟩\relax,
• \xintiexpr⟨expression⟩\relax,
• \xintboolexpr⟨expression⟩\relax.

This core syntax can be used directly in typesetting flow. In an \edef they expand to someNew with
1.4 braced nested data (all computations having been done) prefixed with some \protected «typeset-

ter» macros. When using \xinteval (in contrast to \xintexpr), the protection of the «typesetter»

7 when the inputs are already floating point numbers with at most P-digits mantissas. 8 Currently, empty leaves are output
using \xintexprEmptyItem, i.e. default to []. This may change.
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is removed and its action gives (expandably, in two steps) explicit digits and other characters

such as those of scientific notation or brackets.

It is possible to use the core syntax \xintexpr⟨expression⟩\relax also in so-called moving ar-New with
1.4 guments, because when written out to a file the final expansion result uses only standard catcodes

and thus will get retokenized and the typesetter macro (which being \protected is there intact in

external file) will expand as expected.

One needs \xinteval et al. only if one really wants the final digits (and other characters), for

example in a context where TEX expects a number or a dimension.

As alternative to \xinteval{⟨expression⟩}, an equivalent is \xintthe\xintexpr⟨expression⟩\re⤸
lax. Similarly \xintthe can prefix all other core parsers. And one can also use \xinttheexpr as

shortcut for \xintthe\xintexpr.

Throughout this documentation I will most of the time refer to \xinteval and \xintexpr. But be-

ware that doing exact computations with fractions leads very quickly to very big results (and fur-

thermore one needs to use explicitly the reduce() function to convert the fractions into smallest

terms). Thus most probably what you want is \xintfloateval and \xintfloatexpr.

2.3. Expansion
As mentioned already, the parsers are compatible with expansion-only context.

Also, they expand the expression piece by piece: the normal mode of operation of the parsers is

to unveil the parsed material token by token. Unveiling is a process combining brace removal (one

level generally) and f-expansion.
For example a closing parenthesis does not have generally to be immediately visible, it may arise

later from expansion. Even the ending \relax may arise from expansion. Even though the \xinteval

user interface means that the package has at some point the entire expression in its hands, it

immediately re-inserts it into token stream with an additional postfixed \relax and from this

point on has lost any ways to manipulate formally again the whole thing; it can only re-discover

it piece per piece.

This general behaviour has significative exceptions mostly related to «pseudo»-functions. A

«pseudo»-function will grab some of its arguments via delimited macros. For example subs(expr1,x⤸
=expr2) needs to see the comma, equal sign and closing parenthesis. But it has mechanisms to allow

expr1 and expr2 to possess their own commas and parentheses.

Inner semi-colons on the other hand currently always can originate from expansion. Defining

functions or variables requires a visible semi-colon acting as delimiter of the expression, but

inner semi-colons do not need to be hidden within braces or macros.New with
1.4 The expansion stops only when the ending \relax has been found (it is then removed from the token

stream).

For catcode related matters see \xintexprSafeCatcodes.

A word of warning on the bracketed optional argument of respectively \xintfloatexpr and \xint-

iexpr. When defining macros which will hand over some argument to one of these two parsers, the

argument may potentially start with a left square bracket [ (e.g. argument could be [1, 2, 3]) and

this will break the parser. The fix is to use in the macro definition \xintfloatexpr\empty. This

extra \empty token will prevent the parser thinking there is an optional argument and it will then

disappear during expansion.
If comparing to other languages able to handle floating point numbers or big integers, such as Python, one should take

into account that what the xint packages manipulate are streams of ascii bytes, one per digit. At no time (due to ex-
pandability) is it possible to store intermediate results in an arithmetic CPU register; each elementary operation via
\the\numexpr will output digit tokens (hence as many bytes), not things such as handles to memory locations where some
numbers are stored as memory words. The process can never put aside things but can only possibly permute them with upcoming
tokens, to use them later, or, via combinations of \expanded and \unexpanded or some other more antiquated means grab some
tokens and shift the expansion to some distant locations to later come back. The process is a never-ending one-dimensional
one...
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2.4. \xintthealign and its customization
With \xintthealign one can get nested data use a TEX alignment in the output. Attention, this must
be followed by \xintexpr et al., never by \xinttheexpr or \xinteval. Here is an example :
\xintthealign\xintexpr ndseq(1/(i+j), i = 1..10; j=1..10)\relax

[[ 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11 ],

[ 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12 ],

[ 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13 ],

[ 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14 ],

[ 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15 ],

[ 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16 ],

[ 1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17 ],

[ 1/9, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18 ],

[ 1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19 ],

[ 1/11, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20 ]]
It is possible to customize the behaviour of \xintthealign. The helper macros, apart from \x⤸Changed

at 1.4a! intexpralignbegin and \xintexpralignend will be subjected to a complete (\expanded) expansion
(once).9 The package uses here \protected with no strong reason, as the replacement tokens are not
expanding anyhow, but the idea is that this allows to define a macro in an \edef and later change
the meaning of the auxiliary macros depending on what one wants to do with the expansion result.
See also further down the LATEX example with a matrix environment, where \noexpand rather than \pro⤸
tected is used.
\protected\def\xintexpralignbegin {\halign\bgroup\tabskip2ex\hfil##&&##\hfil\cr}%

\protected\def\xintexpralignend {\crcr\egroup}%

\protected\def\xintexpralignlinesep {,\cr}% separates "lines"

\protected\def\xintexpralignleftsep {&}% at left of first item in a "line" (after brackets)

\protected\def\xintexpraligninnersep {,&}% at the left of non-first items

\protected\def\xintexpralignrightsep {&}% at right of last item in a "line" (before brackets)

\protected\def\xintexpralignleftbracket {[}%

\protected\def\xintexpralignrightbracket{]}%

Although we will try to keep stable the way «regular arrays» are rendered, the \xintthealign macroUnstable!
(and its associated customizability) is considered work-in-progress and may experience breaking

changes.
Use for example this for outputting to a file or a terminal:
% Better here without \protected.

% We assume here \newlinechar has the LaTeX setting.

\def\xintexpralignbegin {}%

\def\xintexpralignend {}%

\def\xintexpralignlinesep {,^^J}% separates "lines"

\def\xintexpralignleftsep { }% at left of first item in a "line" (after brackets)

\def\xintexpraligninnersep {, }% at the left of non-first items

\def\xintexpralignrightsep { }% at right of last item in a "line" (before brackets)

\def\xintexpralignleftbracket {[}%

\def\xintexpralignrightbracket{]}%

And here is an example using a pmatrix environment. But it will not break across pages, contrar-

ily to the display produced by the default \xintthealign configuration which uses TEX's \halign.
\[

\def\xintexpralignbegin {\begin{pmatrix}}%

\def\xintexpralignend {\end{pmatrix}}%

\def\xintexpralignlinesep {\noexpand\\}% needed to counteract an internal \expanded

\def\xintexpraligninnersep {&}%

\let\xintexpralignleftbracket\empty \let\xintexpralignleftsep\empty

\let\xintexpralignrightbracket\empty \let\xintexpralignrightsep\empty

% by default amsmath matrices can have 10 columns at most

9 \xintexpralignend is expanded once, after the body has been submitted to exhaustive expansion, and prior to the expansion of
\xintexpralignbegin.
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% (cf amsmath documentation for what to do to allow more)

l.c.m.=\xintthealign\xintiiexpr ndmap(lcm, 1..12; 1..10)\relax

\]

l.c.m. =

©­­­­­­­­­­­­­­­­­­­«

1 2 3 4 5 6 7 8 9 10

2 2 6 4 10 6 14 8 18 10

3 6 3 12 15 6 21 24 9 30

4 4 12 4 20 12 28 8 36 20

5 10 15 20 5 30 35 40 45 10

6 6 6 12 30 6 42 24 18 30

7 14 21 28 35 42 7 56 63 70

8 8 24 8 40 24 56 8 72 40

9 18 9 36 45 18 63 72 9 90

10 10 30 20 10 30 70 40 90 10

11 22 33 44 55 66 77 88 99 110

12 12 12 12 60 12 84 24 36 60

ª®®®®®®®®®®®®®®®®®®®¬
2.5. Customization of typesetting of individual items
The way individual items are formatted (whether or not using \xintthealign) is also customizable:
\def\xintexprEmptyItem{[]}

\let\xintexprPrintOne\xintFracToSci

\def\xintFracToSciE{e}

\def\xintiiexprPrintOne #1{#1}

\def\xintfloatexprPrintOne#1#2{\xintPFloat[#1]{#2}}

\def\xintPFloatE{e}

\def\xintboolexprPrintOne#1{\xintiiifNotZero{#1}{True}{False}}

Attention! The above macros convert from xintexpr internal numeric data format to «printed» out-

put; they are thus susceptible to require adjustments if the internal data format changes, which

may happen at each release. Of course the default for \xintexprPrintOne etc... will be adjusted

accordingly, but user custom definitions may break.

Currently, this means that the macros used in place of \xintFracToSci and \xintPFloat must un-

derstand both the raw xintfrac format A/B[N] and the decimal format A.ddddd..dd.10 The typesetter

for \xintiiexpr simply prints ``as is'', but this may change in future.

The used macros must be compatible with expansion-only context, but do not have to be f-
expandable.

Note: when not using \xintthealign, output of nested structures uses left and right brack-

ets, and commas and spaces in a non-customizable way, except via \xintexprEmptyItem. Use the

\xintthealign interface for full customizability.

2.6. Built-in operators and their precedences
The entries of Table 1 are hyperlinked to the more detailed discussion at each level.

∞ At this highest level of precedence, one finds:

functions and variables Functions (even the logic functions !() and ?() whose names consist of

a single non-letter character) must be used with parentheses. These parentheses may arise

from expansion after the function name is parsed (there are exceptions which are documented

at the relevant locations.)

* Python-like «unpacking» prefix operator. Sometimes one needs to use it as function *() (but

I can't find an example right now) but most of the time parentheses are unneeded.

10 Furthermore \xintieval{[D]...} with a negative D (feature added at 1.4a) relies on the \xintexprPrintOne ability to react to a
catcode 12 e (it is always used with detokenized input). \xintFracToSci has this ability and uses catcode 11 e in output (or rather
whatever \xintFracToSciE expands to).

13
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∞: at this top level the syntax elements whose execution

is done prior to operators preceding them:

• built-in or user-defined functions,

• variables,

• the * unpacking operator,

• and intrinsic constituents of numbers: decimal mark .,

e and E of scientific notation, hexadecimal prefix ".

Precedence ``Operators'' at this level

20 postfix ! and branching ?, ?? operators

- minus sign as unary operator inherits the prece-

dence of the infix operator it follows, if that

precedence is higher than the one of binary + and

-, else it inherits the latter

18 ^ and ** are a priori synonymous (but see xintlog)

16 Tacit multiplication has an elevated precedence

14 *, /, // (floored division), and /: (associated

modulo, alias 'mod')

12 +, -

10 <, >, ==, <=, >=, != (they can be chained)

8 Boolean conjunction && and its alias 'and'

6 Boolean disjunction || and its alias 'or'. Also

'xor' and .., ..[, ].., and : have this precedence

4 the brackets for slicers and extractors [, ]

3 the comma ,

2 the bracketers [, ] construct nestable «arrays»

1 the parentheses (, ), and the semi-colon ; in

iter(), rseq(), and further structures

• Actually operators have a left and a right precedence,

which for most coincide. But for some there is a crucial

distinction. The above table is indicative, and the ac-

tual numerical levels used internally may change.

• In case of equal precedence, the rule is left-

associativity: the first encountered operation is

executed first. Tacit multiplication has an ele-

vated precedence level hence seemingly breaks left-

associativity: (1+2)/(3+4)5 is computed as (1+2)/((3⤸
+4)*5) and x/2y is interpreted as x/(2*y) when using

variables.

Table 1: Precedence levels
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. is decimal mark; the number scanner treats it as an inherent, optional and unique component

of a being formed number. \xintexpr 0.^2+2^.0\relax is interpreted as 0^2+2^0 and thus

produces 1.

Since release 1.2 an isolated decimal mark is illegal input in the xintexpr parsers (it

remains legal as argument to the macros of xintfrac).

e scientific notation.

E scientific notation. For output, see \xintFracToSciE.

" prefix for hexadecimal input. Only uppercase letters, and one optional . separating integer

and fractional hexadecimal parts. This functionality

requires to load explicitly package xintbinhex.

\xintexpr "FEDCBA9876543210\relax\newline

\xintexpr ".FEDCBA9876543210\relax\newline

\xintexpr 16^5-("F75DE.0A8B9+"8A21.F5746+16^-5)\relax

18364758544493064720

9955555555555555555594104966132817935431376099586486816406250000e-64

0

It is possible that in future the " prefix could be dropped in favour of 0x prefix. This

would free " to be used for input of «string»-like entities.

20 The postfix operators ! and the branching conditionals ?, ??.

! computes the factorial of an integer. Attention that the boolean equality test == confuses

the parser if following directly ! (e.g. 3! == 10) as spaces are ignored and != will be

intepreted as boolean inequality test, the second = causing then a low-level error. Use

parentheses in such cases: (3!)==10.

? is used as (stuff)?{yes}{no}. It evaluates stuff and chooses the yes branch if the result

is non-zero, else it executes no. After evaluation of stuff it acts as a macro with two

mandatory arguments within braces, chooses the correct branch without evaluating the wrong
one. Once the braces are removed, the parser scans and expands the uncovered material.

?? is used as (stuff)??{<0}{=0}{>0}, where stuff is anything, its sign is evaluated and de-

pending on the sign the correct branch is un-braced, the two others are discarded with no

evaluation of their contents.

- As unary operator, the minus sign inherits the precedence of the infix operator it follows (plus
signs as unary operators are simply ignored).

\xintexpr -3-4*-5^-7, (-3)-(4*(-(5^(-7))))\relax\newline

\xintexpr -3^-4*-5-7, (-((3^(-4))*(-5)))-7\relax\newline

|2^-10| gives \xintexpr 2^-10\relax\space

-234371/78125, -234371/78125

-562/81, -562/81

2^-10 gives 1/1024 and is thus perfectly legal, no need for parentheses.

Note (1.4b): the above is what this documentation has always said, but it has also always been

only partially true. I.e. it applies only when - follows an infix binary operator having at

least the precedence level of + and -. When the unary - follows an infix operator (or operator

word) of less precedence, its precedence will be set to the one for the infix operators + and

-. «Seul sourcexint.pdf fait foi».

18

^

** Both compute powers in left associative way.

\xintiiexpr 2^2^3\relax
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64

Half-integer exponents are allowed in \xintfloateval and use sqrt(). It is possible to

allow arbitrary fractional exponents (subsection 4.1) but this currently achieves only a

reduced precision. See \xintFloatPower and xintlog for additional information.

16 see Tacit multiplication.

14

* multiplication

/ division: exact in \xinteval, correctly rounded in \xintfloateval (numerator and denomi-
nator are rounded before the division is done), and rounded to an integer (like \numexpr
does: half-integers are rounded towards infinity of same sign) in \xintiieval. The divi-
sion is left-associative:

\xintexpr reduce(100/50/2)\relax

1

// floored division

/: the associated modulo

Left-associativity applies generally to operators of same precedence.

\xintexpr 100000/:13, 100000 'mod' 13\relax\newline

\xintexpr 100000/:13/13\relax

4, 4

4/13

'mod' is same as /:.

Note: The enclosing (right) ticks are mandatory part of all such infix operator «words».

12

+ addition

- subtraction. According to the general left-associativity rule in case of equal precedence,
it is left associative:

\xintiiexpr 100-50-2\relax

48

10 Comparison operators are (as in Python) all at the same level of precedence, use parentheses

for disambiguation.

< a<b evaluates to 1 if the strict inequality holds to 0 if not.

> a>b evaluates to 1 if the strict inequality holds to 0 if not.

== a==b evaluates to 1 if equality holds to 0 if not.

<= a<=b evaluates to 1 if left hand side is at most equal to right hand side, to 0 if not.

>= a>=b evaluates to 1 if left hand side is at least equal to right hand side, to 0 if not.

!= a!=b evaluates to 1 if they differ, to 0 if not.

Comparisons can be chained arbitrarily, e.g., x < y <= z != t is equivalent to x < y 'and' ⤸New with
1.4b y <= z 'and' z != t (and also to all(x<y, y<=z, z!=t)), except that if y and z involve com-

putations, they are evaluated only once. Currently there is no short-circuit here, i.e. even

if some intermediate comparison turns out false (in fact 0), all the remaining conditionals

will still be evaluated.

\xintifboolexpr{1<=2!=3<4>1}{true}{\error}, \xintifboolexpr{1<=2>=3<4>1}{\error}{false}

true, false

8
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&& logical conjunction. Evaluates to 1 if both sides are non-zero, to 0 if not.

'and' idem. The (right) ticks are mandatory. See also the all() multi-arguments function.

6

|| logical (inclusive) disjunction. Evaluates to 1 if one or both sides are non-zero, to 0 if

not.

'or' idem. See also the any() multi-arguments function.

'xor' logical (exclusive) disjunction. See also the xor() multi-arguments function.

..

..[

].. Syntax for arithmetic progressions. See subsection 2.8.

: This is a separator involved in [a:b] Python-like slicing syntax.

4

[

] Involved in Python-like slicing [a:b] and extracting [N] syntax. And its extension à la

NumPy [a:b,N,c:d,...,:]. Ellipsis ... is not yet implemented. The «step» parameter as in

[a:b:step] is not yet implemented.

3

, The comma separates expressions (or function arguments).11

\xintiiexpr 2^3,3^4,5^6\relax

8, 81, 15625

2

[

] The bracketers construct nestable «array-like» structures. Arbitrary (heterogeneous) nest-

ing is allowed. For output related matters see \xintthealign (its usage is optional, with-

out it rendering is «one-dimensional»). Output shape of non-homogeneous arrays is to be

considered unstable at this time.

1

(

) The parentheses serve as mandatory part of the syntax for functions, and to disambiguate

precedences.12 They do not construct any nested structure.

; The semi-colon as involved as part of the syntax of iter(), rseq(), ndseq(), ndmap() has the

same precedence as a closing parenthesis.

\relax This is the expression terminator for \xintexpr et al. It may arise from expansion during

the parsing itself. As alternative use \xinteval et al. which proceed as macros expecting one

mandatory argument.

The ; also serves as syntax terminator for \xintdefvar and \xintdeffunc. It can in this rôle not

arise from expansion as the expression body up to it is fetched by a delimited macro. But this is

done in a way which does not require any specific hiding for inner semi-colons as involved in the

syntax of iter(), etc...

11 The comma is really like a binary operator, which may be called “join”. It has lowest precedence of all (apart the parentheses)
because when it is encountered all postponed operations are executed in order to finalize its first operand; only a new comma
or a closing parenthesis or the end of the expression will finalize its second operand. 12 It is not apt to describle the opening
parenthesis as an operator, but the closing parenthesis is analogous to a postfix unary operator. It has lowest precedence which
means that when it is encountered all postponed operations are executed to finalize its operand. The start of this operand was
decided by the opening parenthesis.
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2.7. Built-in functions
See Table 2 whose elements are hyperlinked to the corresponding definitions.

Functions are at the same top level of priority. All functions even ?() and !() require paren-

theses around their arguments.

!() atan2() first() inv() odd() reduce() subs()

?() atan2d() flat() last() pArg() rem() subsm()

`*`() binomial() float() lcm() pArgd() reversed() subsn()

`+`() bool() float_() len() pfactorial() round() tan()

abs() ceil() floor() log() pow() rrseq() tand()

add() cos() frac() log10() pow10() rseq() tg()

all() cosd() gcd() max() preduce() sec() togl()

any() cot() if() min() qfloat() secd() trunc()

acos() cotd() ifint() mod() qfrac() seq() unpack()

acosd() cotg() ifone() mul() qint() sgn() xor()

Arg() csc() ifsgn() ndmap() qrand() sin() zip()

Argd() cscd() ilog10() ndseq() qraw() sinc()

asin() divmod() isint() ndfillraw() quo() sind()

asind() even() isone() not() random() sqr()

atan() exp() iter() num() randrange() sqrt()

atand() factorial() iterr() nuple() rbit() sqrtr()

Table 2: Functions (click on names)
.7.1 Functions with no argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
.7.2 Functions with one argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
.7.3 Functions with an alphanumeric argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
.7.4 Functions with one mandatory and a second but optional argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
.7.5 Functions with two arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
.7.6 Functions with 3 or 4 arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
.7.7 Functions with an arbitrary number of arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
.7.8 Functions requiring dummy variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Miscellaneous notes:

• since release 1.3d gcd() and lcm() are extended to apply to fractions too, and do NOT require

the loading of xintgcd,

• The randomness related functions random(), qrand() and randrange() require that the TEX engine

provides the \uniformdeviate or \pdfuniformdeviate primitive. This is currently the case for

pdftex, (u)ptex, luatex, and also for xetex since TEXLive 2019.+
{
• togl() is provided for the case etoolbox package is loaded,

• bool(), togl() use delimited macros to fetch their argument and the closing parenthesis must

be explicit, it can not arise from on the spot expansion. The same holds for qint(), qfrac(),

qfloat(), qraw(), random() and qrand().

• Also functions with dummy variables use delimited macros for some tasks. See the relevant

explanations there.

• Functions may be called with oples as arguments as long as the total length is the number of

arguments the function expects.

2.7.1. Functions with no argument

random() returns a random float x verifying 0 <= x < 1. It obeys the prevailing precision as set

by \xintDigits: i.e. with P being the precision the random float multiplied by 10^P is an

integer, uniformly distributed in the 0..10^P-1 range.
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This description implies that if x turns out to be <0.1 then its (normalized) mantissa has P-⤸
1 digits and a trailing zero, if x<0.01 it has P-2 digits and two trailing zeros, etc... This
is what is observed also with Python's random(), of course with 10 replaced there by radix 2.

\pdfsetrandomseed 12345

\xintDigits:=37\relax

\xintthefloatexpr random()\relax\newline

\xintthefloatexpr random()\relax\par

0.2415544817596207455547929850209500042

0.2584863529993996627285461554203021352

qrand() returns a random float 0 <= x < 1 using 16 digits of precision (i.e. 10^{16}x is an in-

teger). This is provided when speed is a at premium as it is optimized for precision being

precisely 16.

% still with 37 digits as prevailing float precision

\xintthefloatexpr qrand(), random()\relax\newline

\xintDigits:=16\relax

\xintthefloatexpr qrand(), random()\relax\par

0.4883568991327765000000000000000000000, 0.09165461826072383107532471669335645230

0.9069127435402274, 0.9106687541716861

One can use both qrand() and random() inside the \xintexpr parser too. But inside the integer

only \xintiiexpr parser they will cause some low-level error as soon as they get involved

in any kind of computation as they use an internal format not recognized by the integer-only

parser.

See further randrange(), which generates random integers.

Currently there is no uniform() function13 but it can be created by user:

\xintdeffloatfunc uniform(a, b):= a + (b-a)*random();

\romannumeral\xintreplicate{10}%

{%

\xintthefloatexpr uniform(123.45678, 123.45679)\relax\newline

}%

123.4567849497100

123.4567812033226

123.4567863308250

123.4567896366777

123.4567849656655

123.4567849908270

123.4567889123433

123.4567896262979

123.4567846543719

123.4567832664043

rbit() returns a random 0 or 1.New with
1.4

2.7.2. Functions with one argument

num(x) truncates to the nearest integer (truncation towards zero). It has the same sign as x,
except of course with -1<x<1 as then num(x) is zero.

\xinttheexpr num(3.1415^20), num(1e20)\relax

8764785276, 100000000000000000000 The output is an explicit integer with as many zeros are

as necessary. Even in float expressions, there will be an intermediate stage where all needed

13 Because I am not sure how to handle rounding issues: should the computation proceed exactly and a rounding be done only at
very end?
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digits are there, but then the integer is immediately reparsed as a float to the target pre-

cision, either because some operation applies to it, or from the output routine of \xint-

floatexpr if it stood there alone. Hence, inserting something like num(1e10000) is costly as

it really creates ten thousand zeros, even though later the whole thing becomes a float again.

On the other hand naturally 1e10000 without num() would be simply parsed as a floating point

number and would cause no specific overhead.

frac(x) fractional part. For all numbers x=num(x)+frac(x), and frac(x) has the same sign as x ex-
cept when x is an integer, as then frac(x) vanishes.

\xintthefloatexpr frac(-355/113), frac(-1129.218921791279)\relax

-0.1415929203539820, -0.2189217912790000

reduce(x) reduces a fraction to smallest terms

\xinttheexpr reduce(50!/20!/20!/10!)\relax

1415997888807961859400

Recall that this is NOT done automatically, for example when adding fractions.

preduce(x) internally, fractions may have some power of ten part (for example when they got input
in scientific notation). This function ignores the decimal part when doing the reduction. See
\xintPIrr.

\xinttheexpr preduce(10e3/2), reduce(10e3/2)\relax

5e3, 5000

abs(x) absolute value

sgn(x) sign. See also \xintifsgnexpr.

inv(x) inverse.

floor(x) floor function.

ceil(x) ceil function.

sqr(x) square.

ilog10(x) in \xintiiexpr the integer exponent a such that 10a ≤ abs(x) < 10a+1; returns (this may
evolve in future) -2147450880 if x vanishes (i.e. 0x7fff8000).

\xintiieval{ilog10(1), ilog10(-1234567), ilog10(-123456789123456789), ilog10(2**31)}\par

0, 6, 17, 9

See ilog10() for the behaviour in \xintexpr-essions.

sqrt(x) in \xintiiexpr, truncated square root; in \xintexpr or \xintfloatexpr this is the floating

point square root, and there is an optional second argument for the precision. See sqrt().

sqrtr(x) available only in \xintiiexpr, rounded square root.

factorial(x) factorial function (like the post-fix ! operator.) When used in \xintexpr or \xintflo⤸
atexpr there is an optional second argument. See factorial().

?(x) is the truth value, 1 if non zero, 0 if zero. Must use parentheses.

!(x) is logical not, 0 if non zero, 1 if zero. Must use parentheses.

not(x) logical not.

even(x) is the evenness of the truncation num(x).

\xintthefloatexpr [3] seq((x,even(x)), x=-5/2..[1/3]..+5/2)\relax
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-2.50, 1.00, -2.17, 1.00, -1.83, 0., -1.50, 0., -1.17, 0., -0.833, 1.00, -0.500, 1.00, -0.167,

1.00, 0.167, 1.00, 0.500, 1.00, 0.833, 1.00, 1.17, 0., 1.50, 0., 1.83, 0., 2.17, 1.00, 2.50,

1.00

odd(x) is the oddness of the truncation num(x).

\xintthefloatexpr [3] seq((x,odd(x)), x=-5/2..[1/3]..+5/2)\relax

-2.50, 0., -2.17, 0., -1.83, 1.00, -1.50, 1.00, -1.17, 1.00, -0.833, 0., -0.500, 0., -0.167,

0., 0.167, 0., 0.500, 0., 0.833, 0., 1.17, 1.00, 1.50, 1.00, 1.83, 1.00, 2.17, 0., 2.50, 0.

isint(x) evaluates to 1 if x is an integer, to 0 if not. See ifint().

$\xinttheexpr -5/3..[1/3]..+5/3\relax

\rightarrow \xinttheexpr seq(isint(x), x=-5/3..[1/3]..+5/3)\relax$

-5/3, -4/3, -3/3, -2/3, -1/3, 0, 1/3, 2/3, 3/3, 4/3, 5/3 → 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0

isone(x) evaluates to 1 if x is 1, to 0 if not. See ifone().

$\xintthefloatexpr subs(((x-1)/x, x/x, (x+1)/x), x=2**30)\relax

\rightarrow

\xintthefloatexpr seq(isone(y), y=subs(((x-1)/x, x/x, (x+1)/x), x=2**30))\relax$

0.9999999990686774, 1.000000000000000, 1.000000000931323 → 0., 1.000000000000000, 0.

qint(x) belongs with qfrac(), qfloat(), qraw() to a special category:

1. They require the closing parenthesis of their argument to be immediately visible, it can

not arise from expansion.

2. They grab the argument and store it directly; the format must be compatible with what is

expected at macro level.

3. And in particular the argument can not be a variable, it has to be numerical.

qint() achieves the same result as num, but the argument is grabbed as a whole without expan-

sion and handed over to the \xintiNum macro. The q stands for ``quick'', and qint is thought

out for use in \xintiiexpr...\relax with integers having dozens of digits.

Testing showed that using qint() starts getting advantageous for inputs having more (or f-
expanding to more) than circa 20 explicit digits. But for hundreds of digits the input gain

becomes a negligible proportion of (for example) the cost of a multiplication.

Leading signs and then zeroes will be handled appropriately but spaces will not be systemat-
ically stripped. They should cause no harm and will be removed as soon as the number is used
with one of the basic operators. This input mode does not accept decimal part or scientific
part.

\def\x{....many many many ... digits}\def\y{....also many many many digits...}

\xinttheiiexpr qint(\x)*qint(\y)+qint(\y)^2\relax\par

qfrac(x) does the same as qint except that it accepts fractions, decimal numbers, scientific num-

bers as they are understood by the macros of package xintfrac. Thus, it is for use in \xintexpr.⤸
..\relax. It is not usable within an \xintiiexpr-ession, except if hidden inside functions

such as round or trunc which then produce integers acceptable to the integer-only parser. It

has nothing to do with frac (sigh...).

qfloat(x) does the same as qfrac and then converts to a float with the precision given by the setting
of \xintDigits. This can be used in \xintexpr to round a fraction as a float with the same
result as with the float() function (whereas using \xintfloatexpr A/B\relax inside \xint-
expr...\relax would first round A and B to the target precision); or it can be used inside
\xintfloatexpr...\relax as a faster alternative to wrapping the fraction in a sub-\xintexpr-
ession. For example, the next two computations done with 16 digits of precision do not give
the same result:

\xintthefloatexpr qfloat(12345678123456785001/12345678123456784999)-0.5\relax\newline

\xintthefloatexpr 12345678123456785001/12345678123456784999-0.5\relax\newline
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\xintthefloatexpr 1234567812345679/1234567812345678-0.5\relax\newline

\xintthefloatexpr \xintexpr12345678123456785001/12345678123456784999\relax-0.5\newline

0.5000000000000000

0.5000000000000010

0.5000000000000010

0.5000000000000000

because the second is equivalent to the third, whereas the first one is equivalent to the

fourth one. Equivalently one can use qfrac to the same effect (the subtraction provoking the

rounding of its two arguments before further processing.)

Note that if the input needs no special rounding, the internal form of the output keeps a short

mantissa (it does not add padding zeros to make it of length equal to the float precision). For

example qfloat(2[20]) would keep internally the input format.

float_(x) is like float() but does not accept the latter second optional argument. This is providedNew with
1.4 as a utility to speed-up things in some contexts, particularly when converting function defi-

nitions done via \xintdeffunc (see explanations there) to functions usable in \xintfloateval.

nuple(x) is currently same as [...]. Reserved for possible alternative meaning in future.Do not
use! (1.4) \xinteval{nuple(1,2,3)}

[1, 2, 3]

unpack(x) is alternative for * unpacking operator.New with
1.4 \xinteval{unpack([1,2,3])}

1, 2, 3

flat(ople) removes all nesting to produce a (non-bracketed) ople having the same leaves (some pos-New with
1.4b sibly empty) but located at depth 1.

\xinteval{flat([[[[1,[],3],[4,[[[5,6,[]],[8,9],[[],11]],12],[13,14]]], [[],16]]], [])}

1, [], 3, 4, 5, 6, [], 8, 9, [], 11, 12, 13, 14, [], 16, []

I almost delayed indefinitely release because I was hesitating on the name: perhaps betterunstable?
with flattened(), but long names add (negligible, but still) overhead compared to short names.

For this reason, consider that name may change.

2.7.3. Functions with an alphanumeric argument

bool(name) returns 1 if the TEX conditional \ifname would act as \iftrue and 0 otherwise. This

works with conditionals defined by \newif (in TEX or LATEX) or with primitive conditionals such

as \ifmmode. For example:

\xintifboolexpr{25*4-if(bool(mmode),100,75)}{YES}{NO}

will return NO if executed in math mode (the computation is then 100-100 = 0) and YES if not (the

if() conditional is described below; the \xintifboolexpr test automatically encapsulates its

first argument in an \xintexpr and follows the first branch if the result is non-zero (see

subsection 15.14)).

The alternative syntax 25*4-\ifmmode100\else75\fi could have been used here, the usefulness

of bool(name) lies in the availability in the \xintexpr syntax of the logic operators of con-

junction &&, inclusive disjunction ||, negation ! (or not), of the multi-operands functions

all, any, xor, of the two branching operators if and ifsgn (see also ? and ??), which allow

arbitrarily complicated combinations of various bool(name).

togl(name) returns 1 if the LATEX package etoolbox14 has been used to define a toggle named name,

and this toggle is currently set to true. Using togl in an \xintexpr..\relax without having

loaded etoolbox will result in an error from \iftoggle being a non-defined macro. If etoolbox

is loaded but togl is used on a name not recognized by etoolbox the error message will be of the

14 https://ctan.org/pkg/etoolbox
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type ``ERROR: Missing \endcsname inserted.'', with further information saying that \protect

should have not been encountered (this \protect comes from the expansion of the non-expandable

etoolbox error message).

When bool or togl is encountered by the \xintexpr parser, the argument enclosed in a parenthe-

sis pair is expanded as usual from left to right, token by token, until the closing parenthesis

is found, but everything is taken literally, no computations are performed. For example tog⤸
l(2+3) will test the value of a toggle declared to etoolbox with name 2+3, and not 5. Spaces

are gobbled in this process. It is impossible to use togl on such names containing spaces, but

\iftoggle{name with spaces}{1}{0} will work, naturally, as its expansion will pre-empt the

\xintexpr scanner.

There isn't in \xintexpr... a test function available analogous to the test{\ifsometest} con-

struct from the etoolbox package; but any expandable \ifsometest can be inserted directly in

an \xintexpr-ession as \ifsometest10 (or \ifsometest{1}{0}), for example if(\ifsometest{1}{⤸
0},YES,NO) (see the if operator below) works.

A straight \ifsometest{YES}{NO} would do the same more efficiently, the point of \ifsometest⤸
10 is to allow arbitrary boolean combinations using the (described later) && and || logic op-

erators: \ifsometest10 && \ifsomeothertest10 || \ifsomethirdtest10, etc... YES or NO above

stand for material compatible with the \xintexpr parser syntax.

See also \xintifboolexpr, in this context.

2.7.4. Functions with one mandatory and a second but optional argument

round(x[, n]) Rounds its first argument to an integer multiple of 10^(-n) (i.e. it quantizes). The
case of negative n is new with 1.4a. Positive n corresponds to conversion to a fixed point
number with n digits after decimal mark.

\xinteval{round(-2^30/3^5,12), round(-2^30/3^5,-3)}

-4418690.633744855967, -4419e3

trunc(x[, n]) Truncates its first argument to an integer multiple of 10^(-n). The case of negative
n is new with 1.4a.

\xinteval{trunc(-2^30/3^5,12), trunc(-2^30/3^5,-3)}

-4418690.633744855967, -4418e3

float(x[, n]) Rounds its first argument to a floating point number, with a precision given by the
second argument, which must be positive.

\xinteval{float(-2^30/3^5,12), float(-2^30/3^5, 1)}

-441869063374e-5, -4e6

For this example and earlier ones if the parser had been \xintfloateval, not \xinteval, the

first argument (here 2^30/3^5) would already have been computed as floating point number with

numerator and denominator rounded separately first to the prevailing precision. To avoid

that, use \xintexpr...\relax wrapper. Then the rounding or truncation will be applied to an

exact fraction.

sfloat(x[, n]) It is the same as float(), but in case of a short (non-fractional) input it gets stored

internally without adding zeros to make the mantissa have the \xinttheDigits length. One may

wonder then what is the utility of sfloat()? See for an example of use the documentation of

\xintdeffunc. Notice however that this is a bit experimental and may evolve in future when

xint gets a proper internal data structure for floating point numbers. The non-normalized

format is useful for multiplication or division, but float additions and subtractions usually

convert their arguments to a normalized mantissa.

ilog10(x[, n]) If there is an optional argument n, returns the (relative) integer a such that 10a ≤
abs(float(x, n)) < 10a+1. In absence of the optional argument:
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• in \xintexpr, it returns the exponent a such that 10a ≤ abs(x) < 10a+1.

• in \xintfloatexpr, the input is first rounded to \xinttheDigits float precision, then the

exponent a is evaluated.

\xintfloateval{ilog10(99999999/10000000, 8), ilog10(-999999995/100000000, 8),

ilog10(-999999995/100000000, 9)}\newline

\xinteval{ilog10(-999999995/100000000), ilog10(-999999995/100000000, 8)}

0., 1.000000000000000, 0.

0, 1

If the input vanishes the function outputs -2147450880 (i.e. -0x7fff8000 which is near the

minimal TeX number -0x7fffffff). This is also subject to change.

The integer-only variant for \xintiiexpr admits no optional argument.

sqrt(x[, n]) in \xintexpr...\relax and \xintfloatexpr...\relax it achieves the precision given by
the optional second argument. For legacy reasons the sqrt function in \xintiiexpr truncates
(to an integer), whereas sqrt in \xintfloatexpr...\relax (and in \xintexpr...\relax which
borrows it) rounds (in the sense of floating numbers). There is sqrtr in \xintiiexpr for round-
ing to nearest integer.

\xinttheexpr sqrt(2,31)\relax\ and \xinttheiiexpr sqrt(num(2e60))\relax

1414213562373095048801688724210e-30 and 1414213562373095048801688724209

There is an integer only variant for \xintiiexpr.

factorial(x[, n]) when the second optional argument is made use of inside \xintexpr...\relax, this
switches to the use of the float version, rather than the exact one.

\xinttheexpr factorial (100,32)\relax, {\xintDigits:=32\relax \xintthefloatexpr

factorial (100)\relax}\newline

\xinttheexpr factorial (50)\relax\newline

\xinttheexpr factorial (50, 32)\relax

93326215443944152681699238856267e126, 9.3326215443944152681699238856267e157

30414093201713378043612608166064768844377641568960512000000000000

30414093201713378043612608166065e33

The integer only variant of course has no optional second argument.

randrange(A[, B]) when used with a single argument A returns a random integer 0 <= x < A, and when

used with two arguments A and B returns a random integer A <= x < B. As in Python it is an

«empty range» error in first case if A is zero or negative and in second case if B <= A.

Attention that the arguments are first converted to integers using \xintNum (i.e. truncated

towards zero).

The function can be used in all three parsers. Of course the size is not limited (but in the
float parser, the integer will be rounded if involved in any operation).

\pdfsetrandomseed 12345

\xinttheiiexpr randrange(10**20)\relax\newline

\xinttheiiexpr randrange(1234*10**16, 1235*10**16)\relax\newline

\printnumber{\xinttheiiexpr randrange(10**199,10**200)\relax}\par

12545314555479298502

12341249468233524155

3872427149656655225094489636677708166243633082496887337312033225820004454949709978664331⤸
9106687541716861906912743540227448009165461826072383107532471669335645234883568991327765⤸
395258486352999399662728

For the support macros see \xintRandomDigits, \xintiiRandRange, \xintiiRandRangeAtoB. For

some details regarding how xint uses the engine provided generator of pseudo-random numbers,

see \xintUniformDeviate.
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2.7.5. Functions with two arguments

quo(f, g) first truncates the arguments to convert them to integers then computes the Euclidean

quotient. Hence it computes an integer.

rem(f, g) first truncates the arguments to convert them to integers then computes the Euclidean

remainder. Hence it computes an integer.

mod(f, g) computes f - g*floor(f/g). Hence its output is a general fraction or floating point

number or integer depending on the used parser.

Prior to 1.2p it computed f - g*trunc(f/g).

The /: and 'mod' infix operators are both mapped to the same underlying macro as this mod(f⤸
, g) function. At 1.3 this macro produces smaller denominators when handling fractions than
formerly.

\xinttheexpr mod(11/7,1/13), reduce(((11/7)//(1/13))*1/13+mod(11/7,1/13)),

mod(11/7,1/13)- (11/7)/:(1/13), (11/7)//(1/13)\relax\newline

\xintthefloatexpr mod(11/7,1/13)\relax\par

3/91, 11/7, 0, 20

0.03296703296703260

Attention: the precedence rules mean that 29/5 /: 3/5 is handled like ((29/5)/:3)/5. This is
coherent with behaviour of Python language for example:

>>> 29/5 % 3/5, 11/3 % 17/19, 11/57

(0.5599999999999999, 0.19298245614035087, 0.19298245614035087)

>>> (29/5) % (3/5), (11/3) % (17/19), 5/57

(0.4, 0.08771929824561386, 0.08771929824561403)

For comparison (observe on the last lines how \xintfloatexpr is more accurate than Python!):

\noindent\xinttheexpr 29/5 /: 3/5, 11/3 /: 17/19\relax\newline

\xinttheexpr (29/5) /: (3/5), (11/3) /: (17/19)\relax\newline

\xintthefloatexpr 29/5 /: 3/5, 11/3 /: 17/19, 11/57\relax\newline

\xintthefloatexpr (29/5) /: (3/5), (11/3) /: (17/19), 5/57\relax\newline

5/57 = \xinttheexpr trunc(5/57, 20)\relax\dots\newline

14/25, 11/57

2/5, 5/57

0.5600000000000000, 0.1929824561403509, 0.1929824561403509

0.4000000000000000, 0.08771929824561420, 0.08771929824561404

5/57 = 0.08771929824561403508...

Regarding some details of behaviour in \xintfloatexpr, see discussion of divmod function

next.

divmod(f, g) computes the two mathematical values floor(f/g) and mod(f,g)=f - g*floor(f/g) and

produces them as a bracketed pair in other terms it is analogous to the Python divmod function.Changed
at 1.4! Its output is equivalent to using f//g, f/:g but its implementation avoids doing twice the

needed division.

In \xintfloatexpr...\relax the modulo is rounded to the prevailing precision. The quotient is
like in the other parsers an exact integer. It will be rounded as soon as it is used in further
operations, or via the global output routine of \xintfloatexpr. Those examples behave as in
1.3f because assignments to multiple variables tacitly unpack if this is necessary.

\xintdefvar Q, R := divmod(3.7, 1.2);%

\xinttheexpr Q, R, 1.2Q + R\relax\newline

\xintdefiivar Q, R := divmod(100, 17);%

\xinttheiiexpr Q, R, 17Q + R\relax\newline

\xintdeffloatvar Q, R := divmod(100, 17e-20);%

\xintthefloatexpr Q, R, 17e-20 * Q + R\relax\newline

% show Q exactly, although defined as float it can be used in iiexpr:
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\xinttheiiexpr Q\relax\ (we see it has more than 16 digits)\par

\xintunassignvar{Q}\xintunassignvar{R}%

3, 1e-1, 37e-1

5, 15, 100

5.882352941176471e20, 9.000000000000000e-20, 100.0000000000000

588235294117647058823 (we see it has more than 16 digits)

Again: f//g or the first item output by divmod(f, g) is an integer q which when computed inside

\xintfloatexpr..\relax is not yet rounded to the prevailing float precision; the second item

f-q*g is the rounding to float precision of the exact mathematical value evaluated with this

exact q. This behaviour may change in future major release; perhaps q will be rounded and f-q*g+
{

will correspond to usage of this rounded q.

As \xintfloatexpr rounds its global result, or rounds operands at each arithmetic operation,
it requires special circumstances to show that the q is produced unrounded. Either as in the
above example or this one with comparison operators:

\xintDigits := 4\relax

\xintthefloatexpr if(12345678//23=537000, 1, 0), 12345678//23\relax\newline

\xintthefloatexpr if(float(12345678//23)=537000, 1, 0)\relax\par

\xintDigits := 16\relax

0., 537000.

1.000

In the first line, the comparison is done with floor(12350000/23)=536957 (notice in passing

that 12345678//23 was evaluated as 12350000//23 because the operands are first rounded to

prevailing precision), hence the conditional takes the "False" branch. In the second line the

float forces rounding of the output to 4 digits, and the conditional takes the "True" branch.

This example shows also that comparison operators in \xintfloatexpr..\relax act on unrounded

operands.

binomial(x, y) computes binomial coefficients. It returns zero if y<0 or x<y and raises an error
if x<0 (or if x>99999999.)

\xinttheexpr seq(binomial(20, i), i=0..20)\relax
1, 20, 190, 1140, 4845, 15504, 38760, 77520, 125970, 167960, 184756, 167960, 125970, 77520,
38760, 15504, 4845, 1140, 190, 20, 1

\printnumber{\xintthefloatexpr seq(binomial(100, 50+i), i=-5..+5)\relax}%

6.144847121413618e28, 7.347099819081500e28, 8.441348728306404e28, 9.320655887504988e28, 9⤸
.891308288780803e28, 1.008913445455642e29, 9.891308288780803e28, 9.320655887504988e28, 8.⤸
441348728306404e28, 7.347099819081500e28, 6.144847121413618e28

The arguments must be (expand to) short integers.

pfactorial(a, b) computes partial factorials i.e. pfactorial(a,b) evaluates the product (a+1)...⤸
b.

\xinttheexpr seq(pfactorial(20, i), i=20..30)\relax

1, 21, 462, 10626, 255024, 6375600, 165765600, 4475671200, 125318793600, 3634245014400,

109027350432000

The arguments must (expand to) short integers. See subsection 8.36 for the behaviour if the

arguments are negative.

ndfillraw(TEX-macro, n-uple) The second argument is [N1, N2, ..., Nk]. The construct fills an N1x⤸New with
1.4 N2x...xNk hyperrectangular nested list by evaluating the given macro as many times as needed.

The expansion result goes directly into internal data and must thus comply with what is ex-

pected internally for an individual numeric leaf (at 1.4, xintfrac raw format worked for \xi⤸
ntexpr or \xintfloatexpr, but not \xintiiexpr, and this may have changed since). This is anDo not

use! experimental function serving to generate either constant or random arrays. Attention that

TEX-macro stands here for any expandable TEX macro, and an \xintexpr-ession at this location

thus requires an explicit \xinteval wrapping.
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2.7.6. Functions with 3 or 4 arguments

if(cond,yes,no) (twofold-way conditional)

checks if cond is true or false and takes the corresponding branch. Any non zero number or

fraction is logical true. The zero value is logical false. Both ``branches'' are evaluated

(they are not really branches but just numbers). See also the ? operator.

ifint(x,yes,no) (twofold-way conditional)

checks if x is an integer and in that case chooses the ``yes'' branch.

See also isint().

ifone(x,yes,no) (twofold-way conditional)

checks if x is equal to one and in that case chooses the ``yes'' branch.

Slightly more efficient than if(x==1,..,..). See also isone().

ifsgn(cond,<0,=0,>0) (threefold-way conditional)

checks the sign of cond and proceeds correspondingly. All three are evaluated. See also the

?? operator.

2.7.7. Functions with an arbitrary number of arguments

At 1.4 all(), any(), xor(), `+`(), `*`(), max(), min(), gcd(), lcm(), first(), last(), reversed()

and len() admit:

• at least two arguments, and then operate as expected in backward compatible way,

• or only one argument, which then must be a nut-ple, i.e. a variable or explicit bracketed list.+
{

In the case of reversed() the output is a nut-ple if the input was one.

Notice that this is breaking change as the functions do not work anymore with a single argument

being a number (or give funny non-documented results depending on internal data representation).

qraw(stuff) It injects directly tokens to represent internally numerical data. Will break at anyDo not
use! release modifying the internal data format specifications (which are not always documented).

all(x, y, ...) inserts a logical AND in-between its arguments and evaluates the resulting logical
assertion (as with all functions, all arguments are evaluated).

\xinteval{all(1,1,1), all([1,0,1]), all([1,1,1])}

1, 0, 1

any(x, y, ...) inserts a logical OR in-between its arguments and evaluates the resulting logical
assertion,

\xinteval{any(0,0,0), any([1,0,1]), any([0,0,0])}

0, 1, 0

xor(x, y, ...) inserts a logical XOR in-between its arguments and evaluates the resulting logical
assertion,

\xinteval{xor(1,1,1), xor([1,0,1]), xor([1,1,1])}

1, 0, 1

`+`(x, y, ...) adds (left ticks mandatory):

\xinttheexpr `+`(1,3,19), `+`(1**2,3**2,sqr(19)), `+`([1**2,3**2,sqr(19)])\relax

23, 371, 371

`*`(x, y, ...) multiplies (left ticks mandatory):
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\xinttheexpr `*`(1,3,19), `*`(1^2,3^2,19^2), `*`([1^2,3^2,19^2])\relax

57, 3249, 3249

max(x, y, ...) maximum of the (arbitrarily many) arguments,

\xinttheexpr max(1,3,19), min([1,3,19])\relax

19, 1

min(x, y, ...) minimum of the (arbitrarily many) arguments,

\xinttheexpr min(1,3,19), min([1,3,19])\relax

1, 1

gcd(x, y, ...) computes the positive generator of the fractional ideal of rational numbers xZ + yZ +
... ⊂ Q. When the inputs are integers it is advantageous to use a sub \xintiiexpr-ession, as
the integer-only macro is more efficient (about 6X) than the one accepting general fractional
inputs. Notice that this may require some num() wrapper when using variables, as they may
well be in fraction format, and \xintiiexpr accepts only strict integers. Since 1.3d, this
function and lcm() are available whether or not package xintgcd is loaded. Note that like
other operations with fractions it does not always produce a fraction in irreducible format.
This example shows also how to reduce an n-uple to its primitive part: (this example should be
revisited)

\xinttheexpr gcd(7/300, 11/150, 13/60)\relax\newline

$(7/300, 11/150, 13/60)\to

(\xinttheexpr subs(seq(reduce(x/D), x = 7/300, 11/150, 13/60), D=gcd(7/300, 11/150, 13/60))\relax)$\newline

\xintexpr gcd([7/300, 11/150, 13/60])\relax\par

1/300

(7/300, 11/150, 13/60) → (7, 22, 65)

1/300

Perhaps a future release will provide a primpart() function as built-in functionality.

lcm(x, y, ...) computes the positive generator of the fractional ideal of rational numbers xZ∩yZ∩
... ⊂ Q. When the inputs are integers it is advantageous to use a sub \xintiiexpr-ession, as
the integer-only macro is more efficient (about 9X) than the one accepting general fractional
inputs.

\xinttheexpr lcm([7/300, 11/150, 13/60])\relax

1001/30

first(x, y, ...) first item of the list or nut-ple argument:

\xintiiexpr first([last(-7..3), [58, 97..105]])\relax

3

last(x, y, ...) last item of the list or nut-ple argument:

\xintiiexpr last([-7..3, 58, first(97..105)])\relax

97

reversed(x, y, ...) reverses the order of the comma separated list or inside a nut-ple:

\xintiieval{reversed(reversed(1..5), reversed([1..5]))}

[5, 4, 3, 2, 1], 1, 2, 3, 4, 5

The above is correct as xintexpr functions may produce oples and this is the case here.

len(x, y, ...) computes the number of items in a comma separated list or inside a nut-ple (at first
level only: it is not a counter of leaves).

\xinttheiiexpr len(1..50, [101..150], 1001..1050), len([1..10])\relax

101, 10
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zip(*nutples) behaves similarly to the Python function of the same name: i.e. it produces an ople ofNew with
1.4b nut-ples, where the i-th nut-ple contains the i-th element from each of the argument nut-ples.

The ople ends when the shortest input nut-ple is exhausted. With a single nut-ple argument,
it returns an ople of 1-nutples. With no arguments, it returns the empty ople.

As there is no exact match in xintexpr of the concept of «iterator» object,15 there is a signif-
icant difference here that (for example) the zip(x,x,x) Python idiom to cluster the iterator
x into successive chunks of length 3 does not apply. Consider for this reason even the name of
the function as work-in-progress, susceptible to change.unstable?
\xintiieval{zip([1..9], [0, 1, 2], [11..29], [111..139])}

[1, 0, 11, 111], [2, 1, 12, 112], [3, 2, 13, 113]

See also \xintthespaceseparated for some possible usage in combination with flat().

2.7.8. Functions requiring dummy variables

The pseudo-functions subs(), seq(), subsm(), subsn(), iter(), add(), mul(), rseq(), iterr(),

rrseq(), iterr(), ndseq(), ndmap(), ndfillraw() use delimited macros for some tasks:

• for all of them, whenever a <varname>= chunk must be parsed into a (non-assigned) variable

name, then the equal sign must be visible,

• and if the syntax is with ,<varname>= the initial comma also must be visible (spaces do not

matter),

• for all of them but ndmap() and ndfillraw() the final closing parenthesis must be visible.

Although delimited macros involving commas are used to locate ,<varname= this is done in a way

silently ignoring commas located inside correctly balanced parentheses. Thus, as the examples

will show, nesting works as expected.

The semi-colons involved in the syntax may arise from expansion alone. For rseq(), iter(),

rrseq() and iterr() the ,<varname>= part may also be created from the expansion which will gener-

ate the initial comma separated values delimited by a semi-colon.

Prior to 1.4, semi-colons needed to be braced or otherwise hidden when located in an expression

parsed by \xintdefvar or \xintdeffunc, to not be confused with the expression terminator.

This is not needed anymore.New with
1.4 seq(), rseq(), iter(), rrseq(), iterr() and also add(), mul(), but not subs() admit the omit,

abort, and break() keywords. This is a new feature at 1.4 for add() and mul().

In the case of a potentially infinite list generated by the <integer>++ syntax, use of abort or

of break() is mandatory, naturally.

All lowercase and uppercase Latin letters are pre-configured for usage as dummy variables. In

Unicode engines one can use \xintnewdummy to turn any letter into a usable dummy variable.

And since 1.4, \xintnewdummy works (in all engines) to turn a multi-letter word into a dummyNew with
1.4 variable. In the descriptions, varname stands for such a dummy variable, either single-letter or

word.

subs(expr, varname=values) for variable substitution.

\xinttheexpr subs(subs(seq(x*z,x=1..10),z=y^2),y=10)\relax\newline

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

Attention that xz generates an error, one must use explicitely x*z, else the parser expects a

variable with name xz.

subs() is useful when defining macros for which some argument will be used more than once but

may itself be a complicated expression or macro, and should be evaluated only once, for matters

15 Speaking of iterators, I have some ideas about this: as \xintexpr does not have the global expression in its hands it is difficult
to organize globally expandably the idea of iterator, but locally via syntax like the one for seq() this is feasible. When one thinks
about it, seq() is closely related to the iterator idea.
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of efficiency. But subs() is helpless in function definitions: all places where a variable is

substituted will receive the complete recipe to compute the variable, rather than evaluate

only once.

One should rather define auxiliary functions to compute intermediate results. Or one can use

seq(). See the documentation of \xintdeffunc.

add(expr, varname=values) addition

\xintiiexpr add(x^3,x=1..20), add(x(x+1), x=1,3,19)\relax\newline

\xintiiexpr add(x^3, x = 1..[2]..20)\relax\newline % add only odd cubes

\xintiiexpr add((odd(x))?{x^3}{omit}, x = 1..20)\relax\par % add only odd cubes

44100, 394

19900

19900

At 1.4 (fixed at 1.4a), the keywords omit (as in example above), abort and break() are allowed.New with
1.4a The meaning of break() is specific: its argument serves as last operand for the addition, not

as ultimate value.

\xintiiexpr add((x>10)?{break(1000)}{x}, x = 1..15)\relax

1055

The @ special variable holds the so-far accumulated value. Initially its value is zero.

\xintiiexpr add(1 + @, i=1..10)\relax % iterates x <- 2x+1

1023

See `+`() for syntax simply adding items of a list without usage of a dummy variable.

mul(expr, varname=values) multiplication

\xintiiexpr mul(x^2, x = 1, 3, 19, 37..50)\relax

21718466538487411085212279802172111087206400000000

The @ special variable holds the so-far accumulated value. Initially its value is one.

At 1.4 (fixed at 1.4a), the keywords omit, abort and break() are allowed. The meaning ofNew with
1.4a break() is specific: its argument serves as last operand for the multiplication, not as ulti-

mate value.

\xintiieval{mul((i==100)?{break(i^4)}{i}, i = 98, 99, 100)}

970200000000

See `*`() for syntax without a dummy variable.

seq(expr, varname=values) comma separated values generated according to a formula

\xintiiexpr seq(x(x+1)(x+2)(x+3),x=1..10), `*`(seq(3x+2,x=1..10))\relax

24, 120, 360, 840, 1680, 3024, 5040, 7920, 11880, 17160, 1162274713600

\smallskip

\leavevmode\vbox{\xintthealign\xintiiexpr [seq([seq(i^2+j^2, i=0..j)], j=0..10)]\relax}
[[ 0 ],

[ 1, 2 ],

[ 4, 5, 8 ],

[ 9, 10, 13, 18 ],

[ 16, 17, 20, 25, 32 ],

[ 25, 26, 29, 34, 41, 50 ],

[ 36, 37, 40, 45, 52, 61, 72 ],

[ 49, 50, 53, 58, 65, 74, 85, 98 ],

[ 64, 65, 68, 73, 80, 89, 100, 113, 128 ],

[ 81, 82, 85, 90, 97, 106, 117, 130, 145, 162 ],

[ 100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200 ]]

rseq(initial value; expr, varname=values) recursive sequence, @ for the previous value.
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\printnumber {\xintthefloatexpr subs(rseq (1; @/2+y/2@, i=1..10),y=1000)\relax }\newline

1.000000000000000, 500.5000000000000, 251.2490009990010, 127.6145581634591, 67.7253273608⤸
2604, 41.24542607499115, 32.74526934448864, 31.64201586865079, 31.62278245070105, 31.62277⤸
660168434, 31.62277660168379

Attention: in the example above y/2@ is interpreted as y/(2*@). With versions 1.2c or earlier+
{

it would have been interpreted as (y/2)*@.

In case the initial stretch is a comma separated list, @ refers at the first iteration to the
whole list. Use parentheses at each iteration to maintain this ``nuple''. For example:

\printnumber{\xintthefloatexpr rseq(1,10^6;

(sqrt(@[0]*@[1]),(@[0]+@[1])/2), i=1..7)\relax }

1.000000000000000, 1.000000000000000e6, 1000.000000000000, 500000.5000000000, 22360.69095⤸
533499, 250500.2500000000, 74842.22521066670, 136430.4704776675, 101048.3052657827, 10563⤸
6.3478441671, 103316.8617608946, 103342.3265549749, 103329.5933734841, 103329.5941579348,

103329.5937657094, 103329.5937657095

Prior to 1.4 the above example had to be written with [@]. This is still possible (@ stands

for an ople with two items, bracketing then extracting is like extracting directly), but it

is leaner to drop the extra «packing».

iter(initial value; expr, varname=values) is exactly like rseq, except that it only prints the last

iteration.

iter() is convenient to handle compactly higher order iterations. We can illustrate its use
with an expandable (!) implementation of the Brent-Salamin algorithm for the computation of
𝜋:

\xintDigits:= 87\relax

% Below 83 is 87-3-1 (3 guard digits, target 84=1+83 digits) and 43 is 84/2+1.

\xintdeffloatfunc BS(a, b, t, p):= 0.5*(a+b), sqrt(a*b), t-p*sqr(a-b), \xintiiexpr 2p\relax;

\xinteval

{trunc(% I feel truncation is better than rounding to display decimals of 𝜋
\xintfloatexpr

iter(1, sqrt(0.5), 1, 1; % initial values

(@[0]-@[1]<2e-43)?% stopping criteria; takes into account that the

% exit computation (break() argument) doubles

% number of exact digits (roughly)

{break(sqr(@[0]+@[1])/@[2])} % ... do final computation,

{BS(@)}, % else do iteration

i=1++) % This generates infinite iteration. The i is not used.

\relax

, 83)% closing parenthesis of trunc()

}...% some dots following end of \xinteval argument

\xintDigits:=16\relax

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862...

You can try with \xintDigits:=1004\relax and 2e-501 in place of \xintDigits:=87\relax and 2e⤸
-43, but be patient for some seconds for the result. Of course don't truncate the final result

to only 83 fractional decimal digits but 1000... and better to wrap the whole thing in \message

or \immediate\write128 or \edef because it will then run in the right margin.

Prior to 1.4 the above example had to use notation such as [@][0]; this would still work but

@[0] is leaner.

rrseq(initial values; expr, varname=values) recursive sequence with multiple initial terms. Say,
there are K of them. Then @1, ..., @4 and then @@(n) up to n=K refer to the last K values.
Notice the difference with rseq() for which @ refers to a list of items in case the initial
value is a list and not a single item.16 Using rrseq() with @1 etc... accessors may be perhaps

16 Prior to 1.4, one could use @ in rrseq() and iterr() as an alias to @1. This undocumented feature is dropped and @ will break
rrseq() and iterr().
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a bit more efficient than using rseq() with a list as staring value and constructs such as @[⤸
0], @[1] (or rather @[-1], @[-2] to mimick what @1, @2, @3, @4 and @@(integer) do in rrseq().

\xinttheiiexpr rrseq(0,1; @1+@2, i=2..30)\relax

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,
17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040

\xinttheiiexpr rseq(1; 2@, i=1..10)\relax

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

\xinttheiiexpr rseq(1; 2@+1, i=1..10)\relax

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047

\xinttheiiexpr rseq(2; @(@+1)/2, i=1..5)\relax

2, 3, 6, 21, 231, 26796

\xinttheiiexpr rrseq(0,1,2,3,4,5; @1+@2+@3+@4+@@(5)+@@(6), i=1..20)\relax

0, 1, 2, 3, 4, 5, 15, 30, 59, 116, 229, 454, 903, 1791, 3552, 7045, 13974, 27719, 54984, 109065,

216339, 429126, 851207, 1688440, 3349161, 6643338

I implemented an Rseq which at all times keeps the memory of all previous items, but decided

to drop it as the package was becoming big.

iterr(initial values; expr, varname=values) same as rrseq but does not print any value until the last
K.

\xinttheiiexpr iterr(0,1; @1+@2, i=2..5, 6..10)\relax

% the iterated over list is allowed to have disjoint defining parts.

55

subsm(expr, var1=value1; var2=value2; ....; varN=valueN[;]) Simultaneous substitutions. The as-New with
1.4 signed values must not involve the variables. An optional final semi-colon is allowed.

\xintiieval{subsm(x+2y+3z+4t, x=1; y=10; z=100; t=1000;)}

4321

subsn(expr, var1=value1; var2=value2; ....; varN=valueN[;]) Simultaneous substitutions. The as-New with
1.4 signed values may involve all variables located further to its right. An optional final semi-

colon is allowed.

\xintiieval{subsn(x+y+z+t, x=20y; y=20z; z=20t; t=1)}

8421

ndmap(function, values1; values2; ....; valuesN[;]) Construction of a nested list (a priori having NNew with
1.4 dimensions) from function values. The function must be an N-variable function (or a function

accepting arbitrarily many arguments), but it is not constrained to produce only scalar val-
ues. Only in the latter case is the output really an N-dimensional «ndlist» type object. An
optional final semi-colon in the input before the closing parenthesis is allowed.

\xintdeffunc foo(a,b,c,d) = a+b+c+d;

\begin{multicols}{2}

\xintthealign\xintexpr ndmap(foo, 1000,2000,3000; 100,200,300; 10,20,30; 1,2,3)\relax

\end{multicols}

[[[[ 1111, 1112, 1113 ],

[ 1121, 1122, 1123 ],

[ 1131, 1132, 1133 ]],

[[ 1211, 1212, 1213 ],

[ 1221, 1222, 1223 ],

[ 1231, 1232, 1233 ]],

[[ 1311, 1312, 1313 ],

[ 1321, 1322, 1323 ],

[ 1331, 1332, 1333 ]]],

[[[ 2111, 2112, 2113 ],

[ 2121, 2122, 2123 ],

[ 2131, 2132, 2133 ]],

[[ 2211, 2212, 2213 ],

[ 2221, 2222, 2223 ],

[ 2231, 2232, 2233 ]],

[[ 2311, 2312, 2313 ],
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[ 2321, 2322, 2323 ],

[ 2331, 2332, 2333 ]]],

[[[ 3111, 3112, 3113 ],

[ 3121, 3122, 3123 ],

[ 3131, 3132, 3133 ]],

[[ 3211, 3212, 3213 ],

[ 3221, 3222, 3223 ],

[ 3231, 3232, 3233 ]],

[[ 3311, 3312, 3313 ],

[ 3321, 3322, 3323 ],

[ 3331, 3332, 3333 ]]]]

ndseq(expr, var1=values1; var2=values2; ....; varN = valuesN[;]) Constructs a nested list (a pri-New with
1.4 ori having N dimensions) from substitutions in an expression involving N (dummy) variables.

The expression is not constrained to produce only scalar values. Only in the latter case is
the output really an N-dimensional «ndlist» type object. An optional final semi-colon in the
input before the closing parenthesis is allowed.

\begin{multicols}{2}

\xintthealign\xintexpr ndseq(a+b+c+d, a=1000,2000,3000; b=100,200,300; c=10,20,30; d=1,2,3;)\relax

\end{multicols}% in case of page break, this makes amusing zigzag rendering

[[[[ 1111, 1112, 1113 ],

[ 1121, 1122, 1123 ],

[ 1131, 1132, 1133 ]],

[[ 1211, 1212, 1213 ],

[ 1221, 1222, 1223 ],

[ 1231, 1232, 1233 ]],

[[ 1311, 1312, 1313 ],

[ 1321, 1322, 1323 ],

[ 1331, 1332, 1333 ]]],

[[[ 2111, 2112, 2113 ],

[ 2121, 2122, 2123 ],

[ 2131, 2132, 2133 ]],

[[ 2211, 2212, 2213 ],

[ 2221, 2222, 2223 ],

[ 2231, 2232, 2233 ]],

[[ 2311, 2312, 2313 ],

[ 2321, 2322, 2323 ],

[ 2331, 2332, 2333 ]]],

[[[ 3111, 3112, 3113 ],

[ 3121, 3122, 3123 ],

[ 3131, 3132, 3133 ]],

[[ 3211, 3212, 3213 ],

[ 3221, 3222, 3223 ],

[ 3231, 3232, 3233 ]],

[[ 3311, 3312, 3313 ],

[ 3321, 3322, 3323 ],

[ 3331, 3332, 3333 ]]]]

Recursions may be nested, with @@@(n) giving access to the values of the outer recursion...and

there is even @@@@(n) to access the outer outer recursion but I never tried it!

The following keywords are recognized:

abort it is a pseudo-variable which indicates to stop here and now.

omit it is a pseudo-variable which says to omit this value and go to next one.

break(stuff) says to abort and insert stuff as last value.

<integer>++ serves to generate a potentially infinite list. In conjunction with an abort or
break() this is often more efficient than iterating over a pre-established list of values.

\xinttheiiexpr iter(1;(@>10^40)?{break(@)}{2@},i=1++)\relax

10889035741470030830827987437816582766592 is the smallest power of 2 with at least fourty one

digits.

The i=<integer>++ syntax (any letter is allowed in place of i) works only in the form <letter>⤸
=<integer>++, something like x=10,17,30++ is not legal. The <integer> must be a TEX-allowable
integer.

First Fibonacci number at least |2^31| and its index

% we use iterr to refer via @1 and @2 to the previous and previous to previous.

\xinttheiiexpr iterr(0,1; (@1>=2^31)?{break(@1, i)}{@2+@1}, i=1++)\relax
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First Fibonacci number at least 2^31 and its index 2971215073, 47

Note: the above example, up to 1.3f used break(i) in place of current break(@1, i). This syntax

looks in retrospect as having been a bug. Starting with 1.4 the example does have to be written

with break(@1, i), as break(i) conforming to intuition will only print the last i value. And if

one also wants the previous Fibonacci number one only has to use break(@2, @1, i) for example.

2.8. Generators of arithmetic progressions
• a..b constructs the small integers from the ceil ⌈a⌉ to the floor ⌊b⌋ (possibly a decreasing

sequence): one has to be careful if using this for algorithms that 1..0 for example is not

empty or 1 but expands to 1, 0. Again, a..b can not be used with a and b greater than 231 - 1.

Also, only about at most 5000 integers can be generated (this depends upon some TEX memory

settings).

The .. has lower precedence than the arithmetic operations.

\xintexpr 1.5+0.4..2.3+1.1\relax; \xintexpr 1.9..3.4\relax; \xintexpr 2..3\relax

2, 3; 2, 3; 2, 3

The step of replacing a by its ceil and b by its floor is a kind of silly overhead, but a and b
are allowed to be themselves the result of computations and there is no notion of «int» type
in \xinteval. The solution is, when a and b are given explicit integers to temporarily switch
to the \xintiiexpr parser:

\xintexpr \xintiiexpr 1..10\relax\relax

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

On the other hand integers from \xintexpr 1..10\relax are already in raw xintfrac format

for example 3/1[0] which speeds up their usage in the macros internally involved in compu-

tations... thus perhaps what one gains on one side is lost on the other side.

• a..[d]..b generates «real» numbers along arithmetic progression of reason d. It does not re-
place a by its ceil, nor b by its floor. The generated list is empty if b-a and d are of opposite
signs; if d=0 or if a=b the list expands to single element a.

\xintexpr 1.5..[1.01]..11.23\relax

15e-1, 251e-2, 352e-2, 453e-2, 554e-2, 655e-2, 756e-2, 857e-2, 958e-2, 1059e-2

At 1.4, this generator behaves in \xintfloatexpr exactly as in \xintexpr, i.e. exactly. ThisChanged
at 1.4! is breaking change.

\xintDigits:=6;

\xintexpr\xintfloatexpr 100..[1.23456]..110\relax\relax

\xintDigits:=16;

100, 10123456e-5, 10246912e-5, 10370368e-5, 10493824e-5, 10617280e-5, 10740736e-5, 10864192e-

5, 10987648e-5

This demonstration embedded the float expression in the exact parser only to avoid the round-

ing to the prevailing precision on output, thus we can see that internally additions are done

exactly and not with 6 digits mantissas (in this example).

2.9. Python slicing and indexing of one-dimensional sequences
There are some breaking changes in the syntax at 1.4, because previously xintexpr had no realChanged

at 1.4! notion of a list or sequence type. It now does, and even allows nesting.

We denote here by list or sequence a general ople, either given as a variable or explicitly. In

the former case the parentheses are optional.

• (list)[n] returns the n+1th item if n>=0. If n<0 it enumerates items from the tail. Items are
numbered as in Python, the first element corresponding to n=0.

\xintexpr (0..10)[6], (0..10)[-1], (0..10)[23*18-22*19]\relax
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6, 10, 7

This also works for singleton oples which are in fact a number:

\xintexpr (7)[0], (7)[-1], 9, (7)[-2], 9\relax

7, 7, 9, 9

In the example above the parentheses serve to disambiguate from the raw xintfrac format such

as 7[-1] which, although discouraged, is accepted on input. And we used a trick to show that

(7)[-2] returns nil.

The behaviour changes for singleton oples which are not numbers. They are thus nut-ples, or

equivalently they are the bracketing (bracing, packing) of another ople. In this case, the

meaning of the syntax for item indexing is, as in Python, item extraction:

\xintexpr [0,1,2,3,4,5][2], [0,1,2,3,4,5][-3]\relax\newline

\xintexpr [0,[1,2,3,4,5],6][1][-1]\relax

2, 3

5

• (list)[:n] produces the first n elements if n>0, or suppresses the last |n| elements if n<0.

\xintiiexpr (0..10)[:6]\relax\ and \xintiiexpr (0..10)[:-6]\relax

0, 1, 2, 3, 4, 5 and 0, 1, 2, 3, 4

As above, the meaning change for nut-ples and fits with expectations from Python regarding
its sequence types:

\xintiiexpr [0..10][:6]\relax\ and \xintiiexpr [0..10][:-6]\relax

[0, 1, 2, 3, 4, 5] and [0, 1, 2, 3, 4]

• [list][n:] suppresses the first n elements if n>0, or extracts the last |n| elements if n<0.

\xintiiexpr (0..10)[6:]\relax\ and \xintiiexpr (0..10)[-6:]\relax

6, 7, 8, 9, 10 and 5, 6, 7, 8, 9, 10

As above, the meaning change for nut-ples and fit with expectations from Python with tuple or
list types:

\xintiiexpr [0..10][6:]\relax\ and \xintiiexpr [0..10][-6:]\relax

[6, 7, 8, 9, 10] and [5, 6, 7, 8, 9, 10]

• Finally, (list)[a:b] also works according to the Python ``slicing'' rules (inclusive of neg-
ative indices). Notice though that stepping is currently not supported.

\xinttheiiexpr (1..20)[6:13]\relax\ = \xinttheiiexpr (1..20)[6-20:13-20]\relax\newline

\xinttheiiexpr [1..20][6:13]\relax\ = \xinttheiiexpr [1..20][6-20:13-20]\relax

7, 8, 9, 10, 11, 12, 13 = 7, 8, 9, 10, 11, 12, 13

[7, 8, 9, 10, 11, 12, 13] = [7, 8, 9, 10, 11, 12, 13]

• It is naturally possible to execute such slicing operations one after the other (the syntax
is simplified compared to before 1.4):

\xintexpr (1..50)[13:37][10:-10]\relax\newline

\xintexpr (1..50)[13:37][10:-10][-1]\relax

24, 25, 26, 27

27

2.10. NumPy like nested slicing and indexing for arbitrary oples and nut-ples
This is entirely new with 1.4.New with

1.4 I will give one illustrative example and refer to the NumPy documentation for more.

Notice though that our interpretation of the syntax is more general than NumPy's concepts (of

basic slicing/indexing):
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• slicing and itemizing apply also to non-bracketed objects i.e. oples,

• the leaves do not have to be all at the same depth,

• there are never any out-of-range index errors: out-of-range indices are silently ignored.

\begin{multicols}{3}

\xintdefvar myArray = ndseq(a+b+c, a=100,200,300; b=40,50,60; c=7,8,9);

myArray = \xintthealign\xintexpr myArray\relax

\columnbreak

mySubArray = \xintthealign\xintexpr myArray[0:2,0:2,0:2]\relax

myExtractedSubArray = \xintthealign\xintexpr myArray[0:2,0:2,0:2][0]\relax

\columnbreak

myExtractedSubArray = \xintthealign\xintexpr myArray[0:2,0:2,0:2][0,1]\relax

\noindent

firstExtractedScalar = \xintexpr myArray[0:2,0:2,0:2][0,1,0]\relax\newline

secondExtractedScalar = \xintexpr myArray[0,1,0]\relax\par

\end{multicols}

myArray =

[[[ 147, 148, 149 ],

[ 157, 158, 159 ],

[ 167, 168, 169 ]],

[[ 247, 248, 249 ],

[ 257, 258, 259 ],

[ 267, 268, 269 ]],

[[ 347, 348, 349 ],

[ 357, 358, 359 ],

[ 367, 368, 369 ]]]

mySubArray =

[[[ 147, 148 ],

[ 157, 158 ]],

[[ 247, 248 ],

[ 257, 258 ]]]

myExtractedSubArray =

[[ 147, 148 ],

[ 157, 158 ]]

myExtractedSubArray =

[ 157, 158 ]

firstExtractedScalar = 157

secondExtractedScalar = 157

As said before, stepping is not yet implemented. Also the NumPy extension to Python for item

selection (i.e. via a tuple of comma separated indices) is not yet implemented.

2.11. Tacit multiplication
Tacit multiplication (insertion of a *) applies when the parser is currently either scanning the

digits of a number (or its decimal part or scientific part, or hexadecimal input), or is looking

for an infix operator, and:

(1.) encounters a count or dimen or skip register or variable or an 𝜀-TEX expression, or

(2.) encounters a sub-\xintexpression, or

(3.) encounters an opening parenthesis, or

(4.) encounters a letter (which is interpreted as signaling the start of either a variable or a
function name), or

(5.) (of course, only when in state "looking for an operator") encounters a digit.

For example, if x, y, z are variables all three of (x+y)z, x(y+z), (x+y)(x+z) will create a

tacit multiplication.

Furthermore starting with release 1.2e, whenever tacit multiplication is applied, in all

cases it always ``ties'' more than normal multiplication or division, but still less than+
{
power. Thus x/2y is interpreted as x/(2y) and similarly for x/2max(3,5) but x^2y is still

interpreted as (x^2)*y and 2n! as 2*n!.
\xintdefvar x:=30;\xintdefvar y:=5;%

\xinttheexpr (x+y)x, x/2y, x^2y, x!, 2x!, x/2max(x,y)\relax
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1050, 30/10, 4500, 265252859812191058636308480000000, 530505719624382117272616960000000,

30/60

Since 1.2q tacit multiplication is triggered also in cases such as (1+2)5 or 10!20!30!.
\xinttheexpr (10+7)5, 4!4!, add(i, i=1..10)10, max(x, y)100\relax

85, 576, 550, 3000
The ``tie more'' rule applies to all cases of tacit multiplication. It impacts only situa-

tions when a division was the last seen operator, as the normal rule for the xintexpr parsers
is left-associativity in case of equal precedence.
\xinttheexpr 1/(3)5, (1+2)/(3+4)(5+6), 2/x(10), 2/10x, 3/y\xintiiexpr 5+6\relax, 1/x(y)\relax\

differ from\newline\xinttheexpr 1/3*5, (1+2)/(3+4)*(5+6), 2/x*(10), 2/10*x,

3/y*\xintiiexpr 5+6\relax, 1/x*(y)\relax\par

1/15, 3/77, 2/300, 2/300, 3/55, 1/150 differ from

5/3, 33/7, 20/30, 60/10, 33/5, 5/30

Note that y\xinttheiiexpr 5+6\relax would have tried to use a variable with name y11 rather

than doing y*11: tacit multiplication works only in front of sub-\xintexpressions, not in front

of \xinttheexpressions which are unlocked into explicit digits.

Here is an expression whose meaning is completely modified by the ``tie more'' property of tacit

multiplication:
\xintdeffunc e(z):=1+z(1+z/2(1+z/3(1+z/4)));

will be parsed as
\xintdeffunc e(z):=1+z*(1+z/(2*(1+z/(3*(1+z/4)))));

which is not at all the presumably hoped for:
\xintdeffunc e(z):=1+z*(1+(z/2)*(1+(z/3)*(1+(z/4))));

2.12. User defined variables
Since release 1.1 it is possible to make an assignment to a variable name and let it be known to the
parsers of xintexpr. Since 1.2p simultaneous assignments are possible.
\xintdefvar myPi:=3.141592653589793238462643;%

\xintdefvar x_1, x_2, x_3 := 10, 20, 30;%

\xintdefiivar List := seq(x(x+1)/2, x=0..10);% seq produces an «open» list

\xintdefiivar Nuple := ndmap(sqr, List);% ndmap produces a «bracketed» list

\xintdefiivar FourthPowers := ndmap(sqr, *Nuple);% "unpacking" is needed here.

$x_1 = \xinteval{x_1}, x_2 = \xinteval{x_2}, x_3 = \xinteval{x_3}$\newline

$\pi^{100}\approx\xintfloateval{myPi^100}$ is evaluated \fbox{after} having rounded myPi

to the prevailing float precision (which here is the default \xinttheDigits)\newline

$\xintDigits:=20\relax \pi^{100}\approx\xintfloateval{myPi^100}$ (this one first

rounded the variable to 20 digits before evaluating its 100th power)\newline

Open List: \xintiieval{List}\newline

Nuple: \xintiieval{Nuple}\newline

FourthPowers: \xintiieval{FourthPowers}\par

x1 = 10, x2 = 20, x3 = 30

𝜋100 ≈ 5.187848314319574e49 is evaluated after having rounded myPi to the prevailing float pre-

cision (which here is the default 16)

𝜋100 ≈ 5.1878483143196131983e49 (this one first rounded the variable to 20 digits before evaluat-

ing its 100th power)

Open List: 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55

Nuple: [0, 1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025]

FourthPowers: [0, 1, 81, 1296, 10000, 50625, 194481, 614656, 1679616, 4100625, 9150625]

By the way xinttrig defines indeed a variable Pi, but its value can be modified at user level,

with no impact whatsoever on the trigonometrical functions.
Here is another example with simultaneous assignments:
\xintdefiivar A, B := 1500, 135;%
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\xintloop

\xintifboolexpr{B}

{\xintdefiivar A, B := B, A 'mod' B;\iftrue}

{\iffalse}

\repeat

The last non zero remainder is \xintiiexpr A\relax.

The last non zero remainder is 15.

Note1: simultaneous assignments are more costly in terms of memory impact.

Note2: in case of simultaneous assignments, the right hand side will be automatically unpackedNew with
1.4 if necessary.

For catcodes issues (particularly, for the semi-colon used to delimit the fetched expression),

see the discussion of \xintexprSafeCatcodes.

Both syntaxes \xintdefvar foo := <expr>; and \xintdefvar foo = <expr>; are accepted.

Spaces in the variable name or around the equal sign are removed and are immaterial.
The variable names are expanded in an \edef (and stripped of spaces). Example:
\xintdefvar x\xintListWithSep{, x}{\xintSeq{0}{10}} := seq(2**i, i = 0..10);%

This defines x0, x1, ..., x10 for future usage.

Legal variable names are composed of letters, digits, _ and @ and characters. A variable name

must start with a letter. Variable names starting with a @ or _ are reserved for internal usage.

As x_1x_2 or even x_1x are licit variable names, and as the parser does not trace back its steps,

input syntax must be x_1*x_2 if the aim is to multiply such variables.

Single letter names a..z and A..Z are pre-declared by the package for use as special type of vari-

ables called ``dummy variables''. It is allowed to overwrite their original meanings and assign

them values. See further \xintunassignvar.

Since 1.4 even assigned variables can be used in the signature of function declarations.

Using \xintdefvar, \xintdefiivar, or \xintdeffloatvar means that the variable value will be

computed using respectively \xintexpr, \xintiiexpr or \xintfloatexpr. It can then be used in all

three parsers, as long as the parser understands the format. Currently this means that variables

using \xintdefvar or \xintdeffloatvar can be used freely either with \xintexpr or \xintfloatexpr

but not with \xintiiexpr, and variables defined via \xintdefiivar can be used in all parsers.
When defining a variable with \xintdeffloatvar, it is important to know that the rounding to

\xinttheDigits digits of precision happens inside \xintfloatexpr only if an operation is exe-
cuted. Thus, for a declaration using no operations (and only for them), the value is recorded with
all its digits preserved. If \xinttheDigits changes afterwards, the variable will be rounded to
that precision only at time of use.
\xintdeffloatvar e:=2.7182818284590452353602874713526624977572470936999595749669676;%

\xintexpr e\relax\newline % shows the recorded value

\xintfloatexpr e\relax\newline % typesetter rounds on output

\xintexpr \xintfloatexpr e\relax\relax\newline % here we see all digits again

\xintexpr \xintfloatexpr [16]e\relax\relax\newline % this forces rounding

\xintexpr \xintfloatexpr 0+e\relax\relax\newline % rounding here done by addition

\xintexpr float(e)\relax\newline % one more way to force rounding

\xintifboolfloatexpr{e == e+0}{\error}{Different! Comparisons do not pre-round.}\par

27182818284590452353602874713526624977572470936999595749669676e-61

2.718281828459045

27182818284590452353602874713526624977572470936999595749669676e-61

2718281828459045e-15

2718281828459045e-15

2718281828459045e-15

Different! Comparisons do not pre-round.
With \xintverbosetrue the values of the assigned variables will be written to the log. For ex-

ample like this (the line numbers here are artificial):
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Package xintexpr Info: (on line 1)

Variable "myPi" defined with value {3141592653589793238462643[-24]}.

Package xintexpr Info: (on line 2)

Variable "x_1" defined with value {10}.

Package xintexpr Info: (on line 2)

Variable "x_2" defined with value {20}.

Package xintexpr Info: (on line 2)

Variable "x_3" defined with value {30}.

Package xintexpr Info: (on line 3)

Variable "List" defined with value {0}{1}{3}{6}{10}{15}{21}{28}{36}{45}{55}

.

Package xintexpr Info: (on line 4)

Variable "Nuple" defined with value {{0}{1}{9}{36}{100}{225}{441}{784}{1296

}{2025}{3025}}.

Package xintexpr Info: (on line 5)

Variable "FourthPowers" defined with value {{0}{1}{81}{1296}{10000}{50625}{

194481}{614656}{1679616}{4100625}{9150625}}.

Prior to 1.4 individual (scalar) values would not have been printed to the log with the braces.

2.12.1. \xintunassignvar

Variable declarations obey the current scope. To let a (multi-letter) name be unknown to (all

parsers of) xintexpr without waiting the end of the scope one issues \xintunassignvar{⟨variable⟩}.
In the special case of \xintunassignvar{⟨letter⟩}, the effect is different, as it is synonymous+

{
with \xintnewdummy{⟨letter⟩}: the (catcode 11) ⟨letter⟩ recovers or acquires meaning as a dummy
variable in the current scope.
\xintFor #1 in {e_1, e_2, e_3, e_4, e} \do {\xintunassignvar {#1}}

% overwriting a dummy letter

\xintdefvar i := 3;%

\xinttheiiexpr add(i, i = 1..10)\relax\ ("i" has the fixed value 3)\newline

\xintunassignvar{i}% back to normal

\xinttheiiexpr add(i, i = 1..10)\relax\ ("i" is again a dummy variable)\par

30 ("i" has the fixed value 3)

55 ("i" is again a dummy variable)

Under \xintglobaldefstrue regime the effect of \xintunassignvar is global.

2.12.2. \xintnewdummy

Any catcode 11 character can serve as a dummy variable, via this declaration:
\xintnewdummy{<character>}

For example with XeTEX or LuaLATEX the following works:
% use a Unicode engine

\input xintexpr.sty

\xintnewdummy 𝜉% or any other letter character !
\xinttheexpr add(𝜉, 𝜉=1..10)\relax
\bye

Under \xintglobaldefstrue regime the effect of \xintnewdummy is global.

Starting with 1.4, it is allowed to use \xintnewdummy with multi-letter names (obeying the con-New with
1.4 dition for being a variable name).

2.12.3. \xintensuredummy, \xintrestorevariable

Use
\xintensuredummy{<character>}

...

... code using the (catcode 11) character as a dummy variable

...
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\xintrestorevariable{<character>}

if other parts need the letter as an assigned variable name. For example xinttrig being written

at high level needs a few genuine dummy variables, and it uses \xintensuredummy to be certain

everything is ok.

\xintrestorevariable was formerly called \xintrestorelettervar.Changed
at 1.4!
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2.13.1. \xintNewFunction

This is syntactic sugar which allows to use notation of functions for what is nothing more in
disguise than a TEX macro. Here is an example:
\xintNewFunction {foo}[3]{add(mul(x+i, i=#1..#2),x=1..#3)}

We now have a genuine function foo() of three variables which can be used in all three parsers.
\xintexpr seq(foo(0, 3, j), j= 1..10)\relax

24, 144, 504, 1344, 3024, 6048, 11088, 19008, 30888, 48048

Each time the created «macro-function» foo() will be encountered the corresponding replacement

text will get inserted as a sub-expression (of the same type as the surrounding one), the macro pa-

rameters having been replaced with the (already evaluated) function arguments, and the parser will
then have to parse the expression. It is very much like a macro substitution, but with parentheses

and comma separated arguments (which can be arbitrary expressions themselves).

2.13.2. \xintdeffunc

Here is an example:
\xintdeffunc

Rump(x,y):=1335 y^6/4 + x^2 (11 x^2 y^2 - y^6 - 121 y^4 - 2) + 11 y^8/2 + x/2y;

(notice the numerous tacit multiplications in this expression; and that x/2y is interpreted as

x/(2y).)

• The ending semi-colon is allowed to be of active catcode, as \xintdeffunc temporarily

resets catcodes before parsing the expression. But this will fail if the whole thing is

inside a macro definition. Then the used semi-colon must be the standard one.

• Semi-colons used inside the expression need not be hidden inside braces. (new with 1.4)

• The colon before the equal sign is optional and its (reasonable) catcode does not matter.

Here are a few important items (bookmark this for reading again later once you have gained expe-

rience in using this interface...):
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• The function names are composed of letters, digits, underscores or @ signs. A function name

must start with a letter. It may be a single letter (see subsubsection 2.13.7).

• The variable names used in the function signature may be multi-letter words. It is also al-New with
1.4 lowed for them to already be in use for previously declared variables. Their meanings will get

restored for usage after the function declaration.

• A function can have at most nine arguments. It can be defined as a function with no arguments.

• Recursive definitions are possible; for them to not generate error or fall in infinite loops,

the use of the short-circuit conditionals ? and ?? is mandatory.Changed
at 1.4!

• If a function is used in another definition it will check if it is applied to numerical argu-

ments and if this is the case will expand fully. Prior to 1.4 one needed deprecated \xintdefe-Changed
at 1.4! func for this. But the latter is now but an alias for \xintdeffunc, the two have been merged.

• The previous item has an exception for functions with no arguments; they never expand immedi-

ately in other function definitions (else they would be almost like variables). This provides

a way to define functions with parameters: simply let their definition use some functions with

no arguments.

• A function declared via \xintdeffunc remains unknown to \xintfloatexpr (or \xintfloateval).
See \xintdeffloatfunc, \xintdefiifunc. One can use the same formula in a new definition, but
if one wants the expansion to execute in a parser independent way, one can transfer a function
with scalar values like this:

\xintdeffloatfunc foo(x) := float_(\xintexpr foo(x)\relax);

The float_() wrapper is in order for the float variant to produce an already-rounded value,New with
1.4 possibly speeding-up usage if used as input for other functions. Notice the final underscore

in the name; it is not mandatory but float() here would mean adding a check for optional argu-

ment hence silly overhead, as this check can only be done at time of use (as \xintexpr...\relax

may a priori produce an ople).

• And in the reverse direction one can do:

\xintdeffunc bar(x) := \xintfloatexpr bar(float(x))\relax;

With this the transplanted float-function will expand in \xintexpr as it would have in \xint-

floatexpr, i.e. using float operations; this is different from declaring the function again

with the same expression as used for the original, as it would have then been parsed with a

mapping of infix operators to the macros doing the exact operations, not the floating point

ones.

The float() above is not mandatory but recommended. The macro associated to the user float

function bar(x) may use many times its argument x and does not worry about rounding it, because

its expectation is that it is already rounded; but in \xintexpr that value could very well be

a fraction 19/13 and its float rounding will be done again by each float macro receiving it as

argument; with a float() used as above this will have already been done once and the ulterior

roundings are faster: they have nothing to do apart from realizing that they have nothing to

do.... One can also use sfloat(), this would serve to nothing for the 19/13 case but would

possibly for a short integer input involved in multiplications.

Here it is not needed to use float_(), because it will be identified at time of definition that

float() is used without optional argument.

A function once declared is a first class citizen, its expression is entirely parsed and con-

verted into a big nested f-expandable macro.
When used its action is via this defined macro. For example
\xintdeffunc

e(z):=(((((((((z/10+1)z/9+1)z/8+1)z/7+1)z/6+1)z/5+1)z/4+1)z/3+1)z/2+1)z+1;
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creates a macro whose meaning one can find in the log file, after \xintverbosetrue. Here it is (it
has at 1.4 an extra external brace pair compared to what happened with earlier releases):

Function e for \xintexpr parser associated to \XINT_expr_userfunc_e with me

aning macro:#1->{\xintAdd {\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\x

intDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\

xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {

\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {#1}{10}}{1}}{#1}}{9

}}{1}}{#1}}{8}}{1}}{#1}}{7}}{1}}{#1}}{6}}{1}}{#1}}{5}}{1}}{#1}}{4}}{1}}{#1}}{3}

}{1}}{#1}}{2}}{1}}{#1}}{1}}

The above is not entirely true. At 1.4, \xintdeffunc is more powerful and digests more of theChanged
at 1.4! syntax but it may have to store it in such a way that usage will be done via a sub-expression: hence

it is not the case that the original expression has been entirely parsed. See \xintNewFunction for

related discussion.

The main difficulty of \xintdeffunc is with the pseudo-functions seq(), iter(), etc..., which

admit the keywords omit, abort, break(). We have no alternative for them, if the iterated over

values are not entirely numerical than to postpone expansion, but this means simply storing for

later a possibly big sub-expression.

At 1.4 we did some obstinate work to make this working but:

• this means that the stored function body has not been entirely parsed, parsing will happen on

the fly at each execution for small or large bits,

• there remains a main stumbling-block. If the variables used in the function declaration are

used only in the iterated over values or the initial values, then the mechanism may work. If

however they are used not only in those values iterated over but directly in the expression

which the generators map to the iterated over values, then it will break certainly. Indeed at

this stage the variables are simply names, and it is impossible to transfer the mechanism which

converts these names into numerical arguments for delayed usage by the declared function.

Except if one is ready to basically freeze the entire thing; which then is not any different

at all than using \xintNewFunction.

Conclusion: if some \xintdeffunc break, check if it does not fit the above criterion before

reporting... and recall \xintNewFunction is your friend. It has the big advantage of declaring a

function for all parsers simultaneously!
A special note on subs(): it is and has always been hopeless in \xintdeffunc context. All it does

(if it works at all) after being malaxed by \xintdeffunc is to copy over at the indicated places the
recipe to compute something. Thus everywhere where that something is needed it will be evaluated
from scratch again. Yes, this is disappointing. But... on the other hand the more general seq()
does work, or pretends to work. Let me illustrate to make thinks clear. We start with this:
\xintverbosetrue

\xintdeffunc foo(x,y,z) = subs(S + S^2, S = x+y+z);

\xintdeffunc bar(x,y,z) = seq(S + S^2, S = x+y+z);

\xintexpr foo(100,10,1), bar(100,10,1)\relax

\xintverbosefalse

12432, 12432
It produces in the log:
Package xintexpr Info: (on line 10)

Function foo for \xintexpr parser associated to \XINT_expr_userfunc_foo wit

h meaning macro:#1#2#3->{\xintAdd {\xintAdd {\xintAdd {#1}{#2}}{#3}}{\xintPow {

\xintAdd {\xintAdd {#1}{#2}}{#3}}{2}}}

Package xintexpr Info: (on line 11)

Function bar for \xintexpr parser associated to \XINT_expr_userfunc_bar wit

h meaning macro:#1#2#3->\expanded \bgroup \expanded {\unexpanded {\XINT_expr_se

q:_b {\xintbareeval S + S^2\relax !S}}{\xintAdd {\xintAdd {#1}{#2}}{#3}}^}

Even without understanding all details one sees that in the first case the \xintAdd {\xintAdd {⤸
#1}{#2}}{#3}} appears twice, and in the second case only once. But in the second case we have a
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yet to evaluate expression. So the second approach is not much different in its effect than using

the more simple-minded \xintNewFunction. Besides one gets a feeling why the function arguments

can not appear in the expression but only in the iterated over values, because there is no way to

understand what x, y, z are supposed to mean without adding extra structure showing they map to #1,

#2, #3.

The above remarks apply to subsm() and subsn(). Even if they do work in \xintdeffunc context

(warning, testing at 1.4 release has remained minimal), they will not bring added efficiency if

the substituted values are to be used multiple times. They may still be useful to visually simplify

the input of a big expression by expressing it in terms of smaller constituents.

Another workaround if one wants genuine (not «macro»-) functions for some expression where the

same thing is used multiple times is to define helper functions computing the intermediate data.

One can see illustrations of this in the code source of xinttrig (or in the matrix multiplication

example at the end of this chapter).

2.13.3. \xintdefiifunc

With \xintdeffunc the created function is known by the \xintexpr parser only. For usage in the

\xintiiexpr parser, it is required to use \xintdefiifunc.

2.13.4. \xintdeffloatfunc

With \xintdeffunc the created function is known by the \xintexpr parser only. For usage in the

\xintfloatexpr parser, it is required to use \xintdeffloatfunc.

Note: the optional argument [Q] accepted by \xintfloatexpr does not work with \xintdeffloatfunc.

It is still possible to wrap the expression in float(expression,Q), if it evaluates to a scalar.

2.13.5. Deprecated: \xintdefefunc, \xintdefiiefunc, \xintdeffloatefunc

They are deprecated and currently only aliases to \xintdeffunc et al.. Please update your docu-Changed
at 1.4! ments as they may be removed at any time.

2.13.6. \xintdefufunc, \xintdefiiufunc, \xintdeffloatufunc

This allows to define so-called «Universal functions». This is terminology borrowed from NumPy.New with
1.4 Here is an example:

\xintdefiivar Array = ndmap(lcm, 1..5; 1..10; 1..10);

Array = \xintthealign\xintiiexpr Array\relax

\xintdefiiufunc foo(x) = x^3;

\begin{figure}[htbp]

\caption{Output of a universal function acting on an array}\label{fig:ufunc}

\centeredline{$\vcenter{\xintthealign\xintiiexpr foo(Array)\relax}$}

\end{figure}

See \autopageref{fig:ufunc} for the output.

Array =

[[[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ],

[ 2, 2, 6, 4, 10, 6, 14, 8, 18, 10 ],

[ 3, 6, 3, 12, 15, 6, 21, 24, 9, 30 ],

[ 4, 4, 12, 4, 20, 12, 28, 8, 36, 20 ],

[ 5, 10, 15, 20, 5, 30, 35, 40, 45, 10 ],

[ 6, 6, 6, 12, 30, 6, 42, 24, 18, 30 ],

[ 7, 14, 21, 28, 35, 42, 7, 56, 63, 70 ],

[ 8, 8, 24, 8, 40, 24, 56, 8, 72, 40 ],

[ 9, 18, 9, 36, 45, 18, 63, 72, 9, 90 ],

[ 10, 10, 30, 20, 10, 30, 70, 40, 90, 10 ]],
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[[ 2, 2, 6, 4, 10, 6, 14, 8, 18, 10 ],

[ 2, 2, 6, 4, 10, 6, 14, 8, 18, 10 ],

[ 6, 6, 6, 12, 30, 6, 42, 24, 18, 30 ],

[ 4, 4, 12, 4, 20, 12, 28, 8, 36, 20 ],

[ 10, 10, 30, 20, 10, 30, 70, 40, 90, 10 ],

[ 6, 6, 6, 12, 30, 6, 42, 24, 18, 30 ],

[ 14, 14, 42, 28, 70, 42, 14, 56, 126, 70 ],

[ 8, 8, 24, 8, 40, 24, 56, 8, 72, 40 ],

[ 18, 18, 18, 36, 90, 18, 126, 72, 18, 90 ],

[ 10, 10, 30, 20, 10, 30, 70, 40, 90, 10 ]],

[[ 3, 6, 3, 12, 15, 6, 21, 24, 9, 30 ],

[ 6, 6, 6, 12, 30, 6, 42, 24, 18, 30 ],

[ 3, 6, 3, 12, 15, 6, 21, 24, 9, 30 ],

[ 12, 12, 12, 12, 60, 12, 84, 24, 36, 60 ],

[ 15, 30, 15, 60, 15, 30, 105, 120, 45, 30 ],

[ 6, 6, 6, 12, 30, 6, 42, 24, 18, 30 ],

[ 21, 42, 21, 84, 105, 42, 21, 168, 63, 210 ],

[ 24, 24, 24, 24, 120, 24, 168, 24, 72, 120 ],

[ 9, 18, 9, 36, 45, 18, 63, 72, 9, 90 ],

[ 30, 30, 30, 60, 30, 30, 210, 120, 90, 30 ]],

[[ 4, 4, 12, 4, 20, 12, 28, 8, 36, 20 ],

[ 4, 4, 12, 4, 20, 12, 28, 8, 36, 20 ],

[ 12, 12, 12, 12, 60, 12, 84, 24, 36, 60 ],

[ 4, 4, 12, 4, 20, 12, 28, 8, 36, 20 ],

[ 20, 20, 60, 20, 20, 60, 140, 40, 180, 20 ],

[ 12, 12, 12, 12, 60, 12, 84, 24, 36, 60 ],

[ 28, 28, 84, 28, 140, 84, 28, 56, 252, 140 ],

[ 8, 8, 24, 8, 40, 24, 56, 8, 72, 40 ],

[ 36, 36, 36, 36, 180, 36, 252, 72, 36, 180 ],

[ 20, 20, 60, 20, 20, 60, 140, 40, 180, 20 ]],

[[ 5, 10, 15, 20, 5, 30, 35, 40, 45, 10 ],

[ 10, 10, 30, 20, 10, 30, 70, 40, 90, 10 ],

[ 15, 30, 15, 60, 15, 30, 105, 120, 45, 30 ],

[ 20, 20, 60, 20, 20, 60, 140, 40, 180, 20 ],

[ 5, 10, 15, 20, 5, 30, 35, 40, 45, 10 ],

[ 30, 30, 30, 60, 30, 30, 210, 120, 90, 30 ],

[ 35, 70, 105, 140, 35, 210, 35, 280, 315, 70 ],

[ 40, 40, 120, 40, 40, 120, 280, 40, 360, 40 ],

[ 45, 90, 45, 180, 45, 90, 315, 360, 45, 90 ],

[ 10, 10, 30, 20, 10, 30, 70, 40, 90, 10 ]]]

See page 45 for the output.
The function can be applied to any nested strucure:
\xintiiexpr foo([1, [2, [3, [4, [5, 6, 7, 8, 9, 10]]]]])\relax

[1, [8, [27, [64, [125, 216, 343, 512, 729, 1000]]]]]
It must be defined as function acting on scalars, but its value type is not constrained.
\xintdefiivar Array = [1..10];

\xintdefiiufunc foo(x) = [1..x];

\xintthealign\xintiiexpr foo(Array)\relax

[[ 1 ],

[ 1, 2 ],

[ 1, 2, 3 ],

[ 1, 2, 3, 4 ],

[ 1, 2, 3, 4, 5 ],
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Figure 1: Output of a universal function acting on an array
[[[ 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000 ],

[ 8, 8, 216, 64, 1000, 216, 2744, 512, 5832, 1000 ],

[ 27, 216, 27, 1728, 3375, 216, 9261, 13824, 729, 27000 ],

[ 64, 64, 1728, 64, 8000, 1728, 21952, 512, 46656, 8000 ],

[ 125, 1000, 3375, 8000, 125, 27000, 42875, 64000, 91125, 1000 ],

[ 216, 216, 216, 1728, 27000, 216, 74088, 13824, 5832, 27000 ],

[ 343, 2744, 9261, 21952, 42875, 74088, 343, 175616, 250047, 343000 ],

[ 512, 512, 13824, 512, 64000, 13824, 175616, 512, 373248, 64000 ],

[ 729, 5832, 729, 46656, 91125, 5832, 250047, 373248, 729, 729000 ],

[ 1000, 1000, 27000, 8000, 1000, 27000, 343000, 64000, 729000, 1000 ]],

[[ 8, 8, 216, 64, 1000, 216, 2744, 512, 5832, 1000 ],

[ 8, 8, 216, 64, 1000, 216, 2744, 512, 5832, 1000 ],

[ 216, 216, 216, 1728, 27000, 216, 74088, 13824, 5832, 27000 ],

[ 64, 64, 1728, 64, 8000, 1728, 21952, 512, 46656, 8000 ],

[ 1000, 1000, 27000, 8000, 1000, 27000, 343000, 64000, 729000, 1000 ],

[ 216, 216, 216, 1728, 27000, 216, 74088, 13824, 5832, 27000 ],

[ 2744, 2744, 74088, 21952, 343000, 74088, 2744, 175616, 2000376, 343000 ],

[ 512, 512, 13824, 512, 64000, 13824, 175616, 512, 373248, 64000 ],

[ 5832, 5832, 5832, 46656, 729000, 5832, 2000376, 373248, 5832, 729000 ],

[ 1000, 1000, 27000, 8000, 1000, 27000, 343000, 64000, 729000, 1000 ]],

[[ 27, 216, 27, 1728, 3375, 216, 9261, 13824, 729, 27000 ],

[ 216, 216, 216, 1728, 27000, 216, 74088, 13824, 5832, 27000 ],

[ 27, 216, 27, 1728, 3375, 216, 9261, 13824, 729, 27000 ],

[ 1728, 1728, 1728, 1728, 216000, 1728, 592704, 13824, 46656, 216000 ],

[ 3375, 27000, 3375, 216000, 3375, 27000, 1157625, 1728000, 91125, 27000 ],

[ 216, 216, 216, 1728, 27000, 216, 74088, 13824, 5832, 27000 ],

[ 9261, 74088, 9261, 592704, 1157625, 74088, 9261, 4741632, 250047, 9261000 ],

[ 13824, 13824, 13824, 13824, 1728000, 13824, 4741632, 13824, 373248, 1728000 ],

[ 729, 5832, 729, 46656, 91125, 5832, 250047, 373248, 729, 729000 ],

[ 27000, 27000, 27000, 216000, 27000, 27000, 9261000, 1728000, 729000, 27000 ]],

[[ 64, 64, 1728, 64, 8000, 1728, 21952, 512, 46656, 8000 ],

[ 64, 64, 1728, 64, 8000, 1728, 21952, 512, 46656, 8000 ],

[ 1728, 1728, 1728, 1728, 216000, 1728, 592704, 13824, 46656, 216000 ],

[ 64, 64, 1728, 64, 8000, 1728, 21952, 512, 46656, 8000 ],

[ 8000, 8000, 216000, 8000, 8000, 216000, 2744000, 64000, 5832000, 8000 ],

[ 1728, 1728, 1728, 1728, 216000, 1728, 592704, 13824, 46656, 216000 ],

[ 21952, 21952, 592704, 21952, 2744000, 592704, 21952, 175616, 16003008, 2744000 ],

[ 512, 512, 13824, 512, 64000, 13824, 175616, 512, 373248, 64000 ],

[ 46656, 46656, 46656, 46656, 5832000, 46656, 16003008, 373248, 46656, 5832000 ],

[ 8000, 8000, 216000, 8000, 8000, 216000, 2744000, 64000, 5832000, 8000 ]],

[[ 125, 1000, 3375, 8000, 125, 27000, 42875, 64000, 91125, 1000 ],

[ 1000, 1000, 27000, 8000, 1000, 27000, 343000, 64000, 729000, 1000 ],

[ 3375, 27000, 3375, 216000, 3375, 27000, 1157625, 1728000, 91125, 27000 ],

[ 8000, 8000, 216000, 8000, 8000, 216000, 2744000, 64000, 5832000, 8000 ],

[ 125, 1000, 3375, 8000, 125, 27000, 42875, 64000, 91125, 1000 ],

[ 27000, 27000, 27000, 216000, 27000, 27000, 9261000, 1728000, 729000, 27000 ],

[ 42875, 343000, 1157625, 2744000, 42875, 9261000, 42875, 21952000, 31255875, 343000 ],

[ 64000, 64000, 1728000, 64000, 64000, 1728000, 21952000, 64000, 46656000, 64000 ],

[ 91125, 729000, 91125, 5832000, 91125, 729000, 31255875, 46656000, 91125, 729000 ],

[ 1000, 1000, 27000, 8000, 1000, 27000, 343000, 64000, 729000, 1000 ]]]
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[ 1, 2, 3, 4, 5, 6 ],

[ 1, 2, 3, 4, 5, 6, 7 ],

[ 1, 2, 3, 4, 5, 6, 7, 8 ],

[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],

[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]]
It is even allowed to produce oples and act on oples:
\xintdefiivar Ople = 1..10;

\xintdefiiufunc bar(x) = x, x^2, x^3;

\xintiiexpr bar(Ople)\relax

1, 1, 1, 2, 4, 8, 3, 9, 27, 4, 16, 64, 5, 25, 125, 6, 36, 216, 7, 49, 343, 8, 64, 512, 9, 81, 729, 10,

100, 1000

2.13.7. Using the same name for both a variable and a function

It is licit to overload a variable name (all Latin letters are predefined as dummy variables) with
a function name and vice versa. The parsers will decide from the context if the function or variable
interpretation must be used (dropping various cases of tacit multiplication as normally applied).

\xintdefiifunc f(x):=x^3;

\xinttheiiexpr add(f(f),f=100..120)\relax\newline

\xintdeffunc f(x,y):=x^2+y^2;

\xinttheexpr mul(f(f(f,f),f(f,f)),f=1..10)\relax

\xintunassigniiexprfunc{f}\xintunassignexprfunc{f}%

28205100

186188134867578885427848806400000000

2.13.8. \xintunassignexprfunc, \xintunassigniiexprfunc, \xintunassignfloatexprfunc

Function names can be unassigned via \xintunassignexprfunc{⟨name⟩}, \xintunassigniiexprfunc{⟨name⟩},
and \xintunassignfloatexprfunc{⟨name⟩}.
\xintunassignexprfunc{e}

\xintunassignexprfunc{f}

Warning: no check is done to avoid undefining built-in functions...

2.13.9. \ifxintverbose conditional

With \xintverbosetrue the meanings of the functions (or rather their associated macros) will be
written to the log. For example the Rump declaration above generates this in the log file:

Function Rump for \xintexpr parser associated to \XINT_expr_userfunc_Rump w

ith meaning macro:#1#2->{\xintAdd {\xintAdd {\xintAdd {\xintDiv {\xintMul {1335

}{\xintPow {#2}{6}}}{4}}{\xintMul {\xintPow {#1}{2}}{\xintSub {\xintSub {\xintS

ub {\xintMul {11}{\xintMul {\xintPow {#1}{2}}{\xintPow {#2}{2}}}}{\xintPow {#2}

{6}}}{\xintMul {121}{\xintPow {#2}{4}}}}{2}}}}{\xintDiv {\xintMul {11}{\xintPow

{#2}{8}}}{2}}}{\xintDiv {#1}{\xintMul {2}{#2}}}}

The meanings written out to the log for more complicated functions may sometimes use the

same character at different locations but with different catcodes.+
{

It may thus be impossible to retokenize it (even after having removed the extra spaces from

the added line breaks).Changed
at 1.4! This is in contrast with variable values which are always output in the log in the benign

way, using digits, braces and some characters of catcode 12.
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2.13.10. \ifxintglobaldefs conditional

If true user defined variables (\xintdefvar, ...) and functions (\xintdeffunc, ..., \xint-

NewFunction) for the expression parsers, as well as macros obtained via \xintNewExpr et al. have

global scope. If false (default) they have local scope.

2.14. Examples of user defined functions
2.14.1. Example with vectors and matrices

This section has changed significantly at 1.4 due to the new extended data types manipulated byChanged
at 1.4! the syntax.

Suppose we want to manipulate 3-dimensional vectors, which will be represented as nut-ples of
length 3. And let's add a bit of matrix algebra.
\xintdeffunc dprod(V, W) := V[0]*W[0] + V[1]*W[1] + V[2]*W[2];

\xintdeffunc cprod(V, W) := [V[1]*W[2] - V[2]*W[1],

V[2]*W[0] - V[0]*W[2],

V[0]*W[1] - V[1]*W[0]];

\xintdeffunc Det3(U, V, W) := dprod(cprod(U, V), W);

\xintdeffunc DetMat(M) = Det3(*M);

\xintdeffunc RowMat(U, V, W) := [U, V, W];

\xintdeffunc ColMat(U, V, W) := [[U[0], V[0], W[0]],

[U[1], V[1], W[1]],

[U[2], V[2], W[2]]];

\xintdeffunc MatMul(A, B) :=

[[A[0,0]*B[0,0]+A[0,1]*B[1,0]+A[0,2]*B[2,0],

A[0,0]*B[0,1]+A[0,1]*B[1,1]+A[0,2]*B[2,1],

A[0,0]*B[0,2]+A[0,1]*B[1,2]+A[0,2]*B[2,2]],

[A[1,0]*B[0,0]+A[1,1]*B[1,0]+A[1,2]*B[2,0],

A[1,0]*B[0,1]+A[1,1]*B[1,1]+A[1,2]*B[2,1],

A[1,0]*B[0,2]+A[1,1]*B[1,2]+A[1,2]*B[2,2]],

[A[2,0]*B[0,0]+A[2,1]*B[1,0]+A[2,2]*B[2,0],

A[2,0]*B[0,1]+A[2,1]*B[1,1]+A[2,2]*B[2,1],

A[2,0]*B[0,2]+A[2,1]*B[1,2]+A[2,2]*B[2,2]]];

\xintdefvar vec1, vec2, vec3 := [1, 1, 1], [1, 1/2, 1/4], [1, 1/3, 1/9];

\xintdefvar mat1 = RowMat(vec1, vec2, vec3);

\xintdefvar mat2 = ColMat(vec1, vec2, vec3);

\xintdefvar mat12 = MatMul(mat1,mat2);

\xintdefvar mat21 = MatMul(mat2,mat1);

Some computations (|align| executes multiple times hence we pre-computed!):

\begin{align*}

M_1 &= \vcenter{\xintthealign \xintexpr mat1\relax}&&\qquad

M_2 . M_1 = \vcenter{\xintthealign \xintexpr mat21\relax}\\[3\jot]

M_2 &= \vcenter{\xintthealign \xintexpr mat2\relax}&&\qquad

M_1 . M_2 = \vcenter{\xintthealign \xintexpr mat12\relax}

\end{align*}

$$

\det(M_1) = \xinteval{DetMat(mat1)},\quad

\det(M_1.M_2) = \xinteval{reduce(DetMat(mat12))},\quad

\det(M_2.M_1) = \xinteval{reduce(DetMat(mat21))}

$$
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Some computations (align executes multiple times hence we pre-computed!):

M1 =

[[ 1, 1, 1 ],

[ 1, 1/2, 1/4 ],

[ 1, 1/3, 1/9 ]]

M2.M1 =

[[ 3, 11/6, 49/36 ],

[ 11/6, 49/36, 251/216 ],

[ 49/36, 251/216, 1393/1296 ]]

M2 =

[[ 1, 1, 1 ],

[ 1, 1/2, 1/3 ],

[ 1, 1/4, 1/9 ]]

M1.M2 =

[[ 3, 7/4, 13/9 ],

[ 7/4, 21/16, 43/36 ],

[ 13/9, 43/36, 91/81 ]]

det(M1) = -1/18, det(M1.M2) = 1/324, det(M2.M1) = 1/324

For some hair-raising experience check the \xintverbosetrue output in the log... here is an al-
ternative with two (three, counting dprod()) helper functions:
% annoying that Tr also starts Trace, but Spur is available

% well Sp also starts Spectrum. Big problems.

\xintdeffunc Tr(M) :=

[[M[0,0], M[1,0], M[2,0]],

[M[0,1], M[1,1], M[2,1]],

[M[0,2], M[1,2], M[2,2]]];

\xintdeffunc MatMul_a(r1, r2, r3, c1, c2, c3) :=

[[dprod(r1, c1), dprod(r1, c2), dprod(r1, c3)],

[dprod(r2, c1), dprod(r2, c2), dprod(r2, c3)],

[dprod(r3, c1), dprod(r3, c2), dprod(r3, c3)]];

\xintdeffunc MatMul(A, B) := MatMul_a(*A, *Tr(B));

And once we have the transpose and the scalar product of vectors, we can simply use ndmap() for
a lean syntax (this would extend to arbitrary dimension):
\xintdeffunc MatMul(A, B) = ndmap(dprod, *A; *Tr(B));

\xintdefvar mat1212 = MatMul(mat12, mat12);

\begingroup

\def\xintexprPrintOne #1{\xintFrac{#1}}% (no need for \protected with \xintFrac)

\def\xintexpralignbegin {\begin{pmatrix}}%

\def\xintexpralignend {\end{pmatrix}}%

\def\xintexpralignlinesep {\noexpand\\[2\jot]}% needed to counteract an internal \expanded

\def\xintexpraligninnersep {&}%

\let\xintexpralignleftbracket\empty \let\xintexpralignleftsep\empty

\let\xintexpralignrightbracket\empty \let\xintexpralignrightsep\empty

$$ \xintthealign \xintexpr mat1\relax \cdot \xintthealign \xintexpr mat2\relax \cdot

\xintthealign \xintexpr mat1\relax \cdot \xintthealign \xintexpr mat2\relax =

\xintthealign \xintexpr mat12\relax ^2 = \xintthealign \xintexpr mat1212\relax$$

$$ \det(M_1\cdot M_2 \cdot M_1 \cdot M_2) = \xinteval{reduce(DetMat(mat1212))}$$

\endgroup©­­­«
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16

43
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9
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ª®®®¬
2

=
©­­­«
18337
1296

48067
5184

93853
11664

48067
5184

128809
20736

253687
46656

93853
11664

253687
46656

501289
104976

ª®®®¬
det(M1 · M2 · M1 · M2) =

1

104976

2.14.2. Example with the Rump test

Let's try out our Rump() function:
\xinttheexpr Rump(77617,33096)\relax.
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-54767/66192. Nothing problematic for an exact evaluation, naturally!
Thus to test the Rump polynomial (it is not quite a polynomial with its x/2y final term) with

floats, we must also declare Rump as a function to be used there:
\xintdeffloatfunc

Rump(x,y):=333.75 y^6 + x^2 (11 x^2 y^2 - y^6 - 121 y^4 - 2) + 5.5 y^8 + x/2y;

The numbers are scanned with the current precision, hence as here it is 16, they are scanned
exactly in this case. We can then vary the precision for the evaluation.
\def\CR{\cr}

\halign

{\tabskip1ex

\hfil\bfseries#&\xintDigits:=\xintiloopindex\relax \xintthefloatexpr Rump(77617,33096)#\cr

\xintiloop [8+1]

\xintiloopindex &\relax\CR

\ifnum\xintiloopindex<40 \repeat

}

8 7.0000000e29

9 -1.00000000e28

10 5.000000000e27

11 -3.0000000000e26

12 4.00000000000e25

13 3.000000000000e24

14 3.0000000000000e23

15 -2.00000000000000e22

16 1.000000000000000e21

17 -5.0000000000000000e20

18 1.17260394005317863

19 1.000000000000000001e18

20 -9.9999999999999998827e16

21 1.00000000000000011726e16

22 3.000000000000001172604e15

23 -9.9999999999998827396060e13

24 -1.99999999999988273960599e13

25 -1.999999999998827396059947e12

26 1.1726039400531786318588349

27 -5.99999999988273960599468214e10

28 -9.999999988273960599468213681e8

29 2.0000000117260394005317863186e8

30 1.00000011726039400531786318588e7

31 -999998.8273960599468213681411651

32 200001.17260394005317863185883490

33 -9998.82739605994682136814116509548

34 -1998.827396059946821368141165095480

35 -198.82739605994682136814116509547982

36 21.1726039400531786318588349045201837

37 -0.8273960599468213681411650954798162920

38 -0.82739605994682136814116509547981629200

39 -0.827396059946821368141165095479816292000

40 -0.8273960599468213681411650954798162919990

2.14.3. Examples of recursive definitions

Recursive definitions require using the short-circuit branching operators. Prior to 1.4, to theChanged
at 1.4! contrary it was explained that one should use the if() or ifsgn() functions and that they would get

converted into macros doing branching in a short-circuit manner. This was a bit counter-intuitive.
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\xintdeffunc GCD(a,b):=(b)?{GCD(b,a/:b)}{a};

This of course is the Euclide algorithm: it will be here applied to variables which may be frac-
tions. For example:
\xinttheexpr GCD(385/102, 605/238)\relax

55/714
There is already a built-in gcd() (which accepts arbitrarily many arguments):
\xinttheexpr gcd(385/102, 605/238)\relax

55/714
Our second example is modular exponentiation:
\xintdefiifunc powmod_a(x, m, n) :=

isone(m)?

% m=1, return x modulo n

{ x /: n }

% m > 1 test if odd or even and do recursive call

{ odd(m)? { x*sqr(powmod_a(x, m//2, n)) /: n }

{ sqr(powmod_a(x, m//2, n)) /: n }

}

;

\xintdefiifunc powmod(x, m, n) := (m)?{powmod_a(x, m, n)}{1};

I have made the definition here for the \xintiiexpr parser; we could do the same for the \xintexp⤸
r-parser (but its usage with big powers would quickly create big denominators, think powmod(1/2,⤸
1000, 1) for example.)
\xinttheiiexpr seq(powmod(x, 1000, 128), x=9, 11, 13, 15, 17, 19, 21)\relax\par

65, 97, 33, 1, 1, 33, 97

The function assumes the exponent is non-negative (the Python pow behaved the same until 3.⤸
8 release), but zealous users will add the necessary code for negative exponents, after having

defined another function for modular inverse!

If function A needs function B which needs function A start by giving to B some dummy definition,

define A, then define B properly. TODO: add some example here...

2.15. Links to some (old) examples within this document
• The utilities provided by xinttools (section 14), some completely expandable, others not, are

of independent interest. Their use is illustrated through various examples: among those, it

is shown in subsection 16.8 how to implement in a completely expandable way the Quick Sort

algorithm and also how to illustrate it graphically. Other examples include some dynamically

constructed alignments with automatically computed prime number cells: one using a completely

expandable prime test and \xintApplyUnbraced (subsection 16.2), another one with \xintFor*
(subsection 16.6).

• One has also a computation of primes within an \edef (subsection 14.15), with the help of

\xintiloop. Also with \xintiloop an automatically generated table of factorizations (subsec-

tion 16.5).

• The code for the title page fun with Fibonacci numbers is given in subsection 15.18 with \xint-

For* joining the game.

• The computations of 𝜋 and log 2 (subsection 12.11) using xint and the computation of the con-

vergents of e with the further help of the xintcfrac package are among further examples.

• Also included, an expandable implementation of the Brent-Salamin algorithm for evaluating 𝜋.

• The subsection 16.4 implements expandably the Miller-Rabin pseudo-primality test.

• The functionalities of xintexpr are illustrated with various other examples, in subsubsec-

tion 2.13.2, Functions with dummy variables, subsection 16.1 or Recursive definitions.
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3. Macros of the xinttrig package

.1 \xintreloadxinttrig . . . . . . . . . . . . . . . . . . . 51

.2 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

.4 Important implementation notes . . . . . . . . . . 53

.5 Some example evaluations . . . . . . . . . . . . . . . 54

This package provides trigonometric functions for use with xintexpr. The sole macro is \xint-

reloadxinttrig.

This package was first included in release 1.3e (2019/04/05) of xintexpr. It is automatically

loaded by xintexpr.

Acknowledgements: I finally decided to release some such functions under friendly pressure of

Jürgen Gilg and Thomas Söll, let them both be thanked here.

3.1. \xintreloadxinttrig
The library is loaded automatically by xintexpr, thus with the default value of \xinttheDigits

which is 16. But it can handle a precision of up to about 60 digits (make this 59 at most for the

inverse functions). For this, execute for example \xintSetDigits*{48}.

Since 1.3f, the starred variants \xintDigits*:=P; and \xintSetDigits*{⟨num. expression⟩}
execute \xintreloadxinttrig to let the package re-configure itself.

The non-starred variants do not execute \xintreloadxinttrig (to avoid adding artificial

overhead to existing documents).+
{

Absence of guard digits (whether in the used hard-coded constants or in passing over values from

one auxiliary function to the next) due to high level (user) interface used for the programming

means that the produced values are definitely expected to be wrong in the last digit or last two

digits. I should actually give some estimate of the actual maximal error in ulps unit, but I have

not done the complete analysis for lack of time.

Final computation results should thus probably be printed via \xintfloateval{[-2]....} in order

to strip off (with rounding) the last two digits, if one does not like seeing those non-meaningful

figures in the last one or two positions (I don't say those last two figures are systematically
off). For example, to achieve 16 digits of precision one should work with a precision of 18 digits

(being careful to have issued \xintreloadxinttrig) and round results using \xintfloateval{[-2].⤸
...}.

Another approach is to use \xintieval{[D]...} for conversion to a fixed point format.

In future, lower level coding will probably replace the high-level interface, or at least the

macros produced by the high-level interface will be hacked into to tell the float macros to work

at a somewhat elevated precision.

3.2. Constants
They are the correct rounding to \xinttheDigits precision of the mathematically exact ones. Their

values get incorporated into the trigonometrical functions at the time of their definitions during

loading or reloading of the package. They are left free to use, or modified, or \xintunassignvar'd,

as this will have no impact whatsoever on the functions.

twoPi what could that be?

threePiover2

Pi
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Piover2

oneRadian this is one radian in degrees: 180/𝜋

oneDegree this is one degree in radian: 𝜋/180

invfact2 this is 1/2!

invfact3 this is 1/3!

. . .

invfact44 this is 1/44!

For a (very) slight optimization of usage, it is recommended to convert them to macro form, for
example:
\edef\oneDegree{\xintfloatexpr oneDegree\relax}

\xintfloateval{sin(37\oneDegree)}\newline

\xintfloateval{sind(37)}\newline

0.6018150231520484

0.6018150231520484

By the way, the above value differs by 1ulp from correct rounding of exact one (which looks

...52048279917...), see subsection 3.4.

3.3. Functions
3.3.1. Direct trigonometry

With the variable in radians:

sin(x) sine

cos(x) cosine

tan(x) tangent

cot(x) cotangent

sec(x) secant

csc(x) cosecant

With the variable in degrees:

sind(x) sine

cosd(x) cosine

tand(x) tangent

cotd(x) cotangent

secd(x) secant

cscd(x) cosecant

Only available with the variable in radians:

tg(x) tangent

cotg(x) cotangent

sinc(x) cardinal sine sinc(x) = sin(x)/x
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3.3.2. Inverse trigonometry

With the value in radians:

asin(x) arcsine

acos(x) arccosine

atan(x) arctangent

Arg(x, y) the main branch of the argument of the complex number x+iy, from -𝜋 (excluded) to 𝜋
(included). As the output is rounded -Pi is a possible return value.

pArg(x, y) the branch of the argument of the complex number x+iy with values going from 0 (in-

cluded) to 2𝜋 (excluded). Inherent rounding makes twoPi a possible return value.

atan2(y, x) it is Arg(x, y). Note the reversal of the arguments, this seems to be the most fre-

quently encountered convention across languages.

With the value in degrees:

asind(x) arcsine

acosd(x) arccosine

atand(x) arctangent

Argd(x, y) the main branch of the argument of the complex number x+iy, from -180 (excluded) to 180

(included). Inherent rounding of output can cause -180 to be returned.

pArgd(x, y) the branch of the argument of the complex number x+iy with values going from 0 (in-

cluded) to 360 (excluded). Inherent rounding of output can cause 360 to be returned.

atan2d(y, x) it is Argd(x, y). Note the reversal of the arguments, this seems to be the most fre-

quently encountered convention across languages.

3.3.3. Conversion functions (optional definitions left to user decision)

Python provides functions degrees() and radians(). But as most of the xinttrig functions are al-
ready defined for the two units, I felt this was not really needed. It is a oneliner to add them:

\xintdeffloatfunc radians(x) := x * oneDegree;

\xintdeffloatfunc degrees(x) := x * oneRadian;

\xintdefefunc radians(x) := float_(x * oneDegree);

\xintdefefunc degrees(x) := float_(x * oneRadian);

The \xintexpr-variants above do an exact multiplication. The float_() explicit rounding is a

bit superfluous as anyhow trigonometrical functions do this initial rounding of their arguments.

The conversion factors above are without guard digits. Probably better to work overall with an

elevated precision and print final results at a lower precision.

3.4. Important implementation notes
• The package is almost entirely implemented using the high level user interface of xintexpr,

using \xintdeffloatefunc (merged with \xintdeffloatfunc at 1.4) (and \xintdeffloatvar), the

main two exceptions being for:

1. the range reduction for the sind() and cosd() functions which required for optimized effi-

ciency the coding at some more core level.
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2. some changes at core level added at 1.3e to facilitate the transfer of the defined functions

from the float parser to the exact parser.

Also, to avoid problems if the package is reloaded at a time the user has used some letter

variables as assigned variables, 1.3e added \xintensuredummy and \xintrestorevariable.

• It is not possible from this interface to (easily) let the computation proceed with a tem-

porarily elevated precision (``guard digits''). Expect thus some errors in the last places;

basically one should use the optional rounding argument of either \xintfloateval or \xint-

ieval to reduce the number of digits of printed values by about two digits, if one hopes to get

correct rounding (most of the time).

• Currently, xint is lacking some dedicated internal representation of floats which means that

most operations re-parse the digit tokens of their arguments to count them... this does not

contribute to efficiency (you can load the module under \xintverbosetrue regime and see how

the nested macros look like and get an idea of how many times some rather silly re-counting of

mantissa lengths will get done!)

• One should not overwrite some function names which are employed as auxiliaries: sin_aux, cos_⤸
aux, sin_, cos_, sind_, cosd_, asin_l...others...asin_a, asind_a, atan_a, atand_a, atan_b,

atand_b. If you redefine any one of them, you break the whole thing.

• Floats with large exponents are integers and are multiple of 1000; hence modulo 360 all such

``angles'' are multiple of 40 degrees. Needless to say that considering usage of the sind()

and cosd() functions with such large float numbers is meaningless.

• Regarding sin() and cos(), xinttrig converts their argument to degrees by multiplication by

(pre-rounded) 180/𝜋, then does range reduction modulo 360 and finally goes back to radians

in the appropriate octants to use usual Taylor series (roughly said). For large floats, the

output value will thus be one of sind(40n), cosd(40n), n=0..8. If the unit in the last place

of original variable was for example 1e9 the final result means nothing at all: the unit in the

last place interval extends above possibly astronomical numbers of intervals of length 2𝜋.

This intrinsic problem is not a by-product of conversion problems to and from degrees, it is an

in-built inadequacy of the concept of floating point numbers to provide meaning to evaluating

trigonometrical functions. The argument should be treated as a uniformly distributed random

variable modulo 2𝜋, and the sine and cosine values should be random variables realizing the

value distribution of these mathematical functions. Clearly this adds some (rather severe)

implementation complications such as deciding how to make the transition to randomness. Too

lazy for that.

Opting for a random value also raises the question of how to deal with multiple such eval-

uations at the same argument in a single expression. I would argue again that as it is evil

to consider meaningless quantities, it is not a problem if new compilations give different

results, or even single compilation gives different results in various parts of the same for-

mula, that's the whole point of randomness! As said already, I got too lazy to consider seri-

ously implementing such a non-standard philosophy, despite its compelling soundness.

• Did I say the implementation was done at very high level (for the most part), hence has am-

ple room for optimization? This is particularly the case for the handling of small inputs by

functions such as sine or arcsine.

3.5. Some example evaluations

\xintDigits* := 50\relax % target 48 digits via 2 guard digits

$sind(17)\approx\xintfloateval{[-2] sind(17)}$\newline
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$cosd(17)\approx\xintfloateval{[-2] cosd(17)}$\newline

$tand(17)\approx\xintfloateval{[-2] tand(17)}$\newline

$sind(43)\approx\xintfloateval{[-2] sind(43)}$\newline

$cosd(43)\approx\xintfloateval{[-2] cosd(43)}$\newline

$tand(43)\approx\xintfloateval{[-2] tand(43)}$\newline

$asind(0.3)\approx\xintfloateval{[-2] asind(0.3)}$\newline

$acosd(0.3)\approx\xintfloateval{[-2] acosd(0.3)}$\newline

$atand(3)\approx\xintfloateval{[-2] atand(3)}$\newline

$tan(atan(7))\approx\xintfloateval{[-2] tan(atan(7))}$\newline

$asind(sind(25))\approx\xintfloateval{[-2] asind(sind(25))}$\par\medskip

\noindent\xintDigits* := 26\relax % target 24 digits via 2 guard digits

$sind(17)\approx\xintfloateval{[-2] sind(17)}$\newline

$cosd(17)\approx\xintfloateval{[-2] cosd(17)}$\newline

$tand(17)\approx\xintfloateval{[-2] tand(17)}$\newline

$sind(43)\approx\xintfloateval{[-2] sind(43)}$\newline

$cosd(43)\approx\xintfloateval{[-2] cosd(43)}$\newline

$tand(43)\approx\xintfloateval{[-2] tand(43)}$\newline

$asind(0.3)\approx\xintfloateval{[-2] asind(0.3)}$\newline

$acosd(0.3)\approx\xintfloateval{[-2] acosd(0.3)}$\newline

$atand(3)\approx\xintfloateval{[-2] atand(3)}$\newline

$tan(atan(7))\approx\xintfloateval{[-2] tan(atan(7))}$\newline

$asind(sind(25))\approx\xintfloateval{[-2] asind(sind(25))}$\par

\xintDigits* := 16\relax

sind(17) ≈ 0.292371704722736728097468695377143252664687186183

cosd(17) ≈ 0.956304755963035481338650816618418962009410343991

tand(17) ≈ 0.305730681458660355734541958996550716146250221387

sind(43) ≈ 0.681998360062498500442225784711125580340433802762

cosd(43) ≈ 0.731353701619170483287543608275622403378396544763

tand(43) ≈ 0.932515086137661705612185627426186654353537299494

asind(0.3) ≈ 17.4576031237220922902460457924449418216636440147

acosd(0.3) ≈ 72.5423968762779077097539542075550581783363559853

atand(3) ≈ 71.5650511770779893515721937204532946712042142996

tan(atan(7)) ≈ 7.00000000000000000000000000000000000000000000000

asind(sind(25)) ≈ 25.0000000000000000000000000000000000000000000000

sind(17) ≈ 0.292371704722736728097469

cosd(17) ≈ 0.956304755963035481338651

tand(17) ≈ 0.305730681458660355734542

sind(43) ≈ 0.681998360062498500442226

cosd(43) ≈ 0.731353701619170483287544

tand(43) ≈ 0.932515086137661705612186

asind(0.3) ≈ 17.4576031237220922902460

acosd(0.3) ≈ 72.5423968762779077097540

atand(3) ≈ 71.5650511770779893515722

tan(atan(7)) ≈ 7.00000000000000000000000

asind(sind(25)) ≈ 25.0000000000000000000000
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4. Macros of the xintlog package
This package provides logarithms, exponentials and fractional powers for use with xintexpr.

This package was first included in release 1.3e (2019/04/05) of xintexpr. It is automatically

loaded by xintexpr.

Currently, the functions log10(), pow10(), log(), exp(), and pow() use at their core two fast

expandable macros handling base 10 logarithms and powers for mantissas of 9 digit tokens. They are

defined by package poormanlog which is automatically imported. The error is believed to be at most

2ulp (see its README). The package poormanlog has no dependencies and can be imported by any other

TEX macro file.

Although the precision is thus limited to about 8 or 9 digits this is amply enough for plots.

.1 \poormanloghack . . . . . . . . . . . . . . . . . . . . . . . 56 .2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1. \poormanloghack
\poormanloghack{**} use it to let the ** operator be remapped to the pow() function.

\poormanloghack{^} use it to let the ^ operator be remapped to the pow() function.

If used, they obey TEX scoping as usual.
\begingroup

\poormanloghack{**}\xintfloateval{[8]1.234**5.678}\newline

\poormanloghack{^}\xintfloateval{[8]1.234^5.678}\par

\endgroup

3.2997989

3.2997989

Notice that in \xintfloateval those (equivalent) operators already natively handle half-

integer exponents. Once remapped to the pow() function they will become less precise than the

original ones for half-integer and integer exponents.

4.2. Functions
All those functions achieve only about 8 or 9 digits of precision. Notice in particular that the

digits beyond the ninth printed by log() have no significance (here we suppose 1<x<10), but I did

not add the rounding overhead as it is expected anyhow that the final result will be appropriately

rounded. Notice however that log10() should be seen as going from floating point to fixed point

(in the sense of the number of fractional digits) and pow10() from fixed point to floating point.

log10(x) logarithm in base 10

pow10(x) fractional powers of 10

log(x) natural logarithm via log10(x)*2.3025850923 formula; only the first 8 or 9 digits of the

output are significant...

exp(x) exponential function via pow10(x*0.434294481903) formula

pow(x, y) computes xy via the formula pow10(y*log10(x))

\xintfloateval{[9] log(2), exp(1), pow(2,0.5)}

0.693147179, 2.71828183, 1.41421356 Notice that the last digit of log(2) is not the correctly

rounded one... I did say 9 or 8 digits or precision... The documentation of poormanlog mentions an

error of up to 2 units in the ninth digit when computing log10(x) for 1<x<10 and 10^x for 0<x<1.
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Part II.
The macro layer for expandable
computations: xintcore, xint,
xintfrac,...

WARNING !

The documentation is getting old, and is in need of rewrites for many sections, particularly

for examples.

We do try to keep updated the description of macros provided by the packages.

5 The xint bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
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13 Macros of the xintcfrac package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
14 Macros of the xinttools package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
15 Macros of the xintexpr package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
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5. The xint bundle

.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 57

.2 Floating point evaluations . . . . . . . . . . . . . . . 59

.3 Expansion matters . . . . . . . . . . . . . . . . . . . . . . . 60

.4 Input formats for macros. . . . . . . . . . . . . . . . . 62

.5 Output formats of macros . . . . . . . . . . . . . . . 64

.6 Count registers and variables . . . . . . . . . . . . . 64

.7 Dimension registers and variables . . . . . . . . . 65

.8 \ifcase, \ifnum, ... constructs . . . . . . . . . . 66

.9 No variable declarations are needed . . . . . . . 67

.10 Possible syntax errors to avoid . . . . . . . . . . . 67

.11 Error messages . . . . . . . . . . . . . . . . . . . . . . . . . . 68

.12 Package namespace, catcodes . . . . . . . . . . . . 68

.13 Origins of the package . . . . . . . . . . . . . . . . . . . 69

5.1. Characteristics

The main characteristics are:

1. exact algebra on ``big numbers'', integers as well as fractions,
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2. floating point variants with user-chosen precision,

3. the computational macros are compatible with expansion-only context,

4. the bundle comes with parsers (integer-only, or handling fractions, or doing floating

point computations) of infix operations implementing beyond infix operations extra fea-

tures such as dummy variables.

Since 1.2 ``big numbers'' must have less than about 19950 digits: the maximal number of

digits for addition is at 19968 digits, and it is 19959 for multiplication. The reasonable

range of use of the package is with numbers of up to a few hundred digits.17

TEX does not know off-hand how to print on the page such very long numbers, see subsection 1.4.

Integers with only 10 digits and starting with a 3 already exceed the TEX bound; and TEX does not have

a native processing of floating point numbers (multiplication by a decimal number of a dimension

register is allowed --- this is used for example by the pgf basic math engine.)

TEX elementary operations on numbers are done via the non-expandable \advance, \multiply, and

\divide assignments. This was changed with 𝜀-TEX's \numexpr which does expandable computations us-

ing standard infix notations with TEX integers. But 𝜀-TEX did not modify the TEX bound on acceptable

integers, and did not add floating point support.

The bigintcalc package by Heiko Oberdiek provided expandable macros (using some of \numexpr pos-

sibilities, when available) on arbitrarily big integers, beyond the TEX bound. It does not provide

an expression parser.18 xint did it again using more of \numexpr for higher speed, and in a later

evolution added handling of exact fractions, of scientific numbers, and an expression parser.

Arbitrary precision floating points operations were added as a derivative, and not part of the

initial design goal.

The concept of signed infinities, signed zeroes, NaN's, error traps...,19 have not been imple-

mented, only the notion of `scientific notation with a given number of significant figures'.20

The LATEX3 project has implemented expandably floating-point computations with 16 significant

figures (l3fp), including functions such as exp, log, sine and cosine.21

More directly related to the xint bundle there is the l3bigint package, also devoted to big

integers and in development a.t.t.o.w (2015/10/09, no division yet). It is part of the experimen-

tal trunk of the LATEX3 Project and provides an expression parser for expandable arithmetic with big

integers. Its author Bruno Le Floch succeeded brilliantly into implementing expandably the Karat-

suba multiplication algorithm and he achieves sub-quadratic growth for the computation time. This

shows up very clearly with numbers having thousands of digits, up to the maximum which a.t.t.o.w

is at 8192 digits.

The l3bigint multiplication from late 2015 is observed to be roughly 3x--4x faster than the one

from \xintiiexpr in the range of 4000 to 5000 digits integers, and isn't far from being 9x faster

at 8000 digits. On the other hand \xintiiexpr's multiplication is found to be on average roughly

2.5x faster than l3bigint's for numbers up to 100 digits and the two packages achieve about the

17 For example multiplication of integers having from 50 to 100 digits takes roughly of the order of the millisecond on a 2012
desktop computer. I compared this to using Python3: using timeit module on a wrapper defined as return w*z with random
integers of 100 digits, I observe on the same computer a computation time of roughly 4.10-7s per call. And with return str(w*⤸
z) then this becomes more like 16.10-7s per call. And with return str(int(W)*int(Z)) where W and Z are strings, this becomes
about 26.10-7s (I am deliberately ignoring Python’s Decimal module here...) Anyway, my sentence from earlier version of this
documentation: this is, I guess, at least about 1000 times slower than what can be expected with any reasonable programming
language, is about right. I then added: nevertheless as compilation of a typical LATEX document already takes of the order of
seconds and even dozens of seconds for long ones, this leaves room for reasonably many computations via xintexpr or via direct
use of the macros of xint/xintfrac. 18 One can currently use package bnumexpr to associate the bigintcalc macros with an
expression parser. This may be unavailable in future if bnumexpr becomes more tightly associated with future evolutions or variants
of xintcore. 19 The latter exist as work-in-progress for some time in the source code. 20 multiplication of two floats with P=\⤸
xinttheDigits digits is first done exactly then rounded to P digits, rather than using a specially tailored multiplication for floating
point numbers which would be more efficient (it is a waste to evaluate fully the multiplication result with 2P or 2P-1 digits.) 21 at
the time of writing (2014/10/28) the l3fp (exactly represented) floating point numbers have their exponents limited to ±9999.
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same speed at 900 digits: but each such multiplication of numbers of 900 digits costs about one or

two tenths of a second on a 2012 desktop computer, whereas the order of magnitude is rather the ms

for numbers with 50--100 digits.22

Even with the superior l3bigint Karatsuba multiplication it takes about 3.5s on this 2012 desk-

top computer for a single multiplication of two 5000-digits numbers. Hence it is not possible to do

routinely such computations in a document. I have long been thinking that without the expandabil-

ity constraint much higher speeds could be achieved, but perhaps I have not given enough thought

to sustain that optimistic stance.23

I remain of the opinion that if one really wants to do computations with thousands of digits,

one should drop the expandability requirement. Indeed, as clearly demonstrated long ago by the

pi computing file by D. Roegel one can program TEX to compute with many digits at a much higher

speed than what xint achieves: but, direct access to memory storage in one form or another seems a

necessity for this kind of speed and one has to renounce at the complete expandability.24

5.2. Floating point evaluations
Floating point macros are provided by package xintfrac to work with a given arbitrary precision P.

The default value is P = 16 meaning that the significands of the produced (non-zero) numbers have

16 decimal digits. The syntax to set the precision to P is

\xintDigits:=P\relax

The value is local to the group or environment (if using LATEX). To query the current value use

\xinttheDigits.

Most floating point macros accept an optional first argument [P] which then sets the target pre-

cision and replaces the \xintDigits assigned value (the [P] must be repeated if the arguments are

themselves xintfrac macros with arguments of their own.) In this section P refers to the prevailing

\xinttheDigits float precision or to the target precision set in this way as an optional argument.

\xintfloatexpr[Q]...\relax also admits an optional argument [Q] but it has an altogether dif-

ferent meaning: the computations are always done with the prevailing \xinttheDigits precision and

the optional argument Q is used for the final rounding. This makes sense only if Q<\xinttheDigit⤸
s and is intended to clean up the result from dubious last digits (when Q<0 it indicates rather by

how many digits one should reduce the mantissa lengths via a final rounding).

The IEEE 75425 requirement of correct rounding for addition, subtraction, multiplication,

division and square root is achieved (in arbitrary precision) by the macros of xintfrac hence

also by the infix operators +, -, *, /.

This means that for operands given with at most P significant digits (and arbitrary expo-

nents) the output coincides exactly with the rounding of the exact theoretical result (barring

overflow or underflow).
Due to a typographical oversight, this documentation (up to 1.2j) adjoined ^ and ** to the above list of infix

operators. But as is explained in subsection 9.86, what is guaranteed regarding integer powers is an error of at most
0.52ulp, not the correct rounding. Half-integer powers are computed as square roots of integer powers.

The rounding mode is ``round to nearest, ties away from zero''. It is not customizable.

Currently xintfrac has no notion of NaNs or signed infinities or signed zeroes, but this is

intended for the future.

22 I have tested this again on 2016/12/19, but the macros have not changed on the l3bigint side and barely on the xintcore
side, hence I got again the same results. . . 23 The apnum package implements (non-expandably) arbitrary precision fixed point
algebra and (v1.6) functions exp, log, sqrt, the trigonometrical direct and inverse functions. 24 The LuaTEX project possibly
makes endeavours such as xint appear even more insane that they are, in truth: xint is able to handle fast enough computations
involving numbers with less than one hundred digits and brings this to all engines. 25 The IEEE 754-1985 standard was for
hardware implementations of binary floating-point arithmetic with a specific value for the precision (24 bits for single precision,
53 bits for double precision). The newer IEEE 754-2008 (https://en.wikipedia.org/wiki/IEEE_floating_point) normalizes five
basic formats, three binaries and two decimals (16 and 34 decimal digits) and discusses extended formats with higher precision.
These standards are only indirectly relevant to libraries like xint dealing with arbitrary precision.
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Since release 1.2f, square root extraction achieves correct rounding in arbitrary precision.

The power function in the expression parsers accepts integer exponents and also half-integer

exponents for float expressions.26 A preliminary implementation of fractional powers is available

see xintlog. Trigonometrical functions are available (xinttrig).

The maximal floating point decimal exponent is currently 2147483647 which is the maximal number

handled by TEX. The minimal exponent is its opposite. But this means that overflow or underflow are

detected only via low-level \numexpr arithmetic overflows which are basically un-recoverable.

Besides there are some border effects as the routines need to add or subtract lengths of numbers

from exponents, possibly triggering the low-level overflows. In the future not only the Precision

but also the maximal and minimal exponents Emin and Emax will be specifiable by the user.

Since 1.2f, the float macros round their inputs to the target precision P before further pro-

cessing. Formerly, the initial rounding was done to P+2 digits (and at least P+3 for the power

operation.)

The more ambitious model would be for the computing macros to obey the intrinsic precision of

their inputs, i.e. to compute the correct rounding to P digits of the exact mathematical result

corresponding to inputs allowed to have their own higher precision.27 This would be feasible by

xintfrac which after all knows how to compute exactly, but I have for the time being decided that

for reasons of efficiency, the chosen model is the one of rounding inputs to the target precision

first.

The float macros of xintfrac have to handle inputs which not only may have much more digits than

the target float precision, but may even be fractions: in a way this means infinite precision.

From releases 1.08a to 1.2j a fraction input AeM/BeN had its numerator and denominator A and

B truncated to Q+2 digits of precision, then the substituted fraction was correctly rounded to

Q digits of precision (usually with Q set to P+2) and then the operation was implemented on such

rounded inputs. But this meant that two fractions representing the same rational number could end

up being rounded differently (with a difference of one unit in the last place), if it had numerators

and denominators with at least Q+3 digits.

Starting with release 1.2k a fractional input AeM/BeN is handled intrinsically: the fraction,

independently of its representation AeM/BeN, is correctly rounded to P digits during the input

parsing. Hence the output depends only on its arguments as mathematical fractions and not on their

representatives as quotients.

Notice that in float expressions, the / is treated as operator, and is applied to arguments

which are generally already P-floats, hence the above discussion becomes relevant in this context

only for the special input form qfloat(A/B) or when using a sub-expression \xintexpr A/B\relax

embedded in the float expression with A or B having more digits than the prevailing float precision

P.

5.3. Expansion matters
5.3.1. Full expansion of the first token

The whole business of xint is to build upon \numexpr and handle arbitrarily large numbers. Each

basic operation is thus done via a macro: \xintiiAdd, \xintiiSub, \xintiiMul, \xintiiDivision. In

order to handle more complex operations, it must be possible to nest these macros. An expandable

macro can not execute a \def or an \edef. But the macro must expand its arguments to find the

digits it is supposed to manipulate. TEX provides a tool to do the job of (expandable !) repeated

expansion of the first token found until hitting something non expandable, such as a digit, a \de⤸
f token, a brace, a \count token, etc... is found. A space token also will stop the expansion (and

be swallowed, contrarily to the non-expandable tokens).

By convention in this manual f-expansion (``full expansion'' or ``full first expansion'') will

be this TEX process of expanding repeatedly the first token seen. For those familiar with LATEX3

26 Half-integer exponents work inside expressions, but not via the \xintFloatPower macro. 27 The MPFR library
http://www.mpfr.org/ implements this but it does not know fractions!
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(which is not used by xint) this is what is called in its documentation full expansion (whereas

expansion inside \edef would be described I think as ``exhaustive'' expansion).

Most of the package macros, and all those dealing with computations28, are expandable in the

strong sense that they expand to their final result via this f-expansion. This will be signaled in

their descriptions via a star in the margin.★
These macros not only have this property of f-expandability, they all begin by first applying

f-expansion to their arguments. Again from LATEX3's conventions this will be signaled by a marginf
annotation next to the description of the arguments.

5.3.2. Summary of important expandability aspects

1. the macros f-expand their arguments, this means that they expand the first token seen (for

each argument), then expand, etc..., until something un-expandable such as a digit or a brace

is hit against. This example

\def\x{98765}\def\y{43210} \xintiiAdd {\x}{\x\y}

is not a legal construct, as the \y will remain untouched by expansion and not get converted

into the digits which are expected by the sub-routines of \xintiiAdd. It is a \numexpr which

will expand it and an arithmetic overflow will arise as 9876543210 exceeds the TEX bounds. The

same would hold for \xintAdd.

To the contrary \xinttheiiexpr and others have no issues with things such as \xinttheiiexpr ⤸
\x+\x\y\relax.

2. using \if...\fi constructs inside the package macro arguments requires suitably mastering

TEXniques (\expandafter's and/or swapping techniques) to ensure that the f-expansion will in-

deed absorb the \else or closing \fi, else some error will arise in further processing. There-

fore it is highly recommended to use the package provided conditionals such as \xintifEq,

\xintifGt, \xintifSgn,... or, for LATEX users and when dealing with short integers the etool-

box29 expandable conditionals (for small integers only) such as \ifnumequal, \ifnumgreater,

.... Use of non-expandable things such as \ifthenelse is impossible inside the arguments of

xint macros.

One can use naive \if..\fi things inside an \xinttheexpr-ession and cousins, as long as the
test is expandable, for example
\xinttheiexpr\ifnum3>2 143\else 33\fi 0^2\relax→2044900=1430^2

3. after the definition \def\x {12}, one can not use -\x as input to one of the package macros:

the f-expansion will act only on the minus sign, hence do nothing. The only way is to use the

\xintOpp macro (or \xintiiOpp which is integer only) which obtains the opposite of a given

number.

Again, this is otherwise inside an \xinttheexpr-ession or \xintthefloatexpr-ession. There,
the minus sign may prefix macros which will expand to numbers (or parentheses etc...)

4. With the definition

\def\AplusBC #1#2#3{\xintAdd {#1}{\xintMul {#2}{#3}}}

one obtains an expandable macro producing the expected result, not in two, but rather in three

steps: a first expansion is consumed by the macro expanding to its definition. As the pack-

age macros expand their arguments until no more is possible (regarding what comes first),

this \AplusBC may be used inside them: \xintAdd {\AplusBC {1}{2}{3}}{4} does work and re-

turns 11/1[0].

If, for some reason, it is important to create a macro expanding in two steps to its final

value, one may either do:

\def\AplusBC #1#2#3{\romannumeral-`0\xintAdd {#1}{\xintMul {#2}{#3}}}

28 except \xintXTrunc. 29 https://ctan.org/pkg/etoolbox
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or use the lowercase form of \xintAdd:

\def\AplusBC #1#2#3{\romannumeral0\xintadd {#1}{\xintMul {#2}{#3}}}

and then \AplusBC will share the same properties as do the other xint `primitive' macros.

5. The \romannumeral0 and \romannumeral-`0 things above look like an invitation to hacker's ter-

ritory; if it is not important that the macro expands in two steps only, there is no reason to

follow these guidelines. Just chain arbitrarily the package macros, and the new ones will be

completely expandable and usable one within the other.

Since release 1.07 the \xintNewExpr macro automatizes the creation of such expandable macros:

\xintNewExpr\AplusBC[3]{#1+#2*#3}

creates the \AplusBC macro doing the above and expanding in two expansion steps.

6. In the expression parsers of xintexpr such as \xintexpr..\relax, \xintfloatexpr..\relax the

contents are expanded completely from left to right until the ending \relax is found and swal-

lowed, and spaces and even (to some extent) catcodes do not matter.

7. For all variants, prefixing with \xintthe allows to print the result or use it in other con-

texts. Shortcuts \xinttheexpr, \xintthefloatexpr, \xinttheiiexpr, ... are available.

5.4. Input formats for macros
Macros can have different types of arguments (we do not consider here the \xintexpr-parsers but

only the macros of xintcore/xint/xintfrac). In a macro description, a margin annotation signals

what is the argument type.

1. TEX integers are handled inside a \numexpr..\relax hence may be count registers or variables.
num
x

Beware that -(1+1) is not legal and raises an error, but 0-(1+1) is. Also 2\cnta with \cnta a \⤸
count isn't legal. Integers must be kept less than 2147483647 in absolute value, although the

scaling operation (a*b)/c computes the intermediate product with twice as many bits.

The slash / does a rounded division which is a fact of life of \numexpr which I have found very

annoying in at least nine cases out of ten, not to say ninety-nine cases out of one hundred.

Besides, it is at odds with TEX's \divide which does a truncated division (non-expandably).

But to follow-suit / also does rounded integer division in \xintiiexpr..\relax, and the oper-

ator // does there the truncated division.

2. the strict format applies to macros handling big integers but only f-expanding their argu-f
ments. After this f-expansion the input should be a string of digits, optionally preceded by

a unique minus sign. The first digit can be zero only if it is the only digit. A plus sign is

not accepted. -0 is not legal in the strict format. Macros of xint with a double ii require

this `strict' format for the inputs.

3. the extended integer format applies when the macro parses its arguments via \xintNum. The
Num
f

input may then have arbitrarily many leading minus and plus signs, followed by leading zeroes,

and further digits. With xintfrac loaded, \xintNum is extended to accept fractions and its

action is to truncate them to integers.

At 1.2o many macros from xintcore/xint which used. All these macros have now been removed at

1.3.

4. the fraction input format applies to the arguments of xintfrac macros handling genuine frac-
Frac
f

tions. It allows two types of inputs: general and restricted. The restricted type is parsed

faster, but... is restricted.

general: inputs of the shape A.BeC/D.EeF. Example:

\noindent\xintRaw{+--0367.8920280e17/-++278.289287e-15}\newline
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\xintRaw{+--+1253.2782e++--3/---0087.123e---5}\par

-3678920280/278289287[31]

-12532782/87123[7]

The input parser does not reduce fractions to smallest terms. Here are the rules of this

general fraction format:

• everything is optional, absent numbers are treated as zero, here are some extreme cases:

\xintRaw{}, \xintRaw{.}, \xintRaw{./1.e}, \xintRaw{-.e}, \xintRaw{e/-1}

0/1[0], 0/1[0], 0/1[0], 0/1[0], 0/1[0]

• AB and DE may start with pluses and minuses, then leading zeroes, then digits.

• C and F will be given to \numexpr and can be anything recognized as such and not provok-

ing arithmetic overflow (the lengths of B and E will also intervene to build the final

exponent naturally which must obey the TEX bound).

• the /, . (numerator and/or denominator) and e (numerator and/or denominator) are all

optional components.

• each of A, B, C, D, E and F may arise from f-expansion of a macro.

• the whole thing may arise from f-expansion, however the /, ., and e should all come from

this initial expansion. The e of scientific notation is mandatorily lowercased.

restricted: inputs either of the shape A[N] or A/B[N], which represents the fraction A/B times

10^N. The whole thing or each of A, B, N (but then not / or [) may arise from f-expansion,
A (after expansion) must have a unique optional minus sign and no leading zeroes, B (after

expansion) if present must be a positive integer with no signs and no leading zeroes, [N⤸
] if present will be given to \numexpr. Any deviation from the rules above will result in

errors.

Notice that *, + and - contrarily to the / (which is treated simply as a kind of delimiter) are

not acceptable within arguments of this type (see subsection 5.6 for some exceptions to this.)
Frac
f

Generally speaking, there should be no spaces among the digits in the inputs (in arguments to

the package macros). Although most would be harmless in most macros, there are some cases where

spaces could break havoc.30 So the best is to avoid them entirely.

This is entirely otherwise inside an \xintexpr-ession, where spaces are ignored (except when

they occur inside arguments to some macros, thus escaping the \xintexpr parser). See the section 2.

There are also some slighly more obscure expansion types: in particular, the \xintApplyInline

and \xintFor* macros from xinttools apply a special iterated f-expansion, which gobbles spaces,

to the non-braced items (braced items are submitted to no expansion because the opening brace stops

it) coming from their list argument; this is denoted by a special symbol in the margin. Some other*f
macros such as \xintSum from xintfrac first do an f-expansion, then treat each found (braced or

not) item (skipping spaces between such items) via the general fraction input parsing, this is

signaled as here in the margin where the signification of the * is thus a bit different from thef→ *
Frac
f

previous case.

A few macros from xinttools do not expand, or expand only once their argument. This is alson , resp. o
signaled in the margin with notations à la LATEX3.

30 The \xintNum macro does not remove spaces between digits beyond the first non zero ones; however this should not really
alter the subsequent functioning of the arithmetic macros, and besides, since xintcore 1.2 there is an initial parsing of the entire
number, during which spaces will be gobbled. However I have not done a complete review of the legacy code to be certain of
all possibilities after 1.2 release. One thing to be aware of is that \numexpr stops on spaces between digits (although it provokes
an expansion to see if an infix operator follows); the exponent for \xintiiPow or the argument of the factorial \xintiiFac are only
subjected to such a \numexpr (there are a few other macros with such input types in xint). If the input is given as, say 1 2\x
where \x is a macro, the macro \x will not be expanded by the \numexpr, and this will surely cause problems afterwards. Perhaps
a later xint will force \numexpr to expand beyond spaces, but I decided that was not really worth the effort. Another immediate
cause of problems is an input of the type \xintiiAdd {<space>\x }{\y }, because the space will stop the initial expansion; this
will most certainly cause an arithmetic overflow later when the \x will be expanded in a \numexpr. Thus in conclusion, damages
due to spaces are unlikely if only explicit digits are involved in the inputs, or arguments are single macros with no preceding space.
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5.5. Output formats of macros
We do not consider here the \xintexpr-parsers but only the macros from xintcore, xint and xint-

frac. Macros of other components of the bundle may have their own output formats, for example for

continuous fractions with xintcfrac. There are mainly three types of outputs:

• arithmetic macros from xintcore/xint deliver integers in the strict format as described in

the previous section.

• arithmetic macros from xintfrac produce on output the strict fraction format A/B[N], which

stands for (A/B)×10^N, where A and B are integers, B is positive, and N is a ``short'' integer.

The output is not reduced to smallest terms. The A and B may end with zeroes (i.e, N does not

represent all powers of ten). The denominator B is always strictly positive. There is no +

sign. The - is always first if present (i.e. the denominator on output is always positive.)

The output will be expressed as such a fraction even if the inputs are both integers and the

mathematical result is an integer. The B=1 is not removed.31

• macros with Float in their names produce on output scientific format with P=\xinttheDigits

digits, a lowercase e and an exponent N. The first digit is not zero, it is preceded by an

optional minus sign and is followed by a dot and P-1 digits. Trailing zeroes are not trimmed.

There is one exceptional case:

– if the value is mathematically zero, it is output as 0.e0, i.e. zeros after the decimal mark

are removed and the exponent is always 0.

Future versions of the package may modify this.

5.6. Count registers and variables
Inside \xintexpr..\relax and its variants, a count register or count control sequence is auto-

matically unpacked using \number, with tacit multiplication: 1.23\counta is like 1.23*\number\c⤸
ounta. There is a subtle difference between count registers and count variables. In 1.23*\counta

the unpacked \counta variable defines a complete operand thus 1.23*\counta 7 is a syntax error.

But 1.23*\count0 just replaces \count0 by \number\count0 hence 1.23*\count0 7 is like 1.23*57 if

\count0 contains the integer value 5.

Regarding now the package macros, there is first the case of arguments having to be short inte-

gers: this means that they are fed to a \numexpr...\relax, hence submitted to a complete expansion
which must deliver an integer, and count registers and even algebraic expressions with them like

\mycountA+\mycountB*17-\mycountC/12+\mycountD are admissible arguments (the slash stands here

for the rounded integer division done by \numexpr). This applies in particular to the number of

digits to truncate or round with, to the indices of a series partial sum, ...

The macros allowing the extended format for long numbers or dealing with fractions will to some
extent allow the direct use of count registers and even infix algebra inside their arguments: a

count register \mycountA or \count 255 is admissible as numerator or also as denominator, with no

need to be prefixed by \the or \number. It is possible to have as argument an algebraic expression

as would be acceptable by a \numexpr...\relax, under this condition: each of the numerator and
denominator is expressed with at most nine tokens.32 33 Important: a slash for rounded division

in a \numexpr should be written with braces {/} to not be confused with the xintfrac delimiter

between numerator and denominator (braces will be removed internally and the slash will count for

one token). Example: \mycountA+\mycountB{/}17/1+\mycountA*\mycountB, or \count 0+\count 2{/}17⤸
/1+\count 0*\count 2.

\cnta 10 \cntb 35 \xintRaw {\cnta+\cntb{/}17/1+\cnta*\cntb}->12/351[0]

For longer algebraic expressions using count registers, there are two possibilities:

31 refer to the documentation of \xintPRaw for an alternative. 32 The 1.2k and earlier versions manual claimed up to 8 tokens,
but low-level TeX error arose if the \numexpr ...\relax occupied exactly 8 tokens and evaluated to zero. With 1.2l and later,
up to 9 tokens are always safe and one may even drop the ending \relax. But well, all these explanations are somewhat silly
because prefixing by \the or \number is always working with arbitrarily many tokens. 33 Attention! in the LATEX context a
\value{countername} will behave ok only if it is first in the input, if not it will not get expanded, and braces around the name will
be removed and chaos will ensue inside a \numexpr. One should enclose the whole input in \the\numexpr...\relax in such cases.+

{
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1. let the numerator and the denominator be presented as \the\numexpr...\relax,

2. or as \numexpr {...}\relax (the braces are removed during processing; they are not legal for

\numexpr...\relax syntax.)
\cnta 100 \cntb 10 \cntc 1

\xintPRaw {\numexpr {\cnta*\cnta+\cntb*\cntb+\cntc*\cntc+

2*\cnta*\cntb+2*\cnta*\cntc+2*\cntb*\cntc}\relax/%

\numexpr {\cnta*\cnta+\cntb*\cntb+\cntc*\cntc}\relax }

12321/10101

5.7. Dimension registers and variables
⟨dimen⟩ variables can be converted into (short) integers suitable for the xint macros by prefixing

them with \number. This transforms a dimension into an explicit short integer which is its value

in terms of the sp unit (1/65536 pt). When \number is applied to a ⟨glue⟩ variable, the stretch and

shrink components are lost.

For LATEX users: a length is a ⟨glue⟩ variable, prefixing a length macro defined by \newlength with

\number will thus discard the plus and minus glue components and return the dimension component

as described above, and usable in the xint bundle macros.

This conversion is done automatically inside an \xintexpr-essions, with tacit multiplication

implied if prefixed by some (integral or decimal) number.

One may thus compute areas or volumes with no limitations, in units of sp^2 respectively sp^3, do

arithmetic with them, compare them, etc..., and possibly express some final result back in another

unit, with the suitable conversion factor and a rounding to a given number of decimal places.

A table of dimensions illustrates that the internal values used by TEX do not correspond al-

ways to the closest rounding. For example a millimeter exact value in terms of sp units is

72.27/10/2.54*65536=186467.981... and TEX uses internally 186467sp (TEX truncates to get an in-

tegral multiple of the sp unit; see at the end of this section the exact rules applied internally

by TEX).

Unit definition Exact value in sp units
TEX's value

in sp units

Relative

error

cm 0.01 m 236814336/127 = 1864679.811... 1864679 -0.0000%

mm 0.001 m 118407168/635 = 186467.981... 186467 -0.0005%

in 2.54 cm 118407168/25 = 4736286.720... 4736286 -0.0000%

pc 12 pt 786432 = 786432.000... 786432 0%

pt 1/72.27 in 65536 = 65536.000... 65536 0%

bp 1/72 in 1644544/25 = 65781.760... 65781 -0.0012%

3bp 1/24 in 4933632/25 = 197345.280... 197345 -0.0001%

12bp 1/6 in 19734528/25 = 789381.120... 789381 -0.0000%

72bp 1 in 118407168/25 = 4736286.720... 4736286 -0.0000%

dd 1238/1157 pt 81133568/1157 = 70124.086... 70124 -0.0001%

11dd 11*1238/1157 pt 892469248/1157 = 771364.950... 771364 -0.0001%

12dd 12*1238/1157 pt 973602816/1157 = 841489.037... 841489 -0.0000%

sp 1/65536 pt 1 = 1.000... 1 0%

TEX dimensions

There is something quite amusing with the Didot point. According to the TEXBook, 1157 dd=1238 p⤸
t. The actual internal value of 1 dd in TEX is 70124 sp. We can use xintcfrac to display the list of

centered convergents of the fraction 70124/65536:

\xintListWithSep{, }{\xintFtoCCv{70124/65536}}

1/1, 15/14, 61/57, 107/100, 1452/1357, 17531/16384, and we don't find 1238/1157 therein, but an-

other approximant 1452/1357!
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And indeed multiplying 70124/65536 by 1157, and respectively 1357, we find the approximations

(wait for more, later):

``1157 dd''=1237.998474121093...pt

``1357 dd''=1451.999938964843...pt

and we seemingly discover that 1357 dd=1452 pt is far more accurate than the TEXBook formula 1157 d⤸
d=1238 pt ! The formula to compute N dd was

\xinttheexpr trunc(N\dimexpr 1dd\relax/\dimexpr 1pt\relax,12)\relax}

What's the catch? The catch is that TEX does not compute 1157 dd like we just did:

1157 dd=\number\dimexpr 1157dd\relax/65536=1238.000000000000...pt

1357 dd=\number\dimexpr 1357dd\relax/65536=1452.001724243164...pt

We thus discover that TEX (or rather here, e-TEX, but one can check that this works the same in

TEX82), uses 1238/1157 as a conversion factor (and necessarily intermediate computations simulate

higher precision than a priori available with integers less than 231 or rather 230 for dimensions).

Hence the 1452/1357 ratio is irrelevant, an artefact of the rounding (or rather, as we see, trun-

cating) for one dd to be expressed as an integral number of sp's.

Let us now use \xintexpr to compute the value of the Didot point in millimeters, if the above

rule is exactly verified:

\xinttheexpr trunc(1238/1157*25.4/72.27,12)\relax=0.376065027442...mm

This fits very well with the possible values of the Didot point as listed in the Wikipedia Article.

The value 0.376065 mm is said to be the traditional value in European printers' offices. So the

1157 dd=1238 pt rule refers to this Didot point, or more precisely to the conversion factor to be

used between this Didot and TEX points.

The actual value in millimeters of exactly one Didot point as implemented in TEX is

\xinttheexpr trunc(\dimexpr 1dd\relax/65536/72.27*25.4,12)\relax

=0.376064563929...mm

The difference of circa 5Å is arguably tiny!

By the way the European printers' offices (dixit Wikipedia) Didot is thus exactly

\xinttheexpr reduce(.376065/(25.4/72.27))\relax=543564351/508000000 pt

and the centered convergents of this fraction are 1/1, 15/14, 61/57, 107/100, 1238/1157, 11249/1⤸
0513, 23736/22183, 296081/276709, 615898/575601, 11382245/10637527, 22148592/20699453, 1885709⤸
81/176233151, 543564351/508000000. We do recover the 1238/1157 therein!

Here is how TEX converts abc.xyz...<unit>. First the decimal is rounded to the nearest inte-

gral multiple of 1/65536, say X/65536. The <unit> is associated to a ratio N/D, which repre-

sents <unit>/pt. For the Didot point the ratio is indeed 1238/1157. TEX truncates the fraction

XN/D to an integer M. The dimension is represented by M sp.

5.8. \ifcase, \ifnum, ... constructs
When using things such as \ifcase \xintSgn{\A} one has to make sure to leave a space after the
closing brace for TEX to stop its scanning for a number: once TEX has finished expanding \xintSgn⤸
{\A} and has so far obtained either 1, 0, or -1, a space (or something `unexpandable') must stop
it looking for more digits. Using \ifcase\xintSgn\A without the braces is very dangerous, because
the blanks (including the end of line) following \A will be skipped and not serve to stop the number
which \ifcase is looking for.
\begin{enumerate}[nosep]\def\A{1}

\item \ifcase \xintSgn\A 0\or OK\else ERROR\fi

\item \ifcase \xintSgn\A\space 0\or OK\else ERROR\fi

\item \ifcase \xintSgn{\A} 0\or OK\else ERROR\fi

\end{enumerate}

1. ERROR

2. OK
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3. OK

In order to use successfully \if...\fi constructions either as arguments to the xint bundle

expandable macros, or when building up a completely expandable macro of one's own, one needs some

TEXnical expertise (see also item 2 on page 61).

It is thus much to be recommended to use the expandable branching macros, provided by xint-

frac succh as \xintifSgn, \xintifZero, \xintifOne, \xintifNotZero, \xintifTrueAelseB, \xint-

ifCmp, \xintifGt, \xintifLt, \xintifEq, \xintifInt... See their respective documentations. All

these conditionals always have either two or three branches, and empty brace pairs {} for unused

branches should not be forgotten.

If these tests are to be applied to standard TEX short integers, it is more efficient to use

(under LATEX) the equivalent conditional tests from the etoolbox34 package.

5.9. No variable declarations are needed
There is no notion of a declaration of a variable.
To do a computation and assign its result to some macro \z, the user will employ the \def, \edef,

or \newcommand (in LATEX) as usual, keeping in mind that two expansion steps are needed, thus \edef
is initially the main tool:
\def\x{1729728} \def\y{352827927} \edef\z{\xintiiMul {\x}{\y}}

\meaning\z

macro:->610296344513856
As an alternative to \edef the package provides \oodef which expands exactly twice the replace-

ment text, and \fdef which applies f-expansion to the replacement text during the definition.

\def\x{1729728} \def\y{352827927} \oodef\w {\xintiiMul\x\y} \fdef\z{\xintiiMul {\x}{\y}}

\meaning\w, \meaning\z

macro:->610296344513856, macro:->610296344513856

In practice \oodef is slower than \edef, except for computations ending in very big final re-

placement texts (thousands of digits). On the other hand \fdef appears to be slightly faster than+
{
\edef already in the case of expansions leading to only a few dozen digits.

xintexpr does provide an interface to declare and assign values to identifiers which can then

be used in expressions: subsection 2.12.

5.10. Possible syntax errors to avoid
Here is a list of imaginable input errors. Some will cause compilation errors, others are more

annoying as they may pass through unsignaled.

• using - to prefix some macro: -\xintiiSqr{35}/271.35

• using one pair of braces too many \xintIrr{{\xintiiPow {3}{13}}/243} (the computation goes

through with no error signaled, but the result is completely wrong).

• things like \xintiiAdd { \x}{\y} as the space will cause \x to be expanded later, most proba-

bly within a \numexpr thus provoking possibly an arithmetic overflow.

• using [] and decimal points at the same time 1.5/3.5[2], or with a sign in the denominator

3/-5[7]. The scientific notation has no such restriction, the two inputs 1.5/-3.5e-2 and -1.⤸
5e2/3.5 are equivalent: \xintRaw{1.5/-3.5e-2}=-15/35[2], \xintRaw{-1.5e2/3.5}=-15/35[2].

• generally speaking, using in a context expecting an integer (possibly restricted to the TEX

bound) a macro or expression which returns a fraction: \xinttheexpr 4/2\relax outputs 4/2,

not 2. Use \xintNum {\xinttheexpr 4/2\relax} or \xinttheiexpr 4/2\relax (which rounds the

result to the nearest integer, here, the result is already an integer) or \xinttheiiexpr 4/2⤸
\relax. Or, divide in your head 4 by 2 and insert the result directly in the TEX source.

34 https://ctan.org/pkg/etoolbox 35 to the contrary, this is allowed inside an \xintexpr-ession.
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5.11. Error messages
In situations such as division by zero, the TEX run will be interrupted with some error message.

The user is asked to hit the RETURN key thrice, which will display additional information. In non-

interactive nonstopmode the TEX run goes on uninterrupted and the error data will be found in the

compilation log.
Here is an example interactive run:
! Undefined control sequence.

<argument> \xint/

DivisionByZero (hit <RET> thrice)

l.11 \xintiiDivision{123}{0}

?

! Undefined control sequence.

<argument> \xint/

Division of 123 by 0

l.11 \xintiiDivision{123}{0}

?

! Undefined control sequence.

<argument> \xint/

next: {0}{0}

l.11 \xintiiDivision{123}{0}

?

[1] (./temptest.aux) )

Output written on temptest.dvi (1 page, 216 bytes).

Transcript written on temptest.log.

This is an experimental feature, which is in preparation for next major release.36 37

Some constructs in xintexpr-essions use delimited macros and there is thus possibility in case
of an ill-formed expression to end up beyond the \relax end-marker. Such a situation can also occur
from a non-terminated \numexpr:
\xintexpr 3 + \numexpr 5+4\relax followed by some LaTeX code...

as the \numexpr will swallow the \relax whose presence is mandatory for \xintexpr, errors will in-

evitably arise and may lead to very cryptic messages; but nothing unusual or especially traumatiz-

ing for the daring experienced TEX/LATEX user, whose has seen zillions of un-helpful error messages

already in her daily practice of TEX/LATEX.
38

5.12. Package namespace, catcodes
The bundle packages needs that the \space and \empty control sequences are pre-defined with the

identical meanings as in Plain TEX (or LATEX2e which has the same macros).

Private macros of xintkernel, xintcore, xinttools, xint, xintfrac, xintexpr, xintbinhex, xint-

gcd, xintseries, and xintcfrac use one or more underscores _ as private letter, to reduce the risk

of getting overwritten. They almost all begin either with \XINT_ or with \xint_, a handful of these

private macros such as \XINTsetupcatcodes, \XINTdigits and those with names such as \XINTinFloat⤸
... or \XINTinfloat... do not have any underscore in their names (for obscure legacy reasons).

xintkernel provides \odef, \oodef, \fdef: if macros with these names already exist xinttools

will not overwrite them. The same meanings are independently available under the names \xintodef,

\xintoodef, etc...

Apart from \thexintexpr, \thexintiexpr, ... all other public macros from the xint bundle pack-

ages start with \xint.

36 The related macros checking or resetting error flags are implemented in embryonic form but no user interface is provided with 1⤸
.2l release. 37 The implementation is cloned from LATEX3. 38 not to mention the LATEX error messages used by Emacs AUCTEX
mode also for Plain TEX runs...
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For the good functioning of the macros, standard catcodes are assumed for the minus sign, the

forward slash, the square brackets, the letter `e'. These requirements are dropped inside an \xin⤸
texpr-ession: spaces are gobbled, catcodes mostly do not matter, the e of scientific notation may

be E (on input) ...

If a character used in the \xintexpr syntax is made active, this will surely cause problems; pre-

fixing it with \string is one option. There is \xintexprSafeCatcodes and \xintexprRestoreCatcodes

to temporarily turn off potentially active characters.

For advanced TEX users. At loading time of the packages the catcode configuration may be

arbitrary as long as it satisfies the following requirements: the percent is of category code

comment character, the backslash is of category code escape character, digits have category

code other and letters have category code letter. Nothing else is assumed.

5.13. Origins of the package
2013/03/28. Package bigintcalc by Heiko Oberdiek already provides expandable arithmetic opera-

tions on ``big integers'', exceeding the TEX limits (of 231 - 1), so why another39 one?

I got started on this in early March 2013, via a thread on the c.t.tex usenet group, where Ulrich

D i e z used the previously cited package together with a macro (\ReverseOrder) which I had con-

tributed to another thread.40 What I had learned in this other thread thanks to interaction with

Ulrich D i e z and GL on expandable manipulations of tokens motivated me to try my hands at addition

and multiplication.

I wrote macros \bigMul and \bigAdd which I posted to the newsgroup; they appeared to work com-

paratively fast. These first versions did not use the 𝜀-TEX \numexpr primitive, they worked one

digit at a time, having previously stored carry-arithmetic in 1200 macros.

I noticed that the bigintcalc package used \numexpr if available, but (as far as I could tell)

not to do computations many digits at a time. Using \numexpr for one digit at a time for \bigAdd and

\bigMul slowed them a tiny bit but avoided cluttering TEX memory with the 1200 macros storing pre-

computed digit arithmetic. I wondered if some speed could be gained by using \numexpr to do four

digits at a time for elementary multiplications (as the maximal admissible number for \numexpr has

ten digits).

2013/04/14. This initial xint was followed by xintfrac which handled exactly fractions and dec-

imal numbers.

2013/05/25. Later came xintexpr and at the same time xintfrac got extended to handle floating

point numbers.

2013/11/22. Later, xinttools was detached.

2014/10/28. Release 1.1 significantly extended the xintexpr parsers.

2015/10/10. Release 1.2 rewrote the core integer routines which had remained essentially unmod-

ified, apart from a slight improvement of division early 2014.

This 1.2 release also got its impulse from a fast ``reversing'' macro, which I wrote after my

interest got awakened again as a result of correspondance with Bruno Le Floch during September

2015: this new reverse uses a TEXnique which requires the tokens to be digits. I wrote a routine

which works (expandably) in quasi-linear time, but a less fancy O(N^2) variant which I developed

concurrently proved to be faster all the way up to perhaps 7000 digits, thus I dropped the quasi-

linear one. The less fancy variant has the advantage that xint can handle numbers with more than

19900 digits (but not much more than 19950). This is with the current common values of the input

save stack and maximal expansion depth: 5000 and 10000 respectively.

39 this section was written before the xintfrac package; the author is not aware of another package allowing expandable computa-
tions with arbitrarily big fractions. 40 the \ReverseOrder could be avoided in that circumstance, but it does play a crucial rôle
here.
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6. Macros of the xintkernel package
The xintkernel package contains mainly the common code base for handling the load-order of the

bundle packages, the management of catcodes at loading time, definition of common constants and

macro utilities which are used throughout the code etc ... it is automatically loaded by all pack-

ages of the bundle.

It provides a few macros possibly useful in other contexts.

.1 \odef, \oodef, \fdef . . . . . . . . . . . . . . . . . . . 70

.2 \xintReverseOrder . . . . . . . . . . . . . . . . . . . . . 70

.3 \xintLength . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

.4 \xintFirstItem . . . . . . . . . . . . . . . . . . . . . . . . 71

.5 \xintLastItem . . . . . . . . . . . . . . . . . . . . . . . . . 71

.6 \xintFirstOne . . . . . . . . . . . . . . . . . . . . . . . . . 71

.7 \xintLastOne . . . . . . . . . . . . . . . . . . . . . . . . . . 71

.8 \xintReplicate, \xintreplicate . . . . . . . 71

.9 \xintGobble, \xintgobble . . . . . . . . . . . . . . 71

.10 (WIP) \xintUniformDeviate . . . . . . . . . . . . 72

6.1. \odef, \oodef, \fdef
\oodef\controlsequence {<stuff>} does

\expandafter\expandafter\expandafter\def

\expandafter\expandafter\expandafter\controlsequence

\expandafter\expandafter\expandafter{<stuff>}

This works only for a single \controlsequence, with no parameter text, even without parameters.
An alternative would be:
\def\oodef #1#{\def\oodefparametertext{#1}%

\expandafter\expandafter\expandafter\expandafter

\expandafter\expandafter\expandafter\def

\expandafter\expandafter\expandafter\oodefparametertext

\expandafter\expandafter\expandafter }

but it does not allow \global as prefix, and, besides, would have anyhow its use (almost) limited

to parameter texts without macro parameter tokens (except if the expanded thing does not see them,

or is designed to deal with them).

There is a similar macro \odef with only one expansion of the replacement text <stuff>, and \fdef

which expands fully <stuff> using \romannumeral-`0.

They can be prefixed with \global. It appears than \fdef is generally a bit faster than \ede⤸
f when expanding macros from the xint bundle, when the result has a few dozens of digits. \oodef

needs thousands of digits it seems to become competitive.

6.2. \xintReverseOrder
\xintReverseOrder{⟨list⟩} does not do any expansion of its argument and just reverses the ordern ★
of the tokens in the ⟨list⟩. Braces are removed once and the enclosed material, now unbraced, does

not get reversed. Unprotected spaces (of any character code) are gobbled.

\xintReverseOrder{\xintDigitsOf\xintiiPow {2}{100}\to\Stuff}

gives: \Stuff\to1002\xintiiPow\xintDigitsOf

xinttools provides a variant \xintRevWithBraces which keeps brace pairs in the output, and f-
expands its input first.

For inputs consisting only digit tokens, see \xintReverseDigits from xint.

6.3. \xintLength
\xintLength{⟨list⟩} counts how many tokens (or braced items) there are (possibly none). It doesn ★
no expansion of its argument, so to use it to count things in the replacement text of a macro \x

one should do \expandafter\xintLength\expandafter{\x}. Blanks between items are not counted. See

also \xintNthElt{0} (from xinttools) which first f-expands its argument and then applies the same

code.
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\xintLength {\xintiiPow {2}{100}}=3

≠ \xintLen {\xintiiPow {2}{100}}=31

6.4. \xintFirstItem
\xintFirstItem{⟨list⟩} returns the first item of its argument, one pair of braces removed. If then ★
list has no items the output is empty.New with

1.4 It does no expansion. For this and the next similar ones, see sourcexint.pdf for comments on

limitations.

6.5. \xintLastItem
Added at 1.2i.

\xintLastItem{⟨list⟩} returns the last item of its argument, one pair of braces removed. If then ★
list has no items the output is empty.

It does no expansion, which should be obtained via suitable \expandafter's. See also \xint-

NthElt{-1} from xinttools which obtains the same result (but with another code) after having how-

ever f-expanded its argument first.

6.6. \xintFirstOne
\xintFirstOne{⟨list⟩} returns the first item as a braced item. I.e. if it was braced the bracesn ★
are kept, else the braces are added. It looks like using \xintFirstItem within braces, but the

difference is when the input was empty. Then the output is empty.New with
1.4 It does no expansion, which should be obtained via suitable \expandafter's.

6.7. \xintLastOne
\xintLastOne{⟨list⟩} returns the last item as a braced item. I.e. if it was braced the braces aren ★
kept, else the braces are added. It looks like using \xintLastItem within braces, but the differ-

ence is when the input was empty. Then the output is empty.New with
1.4 It does no expansion, which should be obtained via suitable \expandafter's.

6.8. \xintReplicate, \xintreplicate
\romannumeral\xintreplicate{x}{⟨stuff ⟩} is simply copied over from LATEX3's \prg_replicate:nn

num
x n ★

with some minor changes.41

And \xintReplicate{x} integrates the \romannumeral prefix.New with
1.4 It does not do any expansion of its second argument but inserts it in the upcoming token stream

precisely x times. Using it with a negative x raises no error and does nothing.42

6.9. \xintGobble, \xintgobble
\romannumeral\xintgobble{x} is a Gobbling macro written in the spirit of LATEX3's \prg_replicate:⤸

num
x ★

nn (which I cloned as \xintreplicate.) It gobbles x tokens upstream, with x allowed to be as large

as 531440. Don't use it with x<0.

And \xintGobble{x} integrates the \romannumeral.New with
1.4 \xintgobble looks as if it must be related to \xintTrim from xinttools, but the latter uses

different code (using directly \xintgobble is not possible because one must make sure not to gobble

more than the number of available items; and counting available items first is an overhead which

41 I started with the code from Joseph Wright available on an online site. 42 This behaviour may change in future.
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\xintTrim avoids.) It is rather\xintKeep with a negative first argument which hands over to \xint-

gobble (because in that case it is needed to count anyhow beforehand the number of items, hence

\xintgobble can then be used safely.)

I wrote an \xintcount in the same spirit as \xintreplicate and \xintgobble. But it needs to be

counting hundreds of tokens to be worth its salt compared to \xintLength.

6.10. (WIP) \xintUniformDeviate
\xintUniformDeviate{x} is a wrapper of engine \pdfuniformdeviate (or \uniformdeviate).43 The im-

num
x ★

plementation is to be considered experimental for the time being.

The argument is expanded in \numexpr and the macro itself needs two expansion steps. It produces

like the engine primitive an integer (digit tokens) with minimal value 0 and maximal one x-1 if x

is positive, or minimal value x+1 and maximal value 0 if x is negative. For the discussion next, x

is supposed positive as this avoids having to insert absolute values in formulas.

The underlying engine Random Number Generator works with an array of 55 28bits integers. To

produce a « uniform » random integer in a given range 0..x-1 it produces next pseudo-random y

(supposedly uniformly distributed, i.e. non-uniformity can be neglected) such that 0 ≤ y < 228

and the output is the rounding of x ∗ (y/228), with upper bound x remapped to 0. This has following

corollaries:

1. with x=2^{29} or x=2^{30} the engine primitive produces only even numbers,

2. with x=3*2^{26} the integers produced by the RNG when taken modulo three obey the proportion

1:1:2, not 1:1:1,

3. with x=3*2^{14} there is analogous although weaker non-uniformity of the random integers when

taken modulo 3,

4. generally speaking pure powers of two should generate uniform random integers, but when the

range is divisible by large powers of two, the non-uniformity may be amplified in surprising

ways by modulo operations.

These observations are not to be construed as criticism of the engine primitive itself, which

comes from MetaPost, as the code comments and more generally the whole of The Art of Computer
Programming, Vol. 2 stresses that it should rather be seen as producing random fractions (the unit

fraction being 228). Using it as a generator for integers is a bit of an abuse.

The first goal of \xintUniformDeviate is to guarantee a better uniformity for the distribution

of random integers in any given range x.

If the probability to obtain a given y in 0..x-1 is (1+e(y))/x, the ``relative non-uniformity''
for that value y is |e(y)|.
The engine primitive guarantees only x/228 relative non-uniformity, and \xintUniformDeviate

(in its current implementation) improves this by a factor 2^{28}=268435456: the non-uniformity
is guaranteed to be bounded by x/256.44 With such a small non-uniformity, modulo phenomena as men-
tioned earlier are not observable in reasonable computing time.
%\xintdefiifunc mod3(x):= x 'mod' 3;

\xintNewIIExpr\ModThree[1]{#1 'mod' 3}

\pdfsetrandomseed 87654321

\xintdefiivar BadDigits:=qraw(%

\romannumeral\xintreplicate{504}{{\ModThree{\pdfuniformdeviate "C000000}}}%

43 The \uniformdeviate primitive has been added to XeTEX and will be available with TEXLive 2019 release. 44 These estimates
assume that the engine RNG underlying stream of 28-bits integers can be considered uniform; it is known that the parity bits of
these 28-bits integers have a period of 55(2^{55}-1) and that after that many draws the count of 1s has only an excess of 55
compared to the count of 0s, so the scale seems to be an intrinsic non-uniformity of 2^{-55} but it is not obvious if it applies
to much shorter ranges. At any rate we assumed that the non-uniformity for x a power of two less than 2^{28} is negligible in
comparison to 2^{-28}. Bigger powers of 2 produce only even integers because the output is rescaled by factor x/2^{28}!
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);%

\pdfsetrandomseed 87654321

\xintdefiivar GoodDigits:=qraw(%

\romannumeral\xintreplicate{504}{{\ModThree{\xintUniformDeviate{"C000000}}}}%

);%

These 504 digits generated from \string\pdfuniformdeviate:

\xinttheiiexpr BadDigits\relax\hfill\break

contain these respective amounts of 0, 1, and 2:

% (this is definitely not the fastest way to count, but it is fun - and expandable)

\xinttheiiexpr iter(0,0,0;(i=0)?{[@][0]+1,[@][1],[@][2]}

{(i=1)?{[@][0],[@][1]+1,[@][2]}

{[@][0],[@][1],[@][2]+1}},

i=BadDigits)\relax\par

These 504 digits generated from \string\xintUniformDeviate:

\xinttheiiexpr GoodDigits\relax\hfill\break

contain these respective amounts of 0, 1, and 2:

\xinttheiiexpr iter(0,0,0;(i=0)?{[@][0]+1,[@][1],[@][2]}

{(i=1)?{[@][0],[@][1]+1,[@][2]}

{[@][0],[@][1],[@][2]+1}},

i=GoodDigits)\relax\par

% % output to data file for double-check with python

% \newwrite\out

% \immediate\openout\out=\jobname.data

% \immediate\write\out{Lbad=[\xinttheiiexpr BadDigits\relax]}

% \immediate\write\out{Lgood=[\xinttheiiexpr GoodDigits\relax]}

% \immediate\closeout\out

These 504 digits generated from \pdfuniformdeviate: 1, 2, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0,

2, 2, 0, 0, 2, 2, 2, 1, 2, 2, 2, 2, 2, 0, 0, 2, 1, 1, 0, 0, 1, 1, 1, 2, 2, 2, 2, 0, 1, 1, 2, 1, 1, 1, 2,

1, 2, 2, 1, 0, 0, 2, 0, 0, 2, 0, 2, 1, 1, 2, 2, 0, 0, 2, 2, 2, 2, 2, 0, 2, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0,

1, 0, 2, 2, 2, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 2, 2, 2, 1, 2, 2, 0, 1, 0, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2,

1, 2, 2, 1, 2, 2, 2, 1, 0, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 0, 2, 2, 2, 2, 1, 2, 0, 2, 2, 2, 0, 0, 2,

0, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 1, 0, 2, 1, 2, 0, 1, 0, 1, 0, 2, 2, 0, 2, 2, 2, 2, 2, 0, 2,

2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 0, 2, 1, 0, 1, 2, 1, 1, 1, 2, 1, 1, 2, 0, 0, 2, 1, 1, 2, 2, 0, 1, 2,

2, 1, 2, 0, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 2, 2, 0, 1, 0,

2, 1, 1, 1, 0, 1, 0, 2, 1, 1, 2, 2, 1, 2, 0, 2, 2, 1, 0, 1, 2, 2, 0, 2, 0, 2, 2, 2, 2, 0, 2, 0, 2, 2, 2,

2, 2, 1, 1, 2, 1, 2, 1, 1, 0, 2, 2, 2, 1, 2, 0, 0, 2, 2, 0, 1, 0, 2, 2, 2, 2, 2, 1, 2, 0, 1, 0, 0, 2, 0,

2, 2, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 0, 2, 1, 0, 2, 2, 0, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 2,

2, 2, 0, 2, 2, 1, 1, 2, 1, 1, 2, 0, 1, 2, 1, 2, 1, 1, 2, 2, 0, 2, 2, 2, 1, 2, 2, 1, 0, 1, 2, 2, 2, 2, 2,

0, 2, 2, 1, 0, 2, 0, 1, 2, 2, 2, 2, 1, 0, 1, 2, 0, 2, 2, 2, 2, 2, 2, 2, 0, 1, 0, 2, 1, 2, 1, 0, 2, 1, 1,

2, 2, 0, 1, 0, 0, 0, 2, 2, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2, 2, 0, 2, 1, 0, 1, 2, 2, 1, 2, 0, 2, 0, 1, 0, 1,

0, 0, 2, 0, 2, 1, 2, 0, 1, 0, 0, 1, 1, 2, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 2, 1, 0, 2, 2, 0, 2, 1, 2

contain these respective amounts of 0, 1, and 2: 124, 147, 233

These 504 digits generated from \xintUniformDeviate: 2, 1, 0, 1, 0, 2, 1, 1, 2, 2, 2, 1, 2, 2, 0,

1, 0, 2, 2, 0, 1, 2, 0, 2, 0, 0, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 1, 0, 0, 2, 2, 1, 0, 0,

1, 1, 0, 2, 0, 2, 0, 0, 1, 0, 2, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 2, 2, 0, 1, 1, 0, 2, 1, 2, 0, 1, 0, 0, 1,

2, 1, 1, 0, 1, 0, 2, 2, 1, 0, 1, 1, 2, 1, 0, 2, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 2, 2, 1, 0,

0, 1, 2, 2, 2, 1, 1, 1, 0, 2, 1, 0, 2, 2, 2, 2, 0, 0, 1, 2, 2, 2, 2, 2, 0, 2, 2, 1, 0, 1, 2, 0, 0, 2, 0,

0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 2, 0, 2, 1, 1, 0, 0, 2, 1, 1, 1,

0, 2, 2, 0, 1, 1, 1, 2, 0, 1, 0, 2, 1, 2, 1, 0, 2, 0, 1, 1, 2, 2, 0, 0, 2, 1, 0, 2, 0, 2, 2, 2, 1, 0, 0,

1, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 0, 0, 1, 0, 0, 0, 1,

0, 2, 1, 0, 2, 2, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 1,

1, 0, 2, 0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 0, 1, 2, 2, 2, 0, 1, 1, 2, 0, 2, 1, 0, 0, 2, 1, 0,
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1, 1, 2, 1, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 2, 0, 1, 2, 2, 0, 1, 0, 2, 2, 0, 1, 1, 2, 2, 0, 2, 1, 0, 1,

0, 1, 2, 0, 1, 1, 2, 1, 2, 2, 0, 2, 0, 0, 2, 0, 1, 2, 1, 2, 2, 0, 0, 0, 2, 2, 0, 2, 2, 1, 2, 2, 2, 0, 1,

0, 0, 0, 2, 2, 2, 0, 0, 2, 1, 0, 0, 1, 2, 2, 2, 2, 0, 2, 1, 0, 0, 2, 1, 0, 1, 2, 1, 1, 2, 1, 0, 0, 0, 2,

1, 0, 1, 0, 1, 1, 2, 2, 0, 2, 1, 1, 2, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 2, 1, 0, 2, 0, 1, 1, 2, 0, 2, 2,

2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 0, 0, 0, 2, 0, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0

contain these respective amounts of 0, 1, and 2: 161, 174, 169

There is a second peculiarity of the engine RNG: two seeds sharing the same low k bits generate

sequences of 28-bits integers which are identical modulo 2^k! In particular after setting the

seed, there are only 2 distinct sequences of parity bits for the integers generated by \pdfunifor⤸
mdeviate (2 to the power 28)...

In order to mitigate, \xintUniformDeviate currently only uses the seven high bits from the un-

derlying random stream, using multiple calls to \pdfuniformdeviate 128. From the Birthday Effect,

after about 2^{11} seeds one will likely pick a new one sharing its 22 low bits with an earlier one.

1. but as the final random integer is obtained by additional operations involving the range x

(currently a modulo operation), for odd ranges it is more difficult for bit correlations to

be seen,

2. anyway as they are only 2^{28} seeds in total, after only 2^{14} seeds it is likely to encounter

one already explored, and then random integers are identical, however complicated the RNG's

raw output is malaxed, and whatever the target range x. And 2^{14} is only eight times as large

as 2^{11}.

It would be nice if the engine provided some user interface for letting its RNG execute a given

number of iterations without the overhead of replicated executions of \pdfuniformdeviate. This

could help gain entropy and would reduce correlations across series from distinct seeds.

The description above summarizes parts of discussions held with Bruno Le Floch in May 2018 on
occasion of his LaTeX3 contributions related to this.

TEXhackers note: currently the implementation of \xintUniformDeviate consumes exactly 5 calls

to the engine primitive at each execution; the improved x/2^{56} non-uniformity could be obtained

with only 2 calls, but paranoïa about the phenonemon of seeds with common bits has led me to accept

the overhead of using the 7 high bits of 4 random 28bits integers, rather than one single 28bits

integer, or two, or three.
Timings indicate that one \xintUniformDeviate has a time cost about 13 times the one for one call

to the engine primitive (and not only 5, as the extra arithmetic expressions add overhead which is
more costly than the primitive itself). Except if the code using the pseudo-random number is very
short, this time penalty will prove in practice much less severe (and this is one important reason
why we opted for obtaining 28bits via the 7 high bits of 4 successive pseudo random numbers from
the engine primitive). For example let's raise 100 times a random integer to the tenth power: 45

\pdfsetrandomseed 12345678

\pdfresettimer\romannumeral\xintreplicate

{100}{\fdef\foo{\xintiiPow{\xintUniformDeviate{100000000}}{10}}}%

\the\dimexpr\pdfelapsedtime sp\relax\space (with \string\xintUniformDeviate)\newline

(last result: \foo)\newline

\pdfsetrandomseed 12345678

\pdfresettimer\romannumeral\xintreplicate

{100}{\fdef\foo{\xintiiPow{\pdfuniformdeviate 100000000}{10}}}%

\the\dimexpr\pdfelapsedtime sp\relax\space (with \string\pdfuniformdeviate)\newline

(last result: \foo)\par

0.04396pt (with \xintUniformDeviate)

(last result: 3613350655737796214900713110162983015171362952221525157584613965918429029376)

0.04375pt (with \pdfuniformdeviate)

(last result: 6625445910227856739067071963066183205761325943682291308182364687926259765625)

45 This is done on a 2.4GHz processor. Hmm... or on a 2.8GHz one, I should add some automatic recognition to the build process...
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TEXhackers note: the macros \xintRandomDigits or \xintiiRandRange, and their variants, as well

as the supporting macros for random() generate random decimal digits eight by eight as if using

\xintUniformDeviate{100000000}, but via a direct optimized call made possibly by the range being

a power of 10.
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7. Macros of the xintcore package
Package xintcore is automatically loaded by xint.

xintcore provides for big integers the four basic arithmetic operations (addition, subtraction,

multiplication, division), as well as powers and factorials.

In the descriptions of the macros {N} and {M} stand for (big) integers or macros f-expanding to

such big integers in strict format as described in subsection 5.4.

All macros require strict integer format on input and produce strict integer format on output,

except:+
{
• \xintiNum which converts to strict integer format an input in extended integer format, i.e.

admitting multiple leading plus or minus signs, then possibly leading zeroes, then digits,

• and \xintNum which is an alias for the former, which gets redefined by xintfrac to accept more

generally also decimal numbers or fractions as input and which truncates them to integers.

The ii in the names of the macros such as \xintiiAdd serves to stress that they accept only

strict integers as input (this is signaled by the margin annotation f), or macros f-expanding to

such strict format (big) integers and that they produce strict integers as output.

Other macros, such as \xintDouble, lack the ii, but this is only a legacy of the history of the

package and they have the same requirements for input and format of output as the ii-macros.

The letter x (with margin annotation
num
x ) stands for an argument which will be handled embedded

in \numexpr..\relax. It will thus be completely expanded and must give an integer obeying the TEX

bounds. See also subsection 5.6. This is the case for the argument of \xintiiFac or the exponent

argument of \xintiiPow.

The ★'s in the margin are there to remind of the complete expandability, even f-expandability
of the macros, as discussed in subsubsection 5.3.1.

.1 \xintiNum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

.2 \xintDouble . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

.3 \xintHalf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

.4 \xintInc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.5 \xintDec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.6 \xintDSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.7 \xintDSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.8 \xintDSRr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.9 \xintFDg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.10 \xintLDg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.11 \xintiiSgn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.12 \xintiiOpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.13 \xintiiAbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.14 \xintiiAdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.15 \xintiiCmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.16 \xintiiSub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

.17 \xintiiMul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

.18 \xintiiSqr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

.19 \xintiiPow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

.20 \xintiiFac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

.21 \xintiiDivision . . . . . . . . . . . . . . . . . . . . . . . 78

.22 \xintiiQuo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

.23 \xintiiRem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

.24 \xintiiDivRound . . . . . . . . . . . . . . . . . . . . . . . 79

.25 \xintiiDivTrunc . . . . . . . . . . . . . . . . . . . . . . . 79

.26 \xintiiDivFloor . . . . . . . . . . . . . . . . . . . . . . . 79

.27 \xintiiMod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

.28 \xintNum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1. \xintiNum
\xintiNum{N} removes chains of plus or minus signs, followed by zeroes.f ★
\xintiNum{+---++----+--000000000367941789479}

-367941789479

7.2. \xintDouble
\xintDouble{N} computes 2N.f ★

7.3. \xintHalf
\xintHalf{N} computes N/2 truncated towards zero.f ★
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7.4. \xintInc
\xintInc{N} evaluates N+1.f ★

7.5. \xintDec
\xintDec{N} evaluates N-1.f ★

7.6. \xintDSL
\xintDSL{N} is decimal shift left, i.e. multiplication by ten.f ★

7.7. \xintDSR
\xintDSR{N} is truncated decimal shift right, i.e. it is the truncation of N/10 towards zero.f ★

7.8. \xintDSRr
\xintDSRr{N} is rounded decimal shift right, i.e. it is the rounding of N/10 away from zero. It isf ★
needed in xintcore for use by \xintiiDivRound.

7.9. \xintFDg
\xintFDg{N} outputs the first digit (most significant) of the number.f ★

7.10. \xintLDg
\xintLDg{N} outputs the least significant digit. When the number is positive, this is the same asf ★
the remainder in the Euclidean division by ten.

7.11. \xintiiSgn
\xintiiSgn{N} returns 1 if the number is positive, 0 if it is zero and -1 if it is negative.f ★

7.12. \xintiiOpp
\xintiiOpp{N} outputs the opposite -N of the number N.f ★

Important note: an input such as -\foo is not legal, generally speaking, as argument to the

macros of the xint bundle (except, naturally in \xintexpr-essions). The reason is that the minus

sign stops the f-expansion done during parsing of the inputs. One must use the syntax \xintiiOpp{⤸
\foo} if one wants to pass -\foo as argument to other macros.

7.13. \xintiiAbs
\xintiiAbs{N} outputs the absolute value of the number.f ★

7.14. \xintiiAdd
\xintiiAdd{N}{M} computes the sum of the two (big) integers.f f ★

7.15. \xintiiCmp
\xintiiCmp{N}{M} produces 1 if N>M, 0 if N=M, and -1 if N<M.f f ★

At 1.2l this macro was moved from package xint to xintcore.
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7.16. \xintiiSub
\xintiiSub{N}{M} computes the difference N-M.f f ★

7.17. \xintiiMul
\xintiiMul{N}{M} computes the product of two (big) integers.f f ★

7.18. \xintiiSqr
\xintiiSqr{N} produces the square.f ★

7.19. \xintiiPow
\xintiiPow{N}{x} computes N^x. For x=0, this is 1. For N=0 and x<0, or if |N|>1 and x<0, an errorf

num
x ★

is raised. There will also be an error if x exceeds the maximal 𝜀-TEX number 2147483647, but the

real limit for exponents comes from either the computation time or the settings of some TEX memory

parameters.

Indeed, the maximal power of 2 which xint is able to compute explicitely is 2^(2^17)=2^131072

which has 39457 digits. This exceeds the maximal size on input for the xintcore multiplication,

hence any 2^N with a higher N will fail. On the other hand 2^(2^16) has 19729 digits, thus it

can be squared once to obtain 2^(2^17) or multiplied by anything smaller, thus all exponents

up to and including 2^17 are allowed (because the power operation works by squaring things and

making products).

7.20. \xintiiFac
\xintiiFac{x} computes the factorial.

num
x ★

The (theoretically) allowable range is 0 ⩽ x ⩽ 10000.

However the maximal possible computation depends on the values of some memory parameters of

the tex executable: with the current default settings of TeXLive 2015, the maximal computable

factorial (a.t.t.o.w. 2015/10/06) turns out to be 5971! which has 19956 digits.

The factorial function, or equivalently ! as post-fix operator is available in \xintiiexpr,
\xintexpr:
\printnumber{\xinttheiiexpr 200!\relax}\par

78865786736479050355236321393218506229513597768717326329474253324435944996340334292030428401⤸
19846239041772121389196388302576427902426371050619266249528299311134628572707633172373969889⤸
43922445621451664240254033291864131227428294853277524242407573903240321257405579568660226031⤸
90417032406235170085879617892222278962370389737472000000000000000000000000000000000000000000⤸
0000000

See also \xintFloatFac from package xintfrac for the float variant, used in \xintfloatexpr.

7.21. \xintiiDivision
\xintiiDivision{M}{N} produces {quotient}{remainder}, in the sense of (mathematical) Euclideanf f ★
division: M = QN + R, 0 ≤ R < |N|. So the remainder is always non-negative and the formula M = ⤸
QN + R always holds independently of the signs of N or M. Division by zero is an error (even if M

vanishes) and returns {0}{0}.
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7.22. \xintiiQuo
\xintiiQuo{M}{N} computes the quotient from the Euclidean division.f f ★

7.23. \xintiiRem
\xintiiRem{M}{N} computes the remainder from the Euclidean division.f f ★

7.24. \xintiiDivRound
\xintiiDivRound{M}{N} returns the rounded value of the algebraic quotient M/N of two big integers.f f ★
The rounding is ``away from zero.''
\xintiiDivRound {100}{3}, \xintiiDivRound {101}{3}

33, 34

7.25. \xintiiDivTrunc
\xintiiDivTrunc{M}{N} computes trunc(M/N). For positive arguments M, N > 0 it is the same as thef f ★
Euclidean quotient \xintiiQuo.
\xintiiQuo{1000}{57} (Euclidean), \xintiiDivTrunc{1000}{57} (truncated),

\xintiiDivRound{1000}{57} (rounded)\newline

\xintiiQuo{-1000}{57}, \xintiiDivTrunc{-1000}{57} (t), \xintiiDivRound{-1000}{57} (r)\newline

\xintiiQuo{1000}{-57}, \xintiiDivTrunc{1000}{-57} (t), \xintiiDivRound{1000}{-57} (r)\newline

\xintiiQuo{-1000}{-57}, \xintiiDivTrunc{-1000}{-57} (t), \xintiiDivRound{-1000}{-57} (r)\par

17 (Euclidean), 17 (truncated), 18 (rounded)

-18, -17 (t), -18 (r)

-17, -17 (t), -18 (r)

18, 17 (t), 18 (r)

7.26. \xintiiDivFloor
\xintiiDivFloor{M}{N} computes floor(M/N). For positive divisor N > 0 and arbitrary dividend M itf f ★
is the same as the Euclidean quotient \xintiiQuo.
\xintiiQuo{1000}{57} (Euclidean), \xintiiDivFloor{1000}{57} (floored)\newline

\xintiiQuo{-1000}{57}, \xintiiDivFloor{-1000}{57}\newline

\xintiiQuo{1000}{-57}, \xintiiDivFloor{1000}{-57}\newline

\xintiiQuo{-1000}{-57}, \xintiiDivFloor{-1000}{-57}\par

17 (Euclidean), 17 (floored)

-18, -18

-17, -18

18, 17

7.27. \xintiiMod
\xintiiMod{M}{N} computes M - N ∗ floor(M/N). For positive divisor N > 0 and arbitrary dividend Mf f ★
it is the same as the Euclidean remainder \xintiiRem.

Formerly, this macro computed M - N ∗ trunc(M/N). The former meaning is retained as \xintiiMod-
Trunc.
\xintiiRem {1000}{57} (Euclidean), \xintiiMod {1000}{57} (floored),

\xintiiModTrunc {1000}{57} (truncated)\newline

\xintiiRem {-1000}{57}, \xintiiMod {-1000}{57}, \xintiiModTrunc {-1000}{57}\newline

\xintiiRem {1000}{-57}, \xintiiMod {1000}{-57}, \xintiiModTrunc {1000}{-57}\newline

\xintiiRem {-1000}{-57}, \xintiiMod {-1000}{-57}, \xintiiModTrunc {-1000}{-57}\par

31 (Euclidean), 31 (floored), 31 (truncated)

26, 26, -31

79



TOC, xint bundle, xintkernel, xintcore , xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac, xinttools, xintexpr, Examples

31, -26, 31

26, -31, -31

7.28. \xintNum
\xintNum is originally an alias for \xintiNum. But with xintfrac loaded its meaning is modified tof ★
accept more general inputs. It then becomes an alias to \xintTTrunc which truncates the general

input to an integer in strict format.
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8. Macros of the xint package
This package loads automatically xintcore (and xintkernel) hence all macros described in section 7

are still available.

This is 1.4b of 2020/02/25.

Version 1.0 was released 2013/03/28. Since 1.1 2014/10/28 the core arithmetic macros have been

moved to a separate package xintcore, which is automatically loaded by xint. Only the \xintiiSum,

\xintiiPrd, \xintiiSquareRoot, \xintiiPFactorial, \xintiiBinomial genuinely add to the arith-

metic macros from xintcore. (\xintiiFac which computes factorials is already in xintcore.)

With the exception of \xintLen, of the «Boolean logic macros» (see next paragraphs) all macros

require inputs being integers in strict format, see subsection 5.4.46 The ii in the macro names is

here as a reminder of that fact. The output is an integer in strict format, or a pair of two braced

such integers for \xintiiSquareRoot, with the exception of \xintiiE which may produce strings of

zero's if its first argument is zero.

Macros \xintDecSplit and \xintReverseDigits are non-arithmetic and have their own specific

rules.

For all macros described here for which it makes sense, package xintfrac defines a similar one

without ii in its name. This will handle more general inputs: decimal, scientific numbers, frac-

tions. The ii macros provided here by xint can be nested inside macros of xintfrac but the opposite

does not apply, because the output format of the xintfrac macros, even for representing integers,

is not understood by the ii macros. The «Boolean macros» \xintAND etc... are exceptions though,

they work fine if served as inputs some xintfrac output, despite doing only f-expansion. Prior to

1.2o, these macros did apply the \xintNum or the more general xintfrac general parsing, but this

overhead was deemed superfluous as it serves only to handle hand-written input and is not needed

if the input is obtained as a nested chain of xintfrac macros for example.

Prior to release 1.2o, xint defined additional macros which applied \xintNum to their input

arguments. All these macros were deprecated at 1.2o and have been removed at 1.3.

At 1.3d macros \xintiiGCD and \xintiiLCM from package xintgcd are also available from loading

xint only. They are support macros for the (multi-arguments) functions gcd() and lcm() in \xint-

iiexpr.

See subsubsection 5.3.1 for the significance of the
Num
f , f,

num
x and ★ margin annotations.

.1 \xintiLen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

.2 \xintReverseDigits . . . . . . . . . . . . . . . . . . . . 82

.3 \xintDecSplit . . . . . . . . . . . . . . . . . . . . . . . . . 82

.4 \xintDecSplitL, \xintDecSplitR . . . . . . . 83

.5 \xintiiE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

.6 \xintDSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

.7 \xintDSHr, \xintDSx . . . . . . . . . . . . . . . . . . . 83

.8 \xintiiEq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

.9 \xintiiNotEq . . . . . . . . . . . . . . . . . . . . . . . . . . 83

.10 \xintiiGeq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

.11 \xintiiGt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

.12 \xintiiLt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

.13 \xintiiGtorEq . . . . . . . . . . . . . . . . . . . . . . . . . 84

.14 \xintiiLtorEq . . . . . . . . . . . . . . . . . . . . . . . . . 84

.15 \xintiiIsZero . . . . . . . . . . . . . . . . . . . . . . . . . 84

.16 \xintiiIsNotZero . . . . . . . . . . . . . . . . . . . . . . 84

.17 \xintiiIsOne . . . . . . . . . . . . . . . . . . . . . . . . . . 84

.18 \xintiiOdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

.19 \xintiiEven . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

.20 \xintiiMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

.21 \xintiiMMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

.22 \xintiiifSgn . . . . . . . . . . . . . . . . . . . . . . . . . . 84

.23 \xintiiifZero . . . . . . . . . . . . . . . . . . . . . . . . . 84

.24 \xintiiifNotZero . . . . . . . . . . . . . . . . . . . . . . 85

.25 \xintiiifOne . . . . . . . . . . . . . . . . . . . . . . . . . . 85

.26 \xintiiifCmp . . . . . . . . . . . . . . . . . . . . . . . . . . 85

.27 \xintiiifEq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

.28 \xintiiifGt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

.29 \xintiiifLt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

.30 \xintiiifOdd . . . . . . . . . . . . . . . . . . . . . . . . . . 85

.31 \xintiiSum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

.32 \xintiiPrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

.33 \xintiiSquareRoot . . . . . . . . . . . . . . . . . . . . . 86

.34 \xintiiSqrt, \xintiiSqrtR . . . . . . . . . . . . . 86

.35 \xintiiBinomial . . . . . . . . . . . . . . . . . . . . . . . 86

.36 \xintiiPFactorial . . . . . . . . . . . . . . . . . . . . . 87

.37 \xintiiMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

.38 \xintiiMin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
46 of course for conditionals such as \xintiiifCmp this constraint
applies only to the first two arguments.
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.39 \xintiiMaxof . . . . . . . . . . . . . . . . . . . . . . . . . . 88

.40 \xintiiMinof . . . . . . . . . . . . . . . . . . . . . . . . . . 88

.41 \xintifTrueAelseB . . . . . . . . . . . . . . . . . . . . . 88

.42 \xintifFalseAelseB . . . . . . . . . . . . . . . . . . . . 88

.43 \xintNOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

.44 \xintAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

.45 \xintOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

.46 \xintXOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

.47 \xintANDof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

.48 \xintORof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

.49 \xintXORof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

.50 \xintiiGCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

.51 \xintiiLCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

.52 \xintiiGCDof . . . . . . . . . . . . . . . . . . . . . . . . . . 89

.53 \xintiiLCMof . . . . . . . . . . . . . . . . . . . . . . . . . . 90

.54 \xintLen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

.55 (WIP) \xintRandomDigits . . . . . . . . . . . . . . 90

.56 (WIP) \xintXRandomDigits . . . . . . . . . . . . . 90

.57 (WIP) \xintiiRandRange . . . . . . . . . . . . . . . 91

.58 (WIP) \xintiiRandRangeAtoB . . . . . . . . . . . 91

8.1. \xintiLen
\xintiLen{N} returns the length of the number, after its parsing via \xintiNum. The count does not

Num
f ★

include the sign.
\xintiLen{-12345678901234567890123456789}

29

Prior to 1.2o, the package defined only \xintLen, which is extended by xintfrac to fractions or

decimal numbers, hence acquires a bit more overhead then.

8.2. \xintReverseDigits
3.60004pt, 8.39996pt, 12.0pt

\xintReverseDigits{N} will reverse the order of the digits of the number. \xintRev is the formerf ★
denomination and is kept as an alias. Leading zeroes resulting from the operation are not removed.

Contrarily to \xintReverseOrder this macro f-expands its argument; it is only usable with digit

tokens. It does not apply \xintNum to its argument (so this must be done explicitely if the argument

is an integer produced from some xintfrac macros). It does accept a leading minus sign which will

be left upfront in the output.
\oodef\x{\xintReverseDigits

{98765432109876543210987654321098765432109876543210}}\meaning\x\par

\noindent\oodef\x{\xintReverseDigits {\xintReverseDigits

{98765432109876543210987654321098765432109876543210}}}\meaning\x\par

macro:->01234567890123456789012345678901234567890123456789

macro:->98765432109876543210987654321098765432109876543210

8.3. \xintDecSplit
\xintDecSplit{x}{N} cuts the N (a list of digits) into two pieces L and R: it outputs {L}{R} where

num
x f ★

the original N is the concatenation LR. These two pieces are decided according to x:

• for x>0, R coincides with the x least significant digits. If x equals or exceeds the length of

N the first piece L will thus be empty,
• for x=0, R is empty, and L is all of N,

• for x<0, the first piece L consists of the |x| most significant digits and the second piece R

gets the remaining ones. If x equals or exceeds the length of N the second piece R will thus be

empty.
This macro provides public interface to some functionality which is primarily of internal in-

terest. It operates only (after f-expansion) on ``strings'' of digits tokens: leading zeroes are

allowed but a leading sign (even a minus sign) will provoke an error.

Breaking change with 1.2i: formerly N<0 was replaced by its absolute value. Now, a sign (positive

or negative) will create an error.
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8.4. \xintDecSplitL, \xintDecSplitR
\xintDecSplitL{x}{N} returns the first piece (unbraced) from the \xintDecSplit output.

num
x f ★

\xintDecSplitR{x}{N} returns the second piece (unbraced) from the \xintDecSplit output.
num
x f ★

8.5. \xintiiE
\xintiiE{N}{x} serves to extend N with x zeroes. The parameter x must be non-negative. The samef

num
x ★

output would be obtained via \xintDSH{-x}{N}, except for N=0, as \xintDSH{-x}{N} multiplies N by
10^x hence produces 0 if N=0 whereas \xintiiE{0}{x} produces x+1 zeros.
\xintiiE {0}{91}\par

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

8.6. \xintDSH
\xintDSH{x}{N} is parametrized decimal shift. When x is negative, it is like iterating \xintDSL

num
x f ★

|x| times (i.e. multiplication by 10-x). When x positive, it is like iterating \xintDSR x times

(and is more efficient), and for a non-negative N this is thus the same as the quotient from the

Euclidean division by 10^x.

8.7. \xintDSHr, \xintDSx
\xintDSHr{x}{N} expects x to be zero or positive and it returns then a value R which is correlated

num
x f ★

to the value Q returned by \xintDSH{x}{N} in the following manner:

• if N is positive or zero, Q and R are the quotient and remainder in the Euclidean division by

10^x (obtained in a more efficient manner than using \xintiiDivision),

• if N is negative let Q1 and R1 be the quotient and remainder in the Euclidean division by 10 ⤸̂
x of the absolute value of N. If Q1 does not vanish, then Q=-Q1 and R=R1. If Q1 vanishes, then

Q=0 and R=-R1.

• for x=0, Q=N and R=0.

So one has N = 10^x Q + R if Q turns out to be zero or positive, and N = 10^x Q - R if Q turns out

to be negative, which is exactly the case when N is at most -10^x.

\xintDSx{x}{N} for x negative is exactly as \xintDSH{x}{N}, i.e. multiplication by 10-x. For x
num
x f ★

zero or positive it returns the two numbers {Q}{R} described above, each one within braces. So Q

is \xintDSH{x}{N}, and R is \xintDSHr{x}{N}, but computed simultaneously.

8.8. \xintiiEq
\xintiiEq{N}{M} returns 1 if N=M, 0 otherwise.f f ★

8.9. \xintiiNotEq
\xintiiNotEq{N}{M} returns 0 if N=M, 1 otherwise.f f ★

8.10. \xintiiGeq
\xintiiGeq{N}{M} returns 1 if the absolute value of the first number is at least equal to thef f ★
absolute value of the second number. If |N|<|M| it returns 0.

Important: the macro compares absolute values.

8.11. \xintiiGt
\xintiiGt{N}{M} returns 1 if N>M, 0 otherwise.f f ★
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8.12. \xintiiLt
\xintiiLt{N}{M} returns 1 if N<M, 0 otherwise.f f ★

8.13. \xintiiGtorEq
\xintiiGtorEq{N}{M} returns 1 if N⩾M, 0 otherwise. Extended by xintfrac to fractions.f f ★

8.14. \xintiiLtorEq
\xintiiLtorEq{N}{M} returns 1 if N⩽M, 0 otherwise.f f ★

8.15. \xintiiIsZero
\xintiiIsZero{N} returns 1 if N=0, 0 otherwise.f ★

8.16. \xintiiIsNotZero
\xintiiIsNotZero{N} returns 1 if N!=0, 0 otherwise.f ★

8.17. \xintiiIsOne
\xintiiIsOne{N} returns 1 if N=1, 0 otherwise.f ★

8.18. \xintiiOdd
\xintiiOdd{N} is 1 if the number is odd and 0 otherwise.f ★

8.19. \xintiiEven
\xintiiEven{N} is 1 if the number is even and 0 otherwise.f ★

8.20. \xintiiMON
\xintiiMON{N} computes (-1)^N.f ★
\xintiiMON {-280914019374101929}

-1

8.21. \xintiiMMON
\xintiiMMON{N} computes (-1)^{N-1}.f ★
\xintiiMMON {280914019374101929}

1

8.22. \xintiiifSgn
\xintiiifSgn{⟨N⟩}{⟨A⟩}{⟨B⟩}{⟨C⟩} executes either the ⟨A⟩, ⟨B⟩ or ⟨C⟩ code, depending on its firstf n n n ★
argument being respectively negative, zero, or positive.

8.23. \xintiiifZero
\xintiiifZero{⟨N⟩}{⟨IsZero⟩}{⟨IsNotZero⟩} expandably checks if the first mandatory argument N (af n n ★
number, possibly a fraction if xintfrac is loaded, or a macro expanding to one such) is zero or

not. It then either executes the first or the second branch.

Beware that both branches must be present.
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8.24. \xintiiifNotZero
\xintiiifNotZero{⟨N⟩}{⟨IsNotZero⟩}{⟨IsZero⟩} expandably checks if the first mandatory argument Nf n n ★
is not zero or is zero. It then either executes the first or the second branch.

Beware that both branches must be present.

8.25. \xintiiifOne
\xintiiifOne{⟨N⟩}{⟨IsOne⟩}{⟨IsNotOne⟩} expandably checks if the first mandatory argument N is onef n n ★
or not one. It then either executes the first or the second branch. Beware that both branches must

be present.

8.26. \xintiiifCmp
\xintiiifCmp{⟨A⟩}{⟨B⟩}{⟨A<B⟩}{⟨A=B⟩}{⟨A>B⟩} compares its first two arguments and chooses accord-f f n n n ★
ingly the correct branch.

8.27. \xintiiifEq
\xintiiifEq{⟨A⟩}{⟨B⟩}{⟨A=B⟩}{⟨not(A=B)⟩} checks equality of its two first arguments and executesf f n n ★
the corresponding branch.

8.28. \xintiiifGt
\xintiiifGt{⟨A⟩}{⟨B⟩}{⟨A>B⟩}{⟨not(A>B)⟩} checks if A > B and executes the corresponding branch.f f n n ★

8.29. \xintiiifLt
\xintiiifLt{⟨A⟩}{⟨B⟩}{⟨A<B⟩}{⟨not(A<B)⟩} checks if A < B and executes the corresponding branch.f f n n ★

8.30. \xintiiifOdd
\xintiiifOdd{⟨A⟩}{⟨A odd⟩}{⟨A even⟩} checks if A is and odd integer and executes the correspondingf n n ★
branch.

8.31. \xintiiSum
\xintiiSum{⟨braced things⟩} after expanding its argument expects to find a sequence of tokens (or*f ★
braced material). Each is f-expanded, and the sum of all these numbers is returned.
\xintiiSum{{123}{-98763450}{\xintiiFac{7}}{\xintiiMul{3347}{591}}}\newline

\xintiiSum{1234567890}\newline

\xintiiSum{1234}\newline

\xintiiSum{}

-96780210

45

10

0

A sum with only one term returns that number: \xintiiSum {{-1234}}=-1234. Attention that \xint⤸
iiSum {-1234} is not legal input and would make the TEX run fail.
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8.32. \xintiiPrd
\xintiiPrd{⟨braced things⟩} after expanding its argument expects to find a sequence of (of braced*f ★
items or unbraced single tokens). Each is expanded (with the usual meaning), and the product of
all these numbers is returned.
\xintiiPrd{{-9876}{\xintiiFac{7}}{\xintiiMul{3347}{591}}}\newline

\xintiiPrd{123456789123456789}\newline

\xintiiPrd {1234}\newline

\xintiiPrd{}

-98458861798080

131681894400

24

1
Attention that \xintiiPrd {-1234} is not legal input and would make the TEX compilation fail.
$2^{200}3^{100}7^{100}=\printnumber

{\xintiiPrd {{\xintiiPow {2}{200}}{\xintiiPow {3}{100}}{\xintiiPow {7}{100}}}}$

220031007100 = 2678727931661577575766279517007548402324740266374015348974459614815426412965499⤸
49000044400724076572713000016531207640654562118014357199401590334353924402821243896682224892⤸
7862988084382716133376

With xintexpr, the syntax is the natural one:
$2^{200}3^{100}7^{100}=\printnumber{\xinttheiiexpr 2^200 * 3^100 * 7^100\relax}$

220031007100 = 2678727931661577575766279517007548402324740266374015348974459614815426412965499⤸
49000044400724076572713000016531207640654562118014357199401590334353924402821243896682224892⤸
7862988084382716133376

8.33. \xintiiSquareRoot
\xintiiSquareRoot{N} returns two braced integers {M}{d} which satisfy d>0 and M^2-d=N with M thef ★
smallest (hence if N=k^2 is a perfect square then M=k+1, d=2k+1).
\xintAssign\xintiiSquareRoot {17000000000000000000000000}\to\A\B

\xintiiSub{\xintiiSqr\A}\B=\A\string^2-\B

17000000000000000000000000=4123105625618^2-2799177881924

A rational approximation to
√
N is M - d

2M which is a majorant and the error is at most 1/2M (if N

is a perfect square k^2 this gives k+1/(2k+2), not k.)

Package xintfrac has \xintFloatSqrt for square roots of floating point numbers.

8.34. \xintiiSqrt, \xintiiSqrtR
\xintiiSqrt{N} computes the largest integer whose square is at most equal to N. \xintiiSqrtR pro-f ★
duces the rounded, not truncated, square root.f ★
\begin{itemize}[nosep]

\item \xintiiSqrt {3000000000000000000000000000000000000}

\item \xintiiSqrtR {3000000000000000000000000000000000000}

\item \xintiiSqrt {\xintiiE {3}{100}}

\end{itemize}

• 1732050807568877293

• 1732050807568877294

• 173205080756887729352744634150587236694280525381038

8.35. \xintiiBinomial
\xintiiBinomial{x}{y} computes binomial coefficients.

num
x

num
x ★

If x<0 an out-of-range error is raised. Else, if y<0 or if x<y the macro evaluates to 0.
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The allowable range is 0 ⩽ x ⩽ 99999999. But this theoretical range includes binomial coeffi-

cients with more than the roughly 19950 digits that the arithmetics of xint can handle. In such

cases, the computation will end up in a low-level TEX error after a long time.

It turns out that
(65000
32500

)
has 19565 digits and

(64000
32000

)
has 19264 digits. The latter can be evaluated

(this takes a long long time) but presumably not the former (I didn't try). Reasonable feasible

evaluations are with binomial coefficients not exceeding about one thousand digits.
The binomial function is available in the xintexpr parsers.
\xinttheiiexpr seq(binomial(100,i), i=47..53)\relax

84413487283064039501507937600, 93206558875049876949581681100, 98913082887808032681188722800,

100891344545564193334812497256, 98913082887808032681188722800, 93206558875049876949581681100,

84413487283064039501507937600

See \xintFloatBinomial from package xintfrac for the float variant, used in \xintfloatexpr.
In order to evaluate binomial coefficients

(x
y

)
with x > 99999999, or even x ⩾ 231, but y is not

too large, one may use an ad hoc function definition such as:
\xintdeffunc mybigbinomial(x,y):=`*`(x-y+1..[1]..x)//y!;%

% without [1], x would have been limited to < 2^31

\printnumber{\xinttheexpr mybigbinomial(98765432109876543210,10)\relax}

24338098741940755592729533173058146177070669479669793038510211146784065843698581878582323710⤸
27360575372715482389633359878460739973726786576925067784100587971261422326652270975592667517⤸
4871960261

To get this functionality in macro form, one can do:
\xintNewIIExpr\MyBigBinomial [2]{`*`(#1-#2+1..[1]..#1)//#2!}

\printnumber{\MyBigBinomial {98765432109876543210}{10}}

24338098741940755592729533173058146177070669479669793038510211146784065843698581878582323710⤸
27360575372715482389633359878460739973726786576925067784100587971261422326652270975592667517⤸
4871960261

As we used \xintNewIIExpr, this macro will only accept strict integers. Had we used \xintNewExpr

the \MyBigBinomial would have accepted general fractions or decimal numbers, and computed the

product at the numerator without truncating them to integers; but the factorial at the denominator

would truncate its argument.

8.36. \xintiiPFactorial
\xintiiPFactorial{a}{b} computes the partial factorial (a+1)(a+2)...b. For a=b the product is

num
x

num
x ★

considered empty hence returns 1.

The allowed range is -100000000 ⩽ a, b ⩽ 99999999. The rule is to interpret the formula as the

product of the j's such that a < j ⩽ b, hence in particular if a ⩾ b the product is empty and the

macro evaluates to 1.

Only for 0 ⩽ a ⩽ b is the behaviour to be considered stable. For a > b or negative arguments, the

definitive rules have not yet been fixed.
\xintiiPFactorial {100}{130}

69293021885203871012298422845822803287591970060789350400000000

This theoretical range allows computations whose result values would have more than the roughly

19950 digits that the arithmetics of xint can handle. In such cases, the computation will end up

in a low-level TEX error after a long time.
The pfactorial function is available in the xintexpr parsers.
\xinttheiiexpr pfactorial(100,130)\relax

69293021885203871012298422845822803287591970060789350400000000

See \xintFloatPFactorial from package xintfrac for the float variant, used in \xintfloatexpr.
In case values are needed with b > 99999999, or even b ⩾ 231, but b - a is not too large, one may

use an ad hoc function definition such as:
\xintdeffunc mybigpfac(a,b):=`*`(a+1..[1]..b);%

% without [1], b would have been limited to < 2^31

\printnumber{\xinttheexpr mybigpfac(98765432100,98765432120)\relax}
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78000855017567528067298107313023778438653002029049647467208196028116499434050587656870489322⤸
99630604482236853566403912561449912587404607844104078121472675461815442734098676283450069933⤸
322948600573016997034009566576640000

8.37. \xintiiMax
\xintiiMax{N}{M} returns the largest of the two in the sense of the order structure on the relativef f ★
integers (i.e. the right-most number if they are put on a line with positive numbers on the right):

\xintiiMax {-5}{-6}=-5.

8.38. \xintiiMin
\xintiiMin{N}{M} returns the smallest of the two in the sense of the order structure on the rel-f f ★
ative integers (i.e. the left-most number if they are put on a line with positive numbers on the

right): \xintiiMin {-5}{-6}=-6.

8.39. \xintiiMaxof
\xintiiMaxof{{a}{b}{c}...} returns the maximum. The list argument may be a macro, it is f-expandedf→ * f ★
first.

8.40. \xintiiMinof
\xintiiMinof{{a}{b}{c}...} returns the minimum. The list argument may be a macro, it is f-expandedf→ * f ★
first.

8.41. \xintifTrueAelseB
\xintifTrueAelseB{⟨f ⟩}{⟨true branch⟩}{⟨false branch⟩} is a synonym for \xintiiifNotZero.f n n ★
\xintiiifnotzero is lowercase companion macro.

Note 1: as it does only f-expansion on its argument it fails with inputs such as --0. But with

xintfrac loaded, it does work fine if nested with other xintfrac macros, because the output format

of such macros is fine as input to \xintiiifNotZero. This remark applies to all other «Boolean

logic» macros next.

Note 2: prior to 1.2o this macro was using \xintifNotZero which applies \xintNum to its argument

(or gets redefined by xintfrac to handle general decimal numbers or fractions). Hence it would

have worked with input such as --0. But it was decided at 1.2o that the overhead was not worth it.

The same remark applies to the other «Boolean logic» type macros next.

8.42. \xintifFalseAelseB
\xintifFalseAelseB{⟨f ⟩}{⟨false branch⟩}{⟨true branch⟩} is a synonym for \xintiiifZero.f n n ★
\xintiiifzero is lowercase companion macro.

8.43. \xintNOT
\xintNOT is a synonym for \xintiiIsZero.f ★
\xintiiiszero serves as lowercase companion macro.

8.44. \xintAND
\xintAND{f}{g} returns 1 if f!=0 and g!=0 and 0 otherwise.f f ★
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8.45. \xintOR
\xintOR{f}{g} returns 1 if f!=0 or g!=0 and 0 otherwise.f f ★

8.46. \xintXOR
\xintXOR{f}{g} returns 1 if exactly one of f or g is true (i.e. non-zero), else 0.f f ★

8.47. \xintANDof
\xintANDof{{a}{b}{c}...} returns 1 if all are true (i.e. non zero) and 0 otherwise. The list ar-f→ * f ★
gument may be a macro, it (or rather its first token) is f-expanded first to deliver its items.

8.48. \xintORof
\xintORof{{a}{b}{c}...} returns 1 if at least one is true (i.e. does not vanish), else it producesf→ * f ★
0. The list argument may be a macro, it is f-expanded first.

8.49. \xintXORof
\xintXORof{{a}{b}{c}...} returns 1 if an odd number of them are true (i.e. do not vanish), else itf→ * f ★
produces 0. The list argument may be a macro, it is f-expanded first.

8.50. \xintiiGCD
\xintiiGCD{N}{M} computes the greatest common divisor. It is positive, except when both N and Mf f ★
vanish, in which case the macro returns zero.

\xintiiGCD{10000}{1113}=1

\xintiiGCD{123456789012345}{9876543210321}=3

At 1.3d, this macro (which is used by the gcd() function in \xintiiexpr) was copied over to xint,

thus removing a partial dependency of xintexpr on xintgcd.

At 1.4 xintgcd requires xint and the latter is thus the one providing the macro.

8.51. \xintiiLCM
\xintiiLCM{N}{M} computes the least common multiple. It is positive, except if one of N or M van-f f ★
ish, in which case the macro returns zero.

\xintiiLCM{10000}{1113}=11130000

\xintiiLCM{123456789012345}{9876543210321}=406442103762636081733470915

At 1.3d, this macro (which is used by the lcm() function in \xintiiexpr) was copied over to xint,

thus removing a partial dependency of xintexpr on xintgcd.

At 1.4 xintgcd requires xint and the latter is thus the one providing the macro.

8.52. \xintiiGCDof
\xintiiGCDof{{a}{b}{c}...} computes the greatest common divisor of the integers a, b, .... It isf→ *f ★
a support macro for the gcd() function of the \xintiiexpr parser.

It replaces the \xintGCDof which was formerly provided by xintgcd and is now available via xint-

frac in a version handling also fractions.
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8.53. \xintiiLCMof
\xintiiLCMof{{a}{b}{c}...} computes the least common multiple of the integers a, b, .... It is af→ *f ★
support macro for the lcm() function of the \xintiiexpr parser.

It replaces the \xintLCMof which was formerly provided by xintgcd and is now available via xint-

frac in a version handling also fractions.

8.54. \xintLen
\xintLen is originally an alias for \xintiLen. But with xintfrac loaded its meaning is modified

Num
f ★

to accept more general inputs.

8.55. (WIP) \xintRandomDigits

All randomness related macros are Work-In-Progress: implementation and user interface may

change. They work only if the TEX engine provides the \uniformdeviate or \pdfuniformdeviate

primitive. See \xintUniformDeviate for additional information.

\xintRandomDigits{N} expands in two steps to N random decimal digits. The argument must be non-
num
x ★

negative and is limited by TEX memory parameters. On TEXLive 2018 with input save stack size at 5000
the maximal allowed N is at most 19984 (tested within a \write to an auxiliary file, the macro
context may cause a reduced maximum).
\pdfsetrandomseed 271828182

\xintRandomDigits{92}

60033782389146151207277993539344280578090871919638745398735577686436165769394958639376355806

TEXhackers note: the digits are produced eight by eight by the same method which would result

from \xintUniformDeviate{100000000} but with less overhead.

8.56. (WIP) \xintXRandomDigits
\xintXRandomDigits{N} expands under exhaustive expansion (\edef, \write, \csname ...) to N random

num
x I

decimal digits. The argument must be non-negative. For example:
\newwrite\out

\immediate\openout\out=\jobname-out.txt

\immediate\write\out{\xintXRandomDigits{4500000}}

\immediate\closeout\out

creates a 4500001 bytes file (it ends with a line feed character). Trying with 5000000 raises this
error:
Runaway text?

588875947168511582764514135070217555354479805240439407753451354223283\ETC.

! TeX capacity exceeded, sorry [main memory size=5000000].

<inserted text> 666515098

l.15 ...ate\write\out{\xintXRandomDigits{5000000}}

No pages of output.

Transcript written on temp.log.

This can be lifted by increasing the TEX memory settings (installation dependent).

TEXhackers note: the digits are produced eight by eight by the same method which would result

from \xintUniformDeviate{100000000} but with less overhead.
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8.57. (WIP) \xintiiRandRange
\xintiiRandRange{A} expands to a random (big) integer N such that 0<=N<A. It is a supporting macrof ★
for randrange(). As with Python's function of the same name, it is an error if A<=0.
\pdfsetrandomseed 271828314

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\newline

\xintiiRandRange{\xintNum{1e40}}\newline

\pdfsetrandomseed 271828314

\xinttheiiexpr randrange(num(1e40))\relax\newline % bare 1e40 not understood by \xintiiexpr

\pdfsetrandomseed 271828314

\xinttheexpr randrange(1e40)\relax

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1408107837990425263001878034077495278697

1408107837990425263001878034077495278697

1408107837990425263001878034077495278697

Of course, keeping in mind that the set of seeds is of cardinality 2^{28}, randomness is a bit

illusory here say with A=10^N, N>8, if we proceed immediately after having set the seed. If we add

some entropy in any way, then it is slightly more credible; but I think that for each seed the period

is something like 2^{27}(2^{55}-1)55,47 so we expect at most about 2^{110}55 ``points in time'',

and this is already small compared to the 10^40 from example above. Thus already we are very far

from being intrinsically able to generate all numbers with fourty digits as random numbers, and

this makes the previous section about usage of \xintXRandomDigits to generate millions of digits

a bit comical...

TEXhackers note: the digits are produced eight by eight by the same method which would result

from \xintUniformDeviate{100000000} but with less overhead.

8.58. (WIP) \xintiiRandRangeAtoB
\xintiiRandRangeAtoB{A}{B} expands to a random (big) integer N such that A<=N<B. It is a support-f f ★
ing macro for randrange(). As with Python's function of the same name, it is an error if B<=A.

\pdfsetrandomseed 271828314

12345678911111111111111111111\newline

\xintiiRandRangeAtoB{12345678911111111111111111111}{12345678922222222222222222222}\newline

\pdfsetrandomseed 271828314

\def\test{%

\xinttheiiexpr randrange(12345678911111111111111111111,12345678922222222222222222222)\relax}%

\romannumeral\xintreplicate{10}{\test\newline}%

12345678922222222222222222222

12345678911111111111111111111

12345678916037426188606389808

12345678916037426188606389808

12345678916060337223949101536

12345678912190033095886250034

12345678917323740152668511995

12345678915424847208552293485

12345678921595726610650510660

12345678911673261982088192858

12345678911339325803675947159

12345678917791540296982027151

12345678913602899909728811895

12345678922222222222222222222

47 Compare the result of exercise 3.2.2-30 in TAOCP, vol II.
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TEXhackers note: the digits are produced eight by eight by the same method which would result

from \xintUniformDeviate{100000000} but with less overhead.
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9. Macros of the xintfrac package
First version of this package was in release 1.03 (2013/04/14) of the xint bundle.

At release 1.3 (2018/02/28) the behaviour of \xintAdd (and of \xintSub) was modified: when

adding a/b and c/d they will use always the least common multiple of the denominators. This helps

limit the build-up of denominators, but the author still hesitates if the fraction should be re-

duced to smallest terms. The current method allows (for example when multiplying two polynomials)

to keep a well-predictable denominator among various terms, even though some may be reducible.

xintfrac loads automatically xintcore and xint and inherits their macro definitions. Only these

two are redefined: \xintNum and \xintLen. As explained in subsection 5.4 and subsection 5.5 the

interchange format for the xintfrac macros, i.e. A/B[N], is not understood by the ii-named macros

of xintcore/xint which expect the so-called strict integer format. Hence, to use such an ii-macro

with an output from an xintfrac macro, an extra \xintNum wrapper is required. But macros already

defined by xintfrac cover most use cases hence this should be a rarely needed.

In the macro descriptions, the variable f and the margin indicator stand for the xintfrac input
Frac
f

format for integers, scientific numbers, and fractions as described in subsection 5.4.

As in the xint.sty documentation, x stands for something which internally will be handled in a
num
x

\numexpr. It may thus be an expression as understood by \numexpr but its evaluation and interme-

diate steps must obey the TEX bound.

The output format for most macros is the A/B[N] format but naturally the float macros use the

scientific notation on output. And some macros are special, for example \xintTrunc produces dec-

imal numbers, \xintIrr produces an A/B with no [N], \xintiTrunc and \xintiRound produce integers

without trailing [N] either, etc...

1.3a belatedly adds documentation for some macros such as \xintDivFloor which had been defined

long ago, but did not make it to the user manual for various reasons, one being that it is thought

few users will use directly the xintfrac macros, the \xintexpr interface being more convenient.

For complete documentation refer to sourcexint.pdf.

.1 \xintNum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

.2 \xintRaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

.3 \xintNumerator . . . . . . . . . . . . . . . . . . . . . . . . 94

.4 \xintDenominator . . . . . . . . . . . . . . . . . . . . . . 95

.5 \xintRawWithZeros . . . . . . . . . . . . . . . . . . . . . 95

.6 \xintREZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

.7 \xintIrr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

.8 \xintPIrr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

.9 \xintJrr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

.10 \xintPRaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

.11 \xintFracToSci, \xintFracToSciE . . . . . . 96

.12 \xintDecToString . . . . . . . . . . . . . . . . . . . . . . 97

.13 \xintTrunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

.14 \xintXTrunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

.15 \xintTFrac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

.16 \xintRound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

.17 \xintFloor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

.18 \xintCeil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

.19 \xintiTrunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

.20 \xintTTrunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

.21 \xintiRound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

.22 \xintiFloor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

.23 \xintiCeil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

.24 \xintE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

.25 \xintCmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

.26 \xintEq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

.27 \xintNotEq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.28 \xintGeq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.29 \xintGt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.30 \xintLt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.31 \xintGtorEq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.32 \xintLtorEq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.33 \xintIsZero . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.34 \xintIsNotZero . . . . . . . . . . . . . . . . . . . . . . . . 104

.35 \xintIsOne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.36 \xintOdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.37 \xintEven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.38 \xintifSgn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.39 \xintifZero . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.40 \xintifNotZero . . . . . . . . . . . . . . . . . . . . . . . . 105

.41 \xintifOne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

.42 \xintifOdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

.43 \xintifCmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

.44 \xintifEq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

.45 \xintifGt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

.46 \xintifLt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

.47 \xintifInt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

.48 \xintSgn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

93



TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac, xinttools, xintexpr, Examples

.49 \xintOpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

.50 \xintAbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

.51 \xintAdd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

.52 \xintSub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

.53 \xintMul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

.54 \xintDiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

.55 \xintDivFloor . . . . . . . . . . . . . . . . . . . . . . . . . 106

.56 \xintMod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

.57 \xintDivMod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

.58 \xintDivTrunc . . . . . . . . . . . . . . . . . . . . . . . . . 106

.59 \xintModTrunc . . . . . . . . . . . . . . . . . . . . . . . . . 106

.60 \xintDivRound . . . . . . . . . . . . . . . . . . . . . . . . . 107

.61 \xintSqr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

.62 \xintPow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

.63 \xintFac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

.64 \xintBinomial . . . . . . . . . . . . . . . . . . . . . . . . . 107

.65 \xintPFactorial . . . . . . . . . . . . . . . . . . . . . . . 107

.66 \xintMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

.67 \xintMin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

.68 \xintMaxof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

.69 \xintMinof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

.70 \xintSum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

.71 \xintPrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

.72 \xintGCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

.73 \xintLCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

.74 \xintGCDof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

.75 \xintLCMof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

.76 \xintDigits, \xinttheDigits . . . . . . . . . . 109

.77 \xintSetDigits . . . . . . . . . . . . . . . . . . . . . . . . 109

.78 \xintFloat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

.79 \xintPFloat, \xintPFloatE . . . . . . . . . . . . . 111

.80 \xintFloatE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

.81 \xintFloatAdd . . . . . . . . . . . . . . . . . . . . . . . . . 112

.82 \xintFloatSub . . . . . . . . . . . . . . . . . . . . . . . . . 112

.83 \xintFloatMul . . . . . . . . . . . . . . . . . . . . . . . . . 112

.84 \xintFloatDiv . . . . . . . . . . . . . . . . . . . . . . . . . 113

.85 \xintFloatPow . . . . . . . . . . . . . . . . . . . . . . . . . 113

.86 \xintFloatPower . . . . . . . . . . . . . . . . . . . . . . . 113

.87 \xintFloatSqrt . . . . . . . . . . . . . . . . . . . . . . . . 114

.88 \xintFloatFac . . . . . . . . . . . . . . . . . . . . . . . . . 115

.89 \xintFloatBinomial . . . . . . . . . . . . . . . . . . . . 115

.90 \xintFloatPFactorial . . . . . . . . . . . . . . . . . 115

.91 \xintFrac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

.92 \xintSignedFrac . . . . . . . . . . . . . . . . . . . . . . . 116

.93 \xintFwOver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

.94 \xintSignedFwOver . . . . . . . . . . . . . . . . . . . . . 116

.95 \xintLen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.1. \xintNum
The original \xintNum from xint is made a synonym to \xintTTrunc (whose description is to be found

Frac
f ★

farther in this section).

Attention that for example \xintNum{1e100000} expands to the needed 100001 digits...

The original \xintNum from xintcore which does not understand the fraction slash or the scien-

tific notation is still available under the name \xintiNum.

9.2. \xintRaw
This macro `prints' the fraction f as it is received by the package after its parsing and expansion,

Frac
f ★

in a form A/B[N] equivalent to the internal representation: the denominator B is always strictly
positive and is printed even if it has value 1.
\xintRaw{\the\numexpr 571*987\relax.123e-10/\the\numexpr-201+59\relax e-7}

-563577123/142[-6]
No simplification is done, not even of common zeroes between numerator and denominator:
\xintRaw {178000/25600000}

178000/25600000[0]

9.3. \xintNumerator
The input data is parsed as if by \xintRaw into A/B[N] format and the macro outputs A if N<=0, or A

Frac
f ★

extended by N zeroes if N>0.
\xintNumerator {178000/25600000[17]}\newline

\xintNumerator {312.289001/20198.27}\newline

\xintNumerator {178000e-3/256e5}\newline

\xintNumerator {178.000/25600000}

17800000000000000000000

312289001
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178000

178000

9.4. \xintDenominator
The input data is parsed as if by \xintRaw into A/B[N] format and the macro outputs B if N>0, or B

Frac
f ★

extended by |N| zeroes if N<=0.
\xintDenominator {178000/25600000[17]}\newline

\xintDenominator {312.289001/20198.27}\newline

\xintDenominator {178000e-3/256e5}\newline

\xintDenominator {178.000/25600000}

25600000

20198270000

25600000000

25600000000

9.5. \xintRawWithZeros
This macro parses the input and outputs A/B, with A as would be returned by \xintNumerator{f} and

Frac
f ★

B as would be returned by \xintDenominator{f}.
\xintRawWithZeros{178000/25600000[17]}\newline

\xintRawWithZeros{312.289001/20198.27}\newline

\xintRawWithZeros{178000e-3/256e5}\newline

\xintRawWithZeros{178.000/25600000}\newline

\xintRawWithZeros{\the\numexpr 571*987\relax.123e-10/\the\numexpr-201+59\relax e-7}

17800000000000000000000/25600000

312289001/20198270000

178000/25600000000

178000/25600000000

-563577123/142000000

9.6. \xintREZ
The input is first parsed into A/B[N] as by \xintRaw, then trailing zeroes of A and B are suppressed

Frac
f ★

and N is accordingly adjusted.
\xintREZ {178000/25600000[17]}

178/256[15]

This macro is used internally by various other constructs; its implementation was redone en-

tirely at 1.3a, and it got faster on long inputs.

9.7. \xintIrr
This puts the fraction into its unique irreducible form:

Frac
f ★

\xintIrr {178.256/256.1780}, \xintIrr {178000/25600000[17]}

6856/9853, 695312500000000/1

The current implementation does not cleverly first factor powers of 2 and 5, and \xintIrr {2/3⤸
[100]} will execute the Euclidean division of 2.10^{100} by 3, which is a bit stupid as it could

have known that the 100 trailing zeros can not bring any divisibility by 3.

Starting with release 1.08, \xintIrr does not remove the trailing /1 when the output is an inte-

ger. This was deemed better for various (questionable?) reasons, anyway the output format is since

always A/B with B>0, even in cases where it turns out that B=1. Use \xintPRaw on top of \xintIrr if

it is needed to get rid of such a trailing /1.
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9.8. \xintPIrr
This puts the fraction into irreducible form, keeping as is the decimal part [N] from raw internal

Frac
f ★

A/B[N] format. (P stands here for Partial)
\xintPIrr {178.256/256.1780}, \xintPIrr {178000/25600000[17]}

3428/49265[1], 89/12800[17]

Notice that the output always has the ending [N], which is exactly the opposite of \xintIrr's

behaviour. The interest of this macro is mainly in handling fractions which somehow acquired a big

[N] (perhaps from input in scientific notation) and for which the reduced fraction would have a

very large number of digits. This large number of digits can considerably slow-down computations

done afterwards.

For example package polexpr uses \xintPIrr when differentiating a polynomial, or in setting up

a Sturm chain for localization of the real roots of a polynomial. This is relevant to polynomials

whose coefficients were input in decimal notation, as this automatically creates internally some

[N]. Keeping and combining those [N]'s during computations significantly increases their speed.

9.9. \xintJrr
This also puts the fraction into its unique irreducible form:

Frac
f ★

\xintJrr {178.256/256.178}

6856/9853
This is (supposedly, not tested for ages) faster than \xintIrr for fractions having some big

common factor in the numerator and the denominator.
\xintJrr {\xintiiPow{\xintiiFac {15}}{3}/%

\xintiiPrd{{\xintiiFac{10}}{\xintiiFac{30}}{\xintiiFac{5}}}}

1001/51705840

But to notice the difference one would need computations with much bigger numbers than in this

example. As \xintIrr, \xintJrr does not remove the trailing /1 from a fraction reduced to an inte-

ger.

9.10. \xintPRaw
PRaw stands for ``pretty raw''. It does like \xintRaw apart from removing the [N] part if N=0 and

Frac
f ★

removing the B if B=1.
\xintPRaw {123e10/321e10}, \xintPRaw {123e9/321e10}, \xintPRaw {\xintIrr{861/123}}

123/321, 123/321[-1], 7

9.11. \xintFracToSci, \xintFracToSciE
\xintFracToSci is not really part of public interface. It is a macro used by \xintexpr and \xint-New with

1.4 iexpr for output.

It is expandable but not f-expandable.I
It has specific rules regarding the input format: it expects it argument (after f-expanding it)

to already be either in raw xintfrac format A/B[N] (with optional denominator and [N] parts) or in

decimal format A.ddd...ddd. It does not accept scientific notation as input (or rather, the e in

input must be of catcode 12).
Its output uses scientific notation (dropping unit demoninator or zero exponent -- but not (as

alas I have to tell the whole truth) in case input was itself in scientific notation), except for
decimal numbers. The latter pass through ``as is''.
\xintFracToSci {\xintRaw{123e10/321e10}},

\xintFracToSci {\xintRaw{123e9/321e10}},

\xintFracToSci {\xintIrr{861/123}},

\xintFracToSci {\xintTrunc{12}{1/3}}
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123/321, 123e-1/321, 7, 0.333333333333

Not being f-expandable it can not be used as argument to the other package macros without being

wrapped in \expanded{...}.
\xintFracToSciE says what to use for the scientific notation, its default definition isNew with

1.4 \def\xintFracToSciE{e}

9.12. \xintDecToString
This is a macro tailored for printing decimal numbers. It does not trim trailing zeros, use \xint⤸

Frac
f ★

DecToString{\xintREZ{<foo>}} for that.
\xintDecToString {123456789e5}\newline

\xintDecToString {123456789e-5}\newline

\xintDecToString {12345e-10}\newline

\xintDecToString {12345e-10/123}\newline % leaves the denominator as is

\xintDecToString {1234567890000e-6}\newline % does not trim trailing zeros

\xintDecToString {\xintREZ{1234567890000e-6}}\par % does trim trailing zeros

12345678900000

1234.56789

0.0000012345

0.0000012345/123

1234567.890000

1234567.89

Consider it an unstable macro, what it does exactly is yet to be decided. It is a backport from

polexpr's \PolDecToString, which has now been made an alias to it.

9.13. \xintTrunc
\xintTrunc{x}{f} returns the start of the decimal expansion of the fraction f, truncated to:

num
x

Frac
f ★

• if x>0, x digits after the decimal mark,

• if x=0, an integer,

• if x<0, an integer multiple of 10^{-x} (in scientific notation).New with
1.4a

The output is the sole digit token 0 if and only if the input was exactly zero; else it contains

always either a decimal mark (even if x=0) or a scientific part and it conserves the sign of f (even

if the truncated value represents the zero value).
Truncation is done towards zero.
\xintFor* #1 in {\xintSeq[-1]{7}{-14}}:{\xintTrunc{#1}{-11e12/7}\newline}%

\xintTrunc{10}{1e-11}\newline

\xintTrunc{10}{1/65536}\par

-1571428571428.5714285

-1571428571428.571428

-1571428571428.57142

-1571428571428.5714

-1571428571428.571

-1571428571428.57

-1571428571428.5

-1571428571428.

-157142857142e1

-15714285714e2

-1571428571e3

-157142857e4

-15714285e5

-1571428e6
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-157142e7

-15714e8

-1571e9

-157e10

-15e11

-1e12

-0e13

-0e14

0.0000000000

0.0000152587

Warning: it is not yet decided is the current behaviour is definitive.
Currently xintfrac has no notion of a positive zero or a negative zero. Hence transitivity

of \xintTrunc is broken for the case where the first truncation gives on output 0.00...0 or -

0.00...0: a second truncation to less digits will then output 0, whereas if it had been applied

directly to the initial input it would have produced 0.00...0 or respectively -0.00...0 (with

less zeros after decimal mark).

If xintfrac distinguished zero, positive zero, and negative zero then it would be possible

to maintain transitivity.

The problem would also be fixed, even without distinguishing a negative zero on input, if

\xintTrunc always produced 0.00...0 (with no sign) when the mathematical result is zero, dis-

carding the information on original input being positive, zero, or negative.

I have multiple times hesitated about what to do and must postpone again final decision.

9.14. \xintXTrunc
\xintXTrunc{x}{f} is similar to \xintTrunc with the following important differences:

num
x

Frac
f I

• it is completely expandable but not f-expandable, as is indicated by the hollow star in the

margin,

• hence it can not be used as argument to the other package macros, but as it f-expands its {f}

argument, it accepts arguments expressed with other xintfrac macros,

• it requires x>0,

• contrarily to \xintTrunc the number of digits on output is not limited to about 19950 and may

go well beyond 100000 (this is mainly useful for outputting a decimal expansion to a file),

• when the mathematical result is zero, it always prints it as 0.00...0 or -0.00...0 with x zeros

after the decimal mark.

Warning: transitivity is broken too (see discussion of \xintTrunc), due to the sign in the last

item. Hence the definitive policy is yet to be fixed.
Transitivity is here in the sense of using a first \edef and then a second one, because it is

not possible to nest \xintXTrunc directly as argument to itself. Besides, although the number of

digits on output isn't limited, nevertheless x should be less than about 19970 when the number of

digits of the input (assuming it is expressed as a decimal number) is even bigger: \xintXTrunc{⤸
30000}{\Z} after \edef\Z{\xintXTrunc{60000}{1/66049} raises an error in contrast with a direct

\xintXTrunc{30000}{1/66049}. But \xintXTrunc{30000}{123.456789} works, because here the number

of digits originally present is smaller than what is asked for, thus the routine only has to add

trailing zeros, and this has no limitation (apart from TEX main memory).

\xintXTrunc will expand fully in an \edef or a \write (\message, \wlog, ...) or in an \xint-

expr-ession, or as list argument to \xintFor*.

Here is an example session where the user checks that the decimal expansion of 1/66049 = 1/2572

has the maximal period length 257 ∗ 256 = 65792 (this period length must be a divisor of 𝜙(66049)
and to check it is the maximal one it is enough to show that neither 32896 nor 256 are periods.)
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$ rlwrap etex -jobname worksheet-66049

This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016) (preloaded format=etex)

restricted \write18 enabled.

**xintfrac.sty

entering extended mode

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xintfrac.sty

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xint.sty

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xintcore.sty

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xintkernel.sty))))

*% we load xinttools for \xintKeep, etc... \xintXTrunc itself has no more

*% any dependency on xinttools.sty since 1.2i

*\input xinttools.sty

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xinttools.sty)

*\def\m#1;{\message{#1}}

*\m \the\numexpr 257*257\relax;

66049

*\m \the\numexpr 257*256\relax;

65792

*% Thus 1/66049 will have a period length dividing 65792.

*% Let us first check it is indeed periodical.

*\edef\Z{\xintXTrunc{66000}{1/66049}}

*% Let's display the first decimal digits.

*\m \xintXTrunc{208}{\Z};

0.00001514027464458205271843631243470756559523989765174340262532362337052794137

6856576178291874214598252812306015231116292449545034746930309315810988811337037

6538630410755651107511090251177156353616254598858423

*% let's now fetch the trailing digits

*\m \xintKeep{65792-66000}{\Z};% 208 trailing digits

0000151402746445820527184363124347075655952398976517434026253236233705279413768

5657617829187421459825281230601523111629244954503474693030931581098881133703765

38630410755651107511090251177156353616254598858423

*% yes they match! we now check that 65792/2 and 65792/257=256 aren't periods.

*\m \xintXTrunc{256}{\Z};

0.00001514027464458205271843631243470756559523989765174340262532362337052794137

6856576178291874214598252812306015231116292449545034746930309315810988811337037

6538630410755651107511090251177156353616254598858423291798513225029902042423049

554118911717058547442

*\m \xintXTrunc{256+256}{\Z};

0.00001514027464458205271843631243470756559523989765174340262532362337052794137

6856576178291874214598252812306015231116292449545034746930309315810988811337037

6538630410755651107511090251177156353616254598858423291798513225029902042423049

5541189117170585474420505987978621932201850141561567926842192917379521264515738

3154930430438008145467758785144362518736089872670290239064936637950612424109373

3440324607488379839210283274538600130206361943405653378552286938485064119063119
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8049932625777831609865402958409665551333

*% now with 65792/2=32896. Problem: we can't do \xintXTrunc{32896+100}{\Z}

*% but only direct \xintXTrunc{32896+100}{1/66049}. Anyway we want to nest it

*% hence let's do it all with (slower) \xintKeep, \xintKeepUnbraced.

*\m \xintKeep {-100}{\xintKeepUnbraced{2+65792/2+100}{\Z}};

9999848597253554179472815636875652924344047601023482565973746763766294720586231

434238217081257854017

*% This confirms 32896 isn't a period length.

*% To conclude let's write the 66000 digits to the log.

*\wlog{\Z}

*% We want always more digits:

*\wlog{\xintXTrunc{150000}{1/66049}}

*\bye

The acute observer will have noticed that there is something funny when one compares the first
digits with those after the middle-period:
0000151402746445820527184363124347075655952398976517434026253236233705279413768...

9999848597253554179472815636875652924344047601023482565973746763766294720586231...

Mathematical exercise: can you explain why the two indeed add to 9999...9999?
You can try your hands at this simpler one:
1/49=\xintTrunc{42+5}{1/49}...\newline

\xintTrim{2}{\xintTrunc{21}{1/49}}\newline

\xintKeep{-21}{\xintTrunc{42}{1/49}}

1/49=0.02040816326530612244897959183673469387755102040...

020408163265306122448

979591836734693877551

This was again an example of the type 1/N with N the square of a prime. One can also find counter-

examples within this class: 1/31^2 and 1/37^2 have an odd period length (465 and respectively 111)

hence they can not exhibit the symmetry.

Mathematical challenge: prove generally that if the period length of the decimal expansion

of 1/p^r (with p a prime distinct from 2 and 5 and r a positive exponent) is even, then the

previously observed symmetry about the two halves of the period adding to a string of nine's

applies.

9.15. \xintTFrac
\xintTFrac{f} returns the fractional part, f=trunc(f)+frac(f). Thus if f<0, then -1<frac(f)<=0

Frac
f ★

and if f>0 one has 0<= frac(f)<1. The T stands for `Trunc', and there should exist also simi-

lar macros associated respectively with `Round', `Floor', and `Ceil', each type of rounding to

an integer deserving arguably to be associated with a fractional ``modulo''. By sheer laziness,

the package currently implements only the ``modulo'' associated with `Truncation'. Other types

of modulo may be obtained more cumbersomely via a combination of the rounding with a subsequent

subtraction from f.

Notice that the result is filtered through \xintREZ, and will thus be of the form A/B[N], where

neither A nor B has trailing zeros. But the output fraction is not reduced to smallest terms.
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The function call in expressions (\xintexpr, \xintfloatexpr) is frac. Inside \xintexpr..\rela⤸
x, the function frac is mapped to \xintTFrac. Inside \xintfloatexpr..\relax, frac first applies
\xintTFrac to its argument (which may be an exact fraction with more digits than the floating
point precision) and only in a second stage makes the conversion to a floating point number with
the precision as set by \xintDigits (default is 16).
\xintTFrac {1235/97}, \xintTFrac {-1235/97}\newline

\xintTFrac {1235.973}, \xintTFrac {-1235.973}\newline

\xintTFrac {1.122435727e5}\par

71/97[0], -71/97[0]

973/1[-3], -973/1[-3]

5727/1[-4]

9.16. \xintRound
\xintRound{x}{f} returns the start of the decimal expansion of the fraction f, rounded to:

num
x

Frac
f ★

• if x>0, x digits after the decimal mark,

• if x=0, an integer,

• if x<0, an integer multiple of 10^{-x} (in scientific notation).New with
1.4a The output is the sole digit token 0 if and only if the input was exactly zero; else it contains

always either a decimal mark (even if x=0) or a scientific part and it conserves the sign of f (even
if the rounded value represents the zero value).
\xintFor* #1 in {\xintSeq[-1]{7}{-14}}:{\xintRound{#1}{-11e12/7}\newline}%

\xintRound{10}{1e-11}\newline

\xintRound{10}{1/65536}\newline

-1571428571428.5714286

-1571428571428.571429

-1571428571428.57143

-1571428571428.5714

-1571428571428.571

-1571428571428.57

-1571428571428.6

-1571428571429.

-157142857143e1

-15714285714e2

-1571428571e3

-157142857e4

-15714286e5

-1571429e6

-157143e7

-15714e8

-1571e9

-157e10

-16e11

-2e12

-0e13

-0e14

0.0000000000

0.0000152588

Rounding is done with half-way numbers going towards infinity of the same sign.

9.17. \xintFloor
\xintFloor {f} returns the largest relative integer N with N ⩽ f.

Frac
f ★
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\xintFloor {-2.13}, \xintFloor {-2}, \xintFloor {2.13}

-3/1[0], -2/1[0], 2/1[0] Note the trailing [0], see \xintiFloor if it is not desired.

9.18. \xintCeil
\xintCeil {f} returns the smallest relative integer N with N > f.

Frac
f ★

\xintCeil {-2.13}, \xintCeil {-2}, \xintCeil {2.13}

-2/1[0], -2/1[0], 3/1[0]

9.19. \xintiTrunc
\xintiTrunc{x}{f} returns the integer equal to 10^x times what \xintTrunc{x}{f} would produce.

num
x

Frac
f ★

Attention that leading zeros are automatically removed: the output is in strict integer format.
\xintFor* #1 in {\xintSeq[-1]{7}{-14}}:{\xintiTrunc{#1}{-11e12/7}\newline}%

\xintiTrunc{10}{1e-11}\newline

\xintiTrunc{10}{1/65536}\par

-15714285714285714285

-1571428571428571428

-157142857142857142

-15714285714285714

-1571428571428571

-157142857142857

-15714285714285

-1571428571428

-157142857142

-15714285714

-1571428571

-157142857

-15714285

-1571428

-157142

-15714

-1571

-157

-15

-1

0

0

0

152587

9.20. \xintTTrunc
\xintTTrunc{f} truncates to an integer (truncation towards zero). This is the same as \xintiTrun⤸

Frac
f ★

c {0}{f} and also the same as \xintNum.

9.21. \xintiRound
\xintiRound{x}{f} returns the integer equal to 10^x times what \xintRound{x}{f} would return. The

num
x

Frac
f ★

output has no leading zeroes, it is always in strict integer format.
\xintFor* #1 in {\xintSeq[-1]{7}{-14}}:{\xintiRound{#1}{-11e12/7}\newline}%

\xintiRound{10}{1e-11}\newline

\xintiRound{10}{1/65536}\par
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-15714285714285714286

-1571428571428571429

-157142857142857143

-15714285714285714

-1571428571428571

-157142857142857

-15714285714286

-1571428571429

-157142857143

-15714285714

-1571428571

-157142857

-15714286

-1571429

-157143

-15714

-1571

-157

-16

-2

0

0

0

152588

9.22. \xintiFloor
\xintiFloor {f} does the same as \xintFloor but without the trailing /1[0].

Frac
f ★

\xintiFloor {-2.13}, \xintiFloor {-2}, \xintiFloor {2.13}

-3, -2, 2

9.23. \xintiCeil
\xintiCeil {f} does the same as \xintCeil but its output is without the /1[0].

Frac
f ★

\xintiCeil {-2.13}, \xintiCeil {-2}, \xintiCeil {2.13}

-2, -2, 3

9.24. \xintE
\xintE {f}{x} multiplies the fraction f by 10x. The second argument x must obey the TEX bounds.

Frac
f

num
x ★

Example:
\count 255 123456789 \xintE {10}{\count 255}

10/1[123456789] Don't feed this example to \xintNum!

9.25. \xintCmp
This compares two fractions F and G and produces -1, 0, or 1 according to F<G, F=G, F>G.

Frac
f

Frac
f ★

For choosing branches according to the result of comparing f and g, see \xintifCmp.

9.26. \xintEq
\xintEq{f}{g} returns 1 if f=g, 0 otherwise.

Frac
f

Frac
f ★
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9.27. \xintNotEq
\xintNotEq{f}{g} returns 0 if f=g, 1 otherwise.

Frac
f

Frac
f ★

9.28. \xintGeq
This compares the absolute values of two fractions. \xintGeq{f}{g} outputs 1 if |f| ⩾ |g| and 0 if

Frac
f

Frac
f ★

not.

Important: the macro compares absolute values.

9.29. \xintGt
\xintGt{f}{g} returns 1 if f>g, 0 otherwise.

Frac
f

Frac
f ★

9.30. \xintLt
\xintLt{f}{g} returns 1 if f<g, 0 otherwise.

Frac
f

Frac
f ★

9.31. \xintGtorEq
\xintGtorEq{f}{g} returns 1 if f⩾g, 0 otherwise. Extended by xintfrac to fractions.

Frac
f

Frac
f ★

9.32. \xintLtorEq
\xintLtorEq{f}{g} returns 1 if f⩽g, 0 otherwise.

Frac
f

Frac
f ★

9.33. \xintIsZero
\xintIsZero{f} returns 1 if f=0, 0 otherwise.f ★

9.34. \xintIsNotZero
\xintIsNotZero{f} returns 1 if f!=0, 0 otherwise.f ★

9.35. \xintIsOne
\xintIsOne{f} returns 1 if f=1, 0 otherwise.f ★

9.36. \xintOdd
\xintOdd{f} returns 1 if the integer obtained by truncation is odd, and 0 otherwise.f ★

9.37. \xintEven
\xintEven{f} returns 1 if the integer obtained by truncation is even, and 0 otherwise.f ★

9.38. \xintifSgn
\xintifSgn{⟨f ⟩}{⟨A⟩}{⟨B⟩}{⟨C⟩} executes either the ⟨A⟩, ⟨B⟩ or ⟨C⟩ code, depending on its first

Frac
f n n n ★

argument being respectively negative, zero, or positive.

9.39. \xintifZero
\xintifZero{⟨f ⟩}{⟨IsZero⟩}{⟨IsNotZero⟩} expandably checks if the first mandatory argument N (a

Frac
f n n ★

number, possibly a fraction if xintfrac is loaded, or a macro expanding to one such) is zero or

not. It then either executes the first or the second branch.

Beware that both branches must be present.
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9.40. \xintifNotZero
\xintifNotZero{⟨N⟩}{⟨IsNotZero⟩}{⟨IsZero⟩} expandably checks if the first mandatory argument f

Frac
f n n ★

is not zero or is zero. It then either executes the first or the second branch.

Beware that both branches must be present.

9.41. \xintifOne
\xintifOne{⟨N⟩}{⟨IsOne⟩}{⟨IsNotOne⟩} expandably checks if the first mandatory argument f is one

Frac
f n n ★

or not one. It then either executes the first or the second branch. Beware that both branches must

be present.

9.42. \xintifOdd
\xintifOdd{⟨N⟩}{⟨odd⟩}{⟨not odd⟩} expandably checks if the first mandatory argument f, after

Frac
f n n ★

truncation to an integer, is odd or even. It then executes accordingly the first or the second

branch. Beware that both branches must be present.

9.43. \xintifCmp
\xintifCmp{⟨f ⟩}{⟨g⟩}{⟨if f<g⟩}{⟨if f=g⟩}{⟨if f>g⟩} compares its first two arguments and chooses

Frac
f

Frac
f n n n ★

accordingly the correct branch.

9.44. \xintifEq
\xintifEq{⟨f ⟩}{⟨g⟩}{⟨YES⟩}{⟨NO⟩} checks equality of its two first arguments and executes accord-

Frac
f

Frac
f n n ★

ingly the YES or the NO branch.

9.45. \xintifGt
\xintifGt{⟨f ⟩}{⟨g⟩}{⟨YES⟩}{⟨NO⟩} checks if f > g and in that case executes the YES branch.

Frac
f

Frac
f n n ★

9.46. \xintifLt
\xintifLt{⟨f ⟩}{⟨g⟩}{⟨YES⟩}{⟨NO⟩} checks if f < g and in that case executes the YES branch.

Frac
f

Frac
f n n ★

9.47. \xintifInt
\xintifInt{f}{YES branch}{NO branch} expandably chooses the YES branch if f reveals itself after

Frac
f n n ★

expansion and simplification to be an integer.

9.48. \xintSgn
The sign of a fraction.

Frac
f ★

9.49. \xintOpp
The opposite of a fraction. Note that \xintOpp {3} produces -3/1[0] whereas \xintiiOpp {3} pro-

Frac
f ★

duces -3.

9.50. \xintAbs
The absolute value. Note that \xintAbs {-2}=2/1[0] where \xintiiAbs {-2} outputs =2.

Frac
f ★
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9.51. \xintAdd
Computes the addition of two fractions.

Frac
f

Frac
f ★

Since 1.3 always uses the least common multiple of the denominators.

9.52. \xintSub
Computes the difference of two fractions (\xintSub{F}{G} computes F-G).

Frac
f

Frac
f ★

Since 1.3 always uses the least common multiple of the denominators.

9.53. \xintMul
Computes the product of two fractions.

Frac
f

Frac
f ★

Output is not reduced to smallest terms.

9.54. \xintDiv
Computes the quotient of two fractions. (\xintDiv{F}{G} computes F/G).

Frac
f

Frac
f ★

Output is not reduced to smallest terms.

9.55. \xintDivFloor
Computes the quotient of two arguments then apply floor function to get an integer (in strict

Frac
f

Frac
f ★

format). This macro was defined at 1.1 (but was left not documented until 1.3a...) and changed at
1.2p, formerly it appended /1[0] to output.
\xintDivFloor{-170/3}{23/2}

-5

9.56. \xintMod
Computes the remainder associated to the floored division \xintDivFloor. Prior to 1.2p the meaning

Frac
f

Frac
f ★

was the one of \xintModTrunc. Was left undocumented until 1.3a.
\xintMod{-170/3}{23/2}

5/6[0]

Modified at 1.3 to use a l.c.m. for the denominator of the result.

9.57. \xintDivMod
Computes both the floored division and the remainder \xintDivFloor. New at 1.2p and documented at

Frac
f

Frac
f ★

1.3a.
\oodef\foo{\xintDivMod{-170/3}{23/2}}\meaning\foo

macro:->{-5}{5/6[0]}

9.58. \xintDivTrunc
Computes the quotient of two arguments then truncates to an integer (in strict format).

Frac
f

Frac
f ★

\xintDivTrunc{-170/3}{23/2}

-4

9.59. \xintModTrunc
Computes the remainder associated with the truncated division of two arguments. Prior to 1.2p it

Frac
f

Frac
f ★

was named \xintMod, but the latter then got associated with floored division.
\xintModTrunc{-170/3}{23/2}

-64/6[0]

Modified at 1.3 to use a l.c.m. for the denominator of the result.
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9.60. \xintDivRound
Computes the quotient of the two arguments then rounds to an integer (in strict format).

Frac
f

Frac
f ★

\xintDivRound{-170/3}{23/2}

-5

9.61. \xintSqr
Computes the square of one fraction.

Frac
f ★

9.62. \xintPow
\xintPow{f}{x}: computes f^x with f a fraction and x possibly also, but x will first get truncated

Frac
f

Num
f ★

to a (positive or negative) integer.

The exponent x must obey the TeX-bound, but this limit is theoretical, as TEX's memory or ex-

pansion settings get saturated quite earlier: it is explained in the documentation of \xintiiPow

that the maximal power of 2 computable by xint is 2^131072 which has 39457 digits. Actually, the

pratical range is even smaller due to execution times.

The output will always be in the form A/B[n] (even if the exponent vanishes: \xintPow {2/3}{0⤸
}=1/1[0]).

Within an \xintiiexpr..\relax the infix operator ^ is mapped to \xintiiPow; within an \xint-

expr-ession it is mapped to \xintPow.

9.63. \xintFac
This is a convenience variant of \xintiiFac which applies \xintNum to its argument. Notice however

Num
f ★

that the output will have a trailing [0] according to the xintfrac format for integers.

9.64. \xintBinomial
This is a convenience variant of \xintiiBinomial which applies \xintNum to its arguments. Notice

Num
f

Num
f ★

however that the output will have a trailing [0] according to the xintfrac format for integers.

9.65. \xintPFactorial
This is a convenience variant of \xintiiPFactorial which applies \xintNum to its arguments. Notice

Num
f

Num
f ★

however that the output will have a trailing [0] according to the xintfrac format for integers.

9.66. \xintMax
The maximum of two fractions. Beware that \xintMax {2}{3} produces 3/1[0]. The original, for use

Frac
f

Frac
f ★

with integers only with no need of normalization, is available as \xintiiMax: \xintiiMax {2}{3}⤸
=3.f f ★
\xintMax {2.5}{7.2}

72/1[-1]

9.67. \xintMin
The minimum of two fractions. Beware that \xintMin {2}{3} produces 2/1[0]. The original, for use

Frac
f

Frac
f ★

with integers only with no need of normalization, is available as \xintiiMin: \xintiiMin {2}{3}⤸
=2.f f ★
\xintMin {2.5}{7.2}

25/1[-1]

107



TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac, xinttools, xintexpr, Examples

9.68. \xintMaxof
The maximum of any number of fractions, each within braces, and the whole thing within braces.f→ *

Frac
f ★

\xintMaxof {{1.23}{1.2299}{1.2301}} and \xintMaxof {{-1.23}{-1.2299}{-1.2301}}

12301/1[-4] and -12299/1[-4]

9.69. \xintMinof
The minimum of any number of fractions, each within braces, and the whole thing within braces.f→ *

Frac
f ★

\xintMinof {{1.23}{1.2299}{1.2301}} and \xintMinof {{-1.23}{-1.2299}{-1.2301}}

12299/1[-4] and -12301/1[-4]

9.70. \xintSum
This computes the sum of fractions. The output will now always be in the form A/B[n]. The original,f→ *

Frac
f ★

for big integers only (in strict format), is available as \xintiiSum.
\xintSum {{1282/2196921}{-281710/291927}{4028/28612}}

-5037928302100692/6116678670072468[0]

No simplification attempted.

9.71. \xintPrd
TThis computes the product of fractions. The output will now always be in the form A/B[n]. Thef→ *

Frac
f ★

original, for big integers only (in strict format), is available as \xintiiPrd.
\xintPrd {{1282/2196921}{-281710/291927}{4028/28612}}

-1454721142160/18350036010217404[0]

No simplification attempted.
$\xintIsOne {21921379213/21921379213}\neq\xintIsOne {1.00000000000000000000000000000001}$

1 ≠ 0

9.72. \xintGCD
The greatest common divisor of its two arguments, which are possibly fractions.

Frac
f

Frac
f ★

Prior to 1.4 a macro of the same name existed in xintgcd. But it truncated its two arguments to

integers via \xintNum.

See \xintiiGCD for the integer only variant.

9.73. \xintLCM
The least common multiple of its two arguments, which are possibly fractions.

Frac
f

Frac
f ★

Prior to 1.4 a macro of the same name existed in xintgcd. But it truncated its two arguments to

integers via \xintNum.

See \xintiiLCM for the integer only variant.

9.74. \xintGCDof
\xintGCDof{{a}{b}{c}...} computes the greatest common divisor of a, b, .... The arguments aref→ *

Frac
f ★

allowed to be fractions: the macro produces the non-negative generator of the fractional ideal

they generate. The list argument may be a macro as it is f-expanded first. If all arguments vanish,

then also the output.

Prior to 1.4 a macro of the same name existed in xintgcd. But it truncated all its arguments to

integers via \xintNum and then proceeded with integer only computations.

See \xintiiGCDof for the integer only variant (which is about 6X faster than this one for integer

arguments).
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9.75. \xintLCMof
\xintLCMof{{a}{b}{c}...} computes the least common multiple of a, b, .... The arguments are al-f→ *

Frac
f ★

lowed to be fractions: the macro produces the non-negative generator of the intersection of the

corresponding fractional ideals. The list argument may be a macro, it is f-expanded first. If one

of the item vanishes, then also the output.

Prior to 1.4 a macro of the same name existed in xintgcd. But it truncated all its arguments to

integers via \xintNum.

See \xintiiLCMof for the integer only variant (which is about 9X faster than this one for integer

arguments).

9.76. \xintDigits, \xinttheDigits
The syntax \xintDigits := D; assigns the value of D to the number of digits to be used by floating

point operations (this uses internally a \mathchardef assignement, and D stands for (or expands

to) a legal TEX number). The default is 16. The maximal value is 32767.

xintexpr adds the variant \xintDigits* which executes \xintreloadxinttrig.+
{

The expandable macro \xinttheDigits serves to retrieve (internally it uses \number) the current★
value.

Spaces do not matter as long as they do not occur in-between digits:
\xintDigits := 24;\xinttheDigits, %

\xintDigits:=36 ;\xinttheDigits, %

\xintDigits:= 16 ;and \xinttheDigits.

24, 36, and 16.

Also \xintDigits = D; (i.e. without a colon) is accepted syntax.

An ending active semi-colon ; is not compatible: it can and will cause low-level TEX errors. But

this has a trivial workaround: any non-expanding token can be used in place of the ending semi-

colon. For example a full stop or a \relax token. This non-expanding ending token will get removed

from the token stream.
The recommended syntax is thus now \xintDigits := D\relax (with or without the colon). This is

the syntax in use in most examples from the documentation.
\xintDigits = 24\def\xinttheDigits, % only for showing it works! don't do that!

\xintDigits := 36.\xinttheDigits, % one can use a dot in place of semi-colon

\xintDigits = 16\relax and \xinttheDigits.\par % with \relax, even better

24, 36, and 16.

9.77. \xintSetDigits
To be used as \xintSetDigits{⟨expression⟩} where the expression will be fed to \numexpr. It is a

num
x

shortcut for doing \xintDigits := \numexpr⟨expression⟩\relax \relax.
\xintSetDigits{1+2+3+4+5}The value is now \xinttheDigits.

\xintSetDigits{2*8}The value is now \xinttheDigits.\par

The value is now 15. The value is now 16.

See also the xintexpr-added variant \xintSetDigits*.

9.78. \xintFloat
The macro \xintFloat [P]{f} has an optional argument P which replaces the current value of \xintt⤸[

num
x ]

Frac
f ★

heDigits. The fraction f is then printed in scientific notation with a rounding to P digits.
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That is, on output: the first digit is from 1 to 9, it is possibly prefixed by a minus sign and

is followed by a dot and P-1 digits, then a lower case e and an exponent N. The trailing zeroes are

not trimmed.

There is currently one exceptional case: the zero value, which gets output as 0.e0. It is

yet to be decided what the final policy will be.

Starting with 1.2k, when the input is a fraction AeN/BeM the output always is the correct round-
ing to P digits. Formerly, this was guaranteed only when A and B had at most P+2 digits, or when B

was 1 and A was arbitrary, but in other cases it was only guaranteed that the difference between

the original fraction and the rounding was at most 0.6 unit in the last place (of the output), hence

the output could differ in the last digit (and earlier ones in case of chains of zeros or nines)

from the correct rounding.
Also: for releases 1.2j and earlier, in the special case when A/B ended up being rounded up to

the next power of ten, the output was with a mantissa of the shape 10.0...0eN. However, this worked
only for B=1 or when both A and B had at most P+2 digits, because the detection of the rounding-
up to next power of ten was done not on original A/B but on an approximation A'/B', and it could
happen that A'/B' was itself being rounded down to a power of ten which however was a rounding up
of original A/B. With the 1.2j refactoring which achieves correct rounding in all cases, it was
decided not to add to the code the extra overhead of detecting with 100% fiability the rounding up
to next power of ten (such overhead would necessitate alterations of the algorithm and as a result
we would end up with a slightly less efficient one; it would make sense in a model where inputs
have their intrinsic precisions which is obeyed by the implementation of the basic operations,
but currently the design decision for the floating point macros is that when the target precision
is P the inputs are rounded first to P digits before further processing.)
{\def\x{99999999999999994999999999999999/99999999999999999999999999999999}%

\xintFor #1 in {13, 14, 15, 16, 17, 18, 19, 47, 48, 49, 50, 79, 80, 81}

\do{#1: \xintFloat[#1]{\x}\xintifForLast{\par}{\newline}}}%

13: 1.000000000000e0

14: 1.0000000000000e0

15: 1.00000000000000e0

16: 9.999999999999999e-1

17: 9.9999999999999995e-1

18: 9.99999999999999950e-1

19: 9.999999999999999500e-1

47: 9.9999999999999995000000000000000000000000000000e-1

48: 9.99999999999999949999999999999999999999999999999e-1

49: 9.999999999999999499999999999999999999999999999995e-1

50: 9.9999999999999994999999999999999999999999999999950e-1

79: 9.999999999999999499999999999999999999999999999995000000000000000000000000000000e-1

80: 9.9999999999999994999999999999999999999999999999949999999999999999999999999999999e-1

81: 9.99999999999999949999999999999999999999999999999499999999999999999999999999999995e-1
As an aside, which is illustrated by the above, rounding is not transitive in the number of kept
digits.
{\def\x{137893789173289739179317/13890138013801398}%

\xintFor* #1 in {\xintSeq{4}{20}}

\do{#1: \xintFloat[#1]{\x}\newline}}%

\xintFloat{5/9999999999999999}\newline

\xintFloat[32]{5/9999999999999999}\newline

\xintFloat[48]{5/9999999999999999}\par

4: 9.927e6

5: 9.9275e6

6: 9.92746e6

7: 9.927460e6
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8: 9.9274600e6

9: 9.92745997e6

10: 9.927459975e6

11: 9.9274599746e6

12: 9.92745997457e6

13: 9.927459974572e6

14: 9.9274599745717e6

15: 9.92745997457166e6

16: 9.927459974571665e6

17: 9.9274599745716647e6

18: 9.92745997457166465e6

19: 9.927459974571664655e6

20: 9.9274599745716646545e6

5.000000000000001e-16

5.0000000000000005000000000000001e-16

5.00000000000000050000000000000005000000000000001e-16

9.79. \xintPFloat, \xintPFloatE
\xintPFloat [P]{f} is like \xintFloat but ``pretty-prints'' the output. The macro applies one[

num
x ]

Frac
f ★

simple rule: x.yz...eN will drop scientific notation in favor of pure decimal notation if -5<=N<=⤸
5 (last time I checked Maple® proceeded this way).

Currently trailing zeros are not trimmed. And if the input vanishes the output will be 0. with a

decimal mark. Final decision however on how zero value should be printed is yet to arrive...

\xintfloateval applies (via the default definition of \xintfloatexprPrintOne) this macro to

each non-empty leaf of the output ople. This is done in an \expanded context, but the macro is

already f-expandable.
\xintPFloatE was added to allow customizing the symbol used on output for separating the sig-New with

1.4b nificand from the exponent, if output uses scientific notation. The separator defaults to e, ac-
cording to this definition:
\def\xintPFloatE{e}

See in this context \xintFracToSciE which brings the analogous customizability to \xinteval.
\begingroup\def\test #1{#1${}\to{}$\xintPFloat{#1}}%

\string\xintDigits\ at \xinttheDigits

\begin{itemize}[nosep]

\item \test {0}

\item \test {1.234e-7}

\item \test {1.234e-6}

\item \test {1.234e-5}

\item \test {1.234e-4}

\item \test {1.234e-3}

\item \test {1.234e-2}

\item \test {1.234e-1}

\end{itemize}

\def\xintPFloatE{E}% test custom separator. Should impact \xintfloateval as well

\begin{itemize}[nosep]

\item \test {1.234e0}

\item \test {1.234e1}

\item \test {1.234e2}

\item \test {1.234e3}

\item \test {1.234e4}

\item \test {1.234e5}

\item \test {1.234e6}

\item \test {1.234e7}

\end{itemize}
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\endgroup

\xintDigits at 16

• 0 → 0.

• 1.234e-7 → 1.234000000000000e-7

• 1.234e-6 → 1.234000000000000e-6

• 1.234e-5 → 0.00001234000000000000

• 1.234e-4 → 0.0001234000000000000

• 1.234e-3 → 0.001234000000000000

• 1.234e-2 → 0.01234000000000000

• 1.234e-1 → 0.1234000000000000

• 1.234e0 → 1.234000000000000

• 1.234e1 → 12.34000000000000

• 1.234e2 → 123.4000000000000

• 1.234e3 → 1234.000000000000

• 1.234e4 → 12340.00000000000

• 1.234e5 → 123400.0000000000

• 1.234e6 → 1.234000000000000E6

• 1.234e7 → 1.234000000000000E7

9.80. \xintFloatE
\xintFloatE [P]{f}{x} multiplies the input f by 10x, and converts it to float format according to[

num
x ]

Frac
f

num
x ★

the optional first argument or current value of \xinttheDigits.
\xintFloatE {1.23e37}{53}

1.230000000000000e90

There is since 1.4b an unfortunate proximity in name with \xintPFloatE despite the two things

having absolutely nothing in common.

9.81. \xintFloatAdd
\xintFloatAdd [P]{f}{g} first replaces f and g with their float approximations f' and g' to P[

num
x ]

Frac
f

Frac
f ★

significant places or to the precision from \xintDigits. It then produces the sum f'+g', correctly

rounded to nearest with the same number of significant places.

9.82. \xintFloatSub
\xintFloatSub [P]{f}{g} first replaces f and g with their float approximations f' and g' to P[

num
x ]

Frac
f

Frac
f ★

significant places or to the precision from \xintDigits. It then produces the difference f'-g'

correctly rounded to nearest P-float.

9.83. \xintFloatMul
\xintFloatMul [P]{f}{g} first replaces f and g with their float approximations f' and g' to P (or \⤸[

num
x ]

Frac
f

Frac
f ★

xinttheDigits) significant places. It then correctly rounds the product f'*g' to nearest P-float.

See subsection 5.2 for more.

It is obviously much needed that the author improves its algorithms to avoid going through

the exact 2P or 2P-1 digits before throwing to the waste-bin half of those digits !
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9.84. \xintFloatDiv
\xintFloatDiv [P]{f}{g} first replaces f and g with their float approximations f' and g' to P[

num
x ]

Frac
f

Frac
f ★

(or \xinttheDigits) significant places. It then correctly rounds the fraction f'/g' to nearest

P-float.

See subsection 5.2 for more.

Notice in the special situation with f and g integers that \xintFloatDiv [P]{f}{g} will not
necessarily give the correct rounding of the exact fraction f/g. Indeed the macro arguments are

each first individually rounded to P digits of precision. The correct syntax to get the correctly

rounded integer fraction f/g is \xintFloat[P]{f/g}.

9.85. \xintFloatPow
\xintFloatPow [P]{f}{x} uses either the optional argument P or in its absence the value of \xintt⤸[

num
x ]

Frac
f

num
x ★

heDigits. It computes a floating approximation to f^x.

The exponent x will be handed over to a \numexpr, hence count registers are accepted on input for

this x. And the absolute value |x| must obey the TEX bound.
The argument f is first rounded to P significant places to give f'. The output Z is such that the

exact f'^x differs from Z by an absolute error less than 0.52 ulp(Z).
\xintFloatPow [8]{3.1415}{1234567890}

1.6122066e613749456

9.86. \xintFloatPower
\xintFloatPower[P]{f}{g} computes a floating point value f^g where the exponent g is not con-[

num
x ]

Frac
f

Num
f ★

strained to be at most the TEX bound 2147483647. It may even be a fraction A/B but must simplify to

a (possibly big) integer. The exponent of the output however must at any rate obey the TEX bound.

The argument f is first rounded to P significant places to give f'. The output Z is then such that

the exact f'^g differs from Z by an absolute error less than 0.52 ulp(Z).

This is the macro which is used for the ^ (or **) infix operators in \xintthefloatexpr...\rela⤸
x. In this context (but not directly with the macro,) half-integer exponents are allowed. This is

handled via an integer power followed by a square-root extraction. The exponent is first rounded

to nearest integer or half-integer so that the computation never raises errors (except naturally

for negative exponent and zero f.) The 0.52 ulp(Z) bound applies with half-integer exponents too.

Notice that this is a bound on the distance from f'^g to Z, as f always gets rounded to P or

\xinttheDigits digits. The distance from f^g to Z can be much worse if g is very large. Roughly,

when g is negligible compared to 10^P, we get an extra difference of up to about 50g ulp(Z) which

completely dwarfs the 0.52 ulp(Z). Thus, if f has strictly more than P digits, then the computation

must be done with an elevated working precision P'. For example with g=1000 we should use P'=P+6

to achieve a total error at worst slightly bigger than 0.55 ulp(Z) after the final rounding from

P' to P digits to get Z.
Examples:48

\np{\xintFloatPower [8]{3.1415}{3e9}}\newline% Notice that 3e9>2^31

\np{\xintFloatPower [48]{1.1547}{\xintiiPow {2}{35}}}\newline

1.431,772,9 × 101,491,411,192

2.785,837,382,571,371,438,495,789,880,733,698,213,205,183,990,48 × 102,146,424,193

235 = 34359738368 exceeds TEX's bound, but what counts is the exponent of the result which, while

dangerously close to 231 is not quite there yet.
With expressions:
{\xintDigits:=48\relax \np{\xintthefloatexpr 1.1547^(2^35)\relax}}

2.785,837,382,571,371,438,495,789,880,733,698,213,205,183,990,48 × 102,146,424,193

48 \np is formatting macro from the http://ctan.org/pkg/numprint package.
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There is a subtlety here that the 2^35 will be evaluated as a floating point number but fortu-
nately it only has 11 digits, hence the final evaluation is done with a correct exponent. It would
have been safer, and also more efficient to code the above rather as:
\xintthefloatexpr 1.1547^\xintiiexpr 2^35\relax\relax

Here is an example with 12^16 as exponent, which has 18 digits (=184884258895036416).
{\xintDigits:=12\relax \np{\xintthefloatexpr (1+1e-8)^\xintiiexpr 12^16\relax\relax}}\newline

\np{\xintthefloatexpr (1+1e-8)^\xintiiexpr 12^16\relax\relax}\newline

{\xintDigits:=27\relax \np{\xintthefloatexpr (1+1e-8)^(12^16)\relax}}\newline

{\xintDigits:=48\relax \np{\xintthefloatexpr (1+1e-8)^(12^16)\relax}}

1.879,985,676,69 × 10802,942,130

1.879,985,676,694,948 × 10802,942,130

1.879,985,676,694,948,388,381,844,07 × 10802,942,130

1.879,985,676,694,948,388,381,844,074,802,295,996,746,413,609,97 × 10802,942,130

There is an important difference between \xintFloatPower[Q]{X}{Y} and \xintthefloatexpr[Q] ⤸
X^Y\relax: in the former case the computation is done with Q digits or precision,49 whereas with

\xintthefloatexpr[Q] the evaluation of the expression proceeds with \xinttheDigits digits of pre-

cision, and the final result is then rounded to Q digits: thus this makes real sense only if used

with Q<\xinttheDigits.

9.87. \xintFloatSqrt
\xintFloatSqrt[P]{f} computes a floating point approximation of

√
f, either using the optional[

num
x ]

Frac
f ★

precision P or the value of \xinttheDigits.
More precisely since 1.2f the macro achieves so-called correct rounding: the produced value is+

{
the rounding to P significant places of the abstract exact value, if the input has itself at most
P digits (and an arbitrary exponent).
\xintFloatSqrt [89]{10}\newline

\xintFloatSqrt [89]{100}\newline

\xintFloatSqrt [89]{123456789}\par

3.1622776601683793319988935444327185337195551393252168268575048527925944386392382213442481e0

1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e1

1.1111111060555555440541666143353469245878409860134351071458570675251471479496366736579136e4
And now some tests to check that correct rounding applies correctly (sic):
The argument has 16 digits, hence escapes initial rounding:\newline

\xintFloatSqrt {5625000075000001}\newline

This one gets rounded hence same value is computed:\newline

\xintFloatSqrt {5625000075000001.4}\newline

but actual value is more like:\newline

\xintFloatSqrt [24]{5625000075000001.4}\newline

\xintFloatSqrt [32]{5625000075000001.4}\newline

The argument has 48 digits, hence escapes initial rounding:\newline

\xintFloatSqrt [48]{562500000000000000000000750000000000000000000001}\newline

\xintFloatSqrt [64]{562500000000000000000000750000000000000000000001}\newline

\xintFloatSqrt [80]{562500000000000000000000750000000000000000000001}\newline

The argument has 16 digits, hence escapes initial rounding:

7.500000050000000e7

This one gets rounded hence same value is computed:

7.500000050000000e7

but actual value is more like:

7.50000005000000076666666e7

7.5000000500000007666666615555556e7

The argument has 48 digits, hence escapes initial rounding:

7.50000000000000000000000500000000000000000000000e23

49 if X and Y themselves stand for some floating point macros with arguments, their respective evaluations obey the precision
\xinttheDigits or as set optionally in the macro calls themselves.
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7.500000000000000000000005000000000000000000000005000000000000000e23

7.5000000000000000000000050000000000000000000000049999999999999999999999966666667e23

(we observe in passing illustrations that rounding to nearest is not transitive.)

9.88. \xintFloatFac
\xintFloatFac[P]{f} returns the factorial with either \xinttheDigits or P digits of precision.[

num
x ]

Num
f ★

The exact theoretical value differs from the calculated one Y by an absolute error strictly less

than 0.6 ulp(Y).
$1000!\approx{}$\xintFloatFac [30]{1000}

1000! ≈ 4.02387260077093773543702433923e2567 The computation proceeds via doing explicitely the

product, as the Stirling formula cannot be used for lack so far of exp/log.

The maximal allowed argument is 99999999, but already 100000! currently takes, for 16 digits of

precision, a few seconds on my laptop (it returns 2.824229407960348e456573).
The factorial function is available in \xintfloatexpr:
\xintthefloatexpr factorial(1000)\relax % same as 1000!

4.023872600770938e2567

9.89. \xintFloatBinomial
\xintFloatBinomial[P]{x}{y} computes binomial coefficients with either \xinttheDigits or P dig-[

num
x ]

Num
f

Num
f ★

its of precision.

When x<0 an out-of-range error is raised. Else if y<0 or if x<y the macro evaluates to 0.e0. The

exact theoretical value differs from the calculated one Y by an absolute error strictly less than

0.6 ulp(Y).
${3000\choose 1500}\approx{}$\xintFloatBinomial [24]{3000}{1500}(3000

1500

)
≈ 1.79196793754756005073269e901

The associated function in \xintfloatexpr is binomial():
\xintthefloatexpr binomial(3000,1500)\relax

1.791967937547560e901

The computation is based on the formula (x-y+1)...x/y! (here one arranges y<=x-y naturally).

9.90. \xintFloatPFactorial
\xintFloatPFactorial[P]{x}{y} computes the product (x+1)...y.[

num
x ]

Num
f

Num
f ★

The arguments must be integers (they are expanded inside \numexpr) and the allowed range is

-100000000 ⩽ x, y ⩽ 99999999. If x ⩾ y the product is considered empty hence returns one (as a

floating point value). See also \xintiiPFactorial.

The exact theoretical value differs from the calculated one Y by an absolute error strictly less

than 0.6 ulp(Y).
The associated function in \xintfloatexpr is pfactorial():
\xintthefloatexpr pfactorial(2500,5000)\relax

2.595989917947957e8914

9.91. \xintFrac
This is a LATEX only macro, to be used in math mode only. It will print a fraction, internally rep-

Frac
f ★

resented as something equivalent to A/B[n] as \frac {A}{B}10^n. The power of ten is omitted when

n=0, the denominator is omitted when it has value one, the number being separated from the power of

ten by a \cdot. $\xintFrac {178.000/25600000}$ gives 178000
2560000010

-3, $\xintFrac {178.000/1}$ gives

178000 · 10-3, $\xintFrac {3.5/5.7}$ gives 35
57, and $\xintFrac {\xintNum {\xintiiFac{10}/\xintii⤸

Sqr{\xintiiFac {5}}}}$ gives 252. As shown by the examples, simplification of the input (apart
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from removing the decimal points and moving the minus sign to the numerator) is not done automati-

cally and must be the result of macros such as \xintIrr, \xintREZ, or \xintNum (for fractions being

in fact integers.)

9.92. \xintSignedFrac
This is as \xintFrac except that a negative fraction has the sign put in front, not in the numera-

Frac
f ★

tor.
\[\xintFrac{-355/113}=\xintSignedFrac {-355/113}\]

-355

113
= -

355

113

9.93. \xintFwOver
This does the same as \xintFrac except that the \over primitive is used for the fraction (in case

Frac
f ★

the denominator is not one; and a pair of braces contains the A\over B part). $\xintFwOver {178⤸
.000/25600000}$ gives 178000

2560000010
-3, $\xintFwOver {178.000/1}$ gives 178000 · 10-3, $\xintFwOver ⤸

{3.5/5.7}$ gives 35
57, and $\xintFwOver {\xintNum {\xintiiFac{10}/\xintiiSqr{\xintiiFac {5}}}}$

gives 252.

9.94. \xintSignedFwOver
This is as \xintFwOver except that a negative fraction has the sign put in front, not in the numer-

Frac
f ★

ator.
\[\xintFwOver{-355/113}=\xintSignedFwOver {-355/113}\]

-355

113
= -

355

113

9.95. \xintLen
The original \xintLen macro is extended to accept a fraction on input: the length of A/B[n] is the

Frac
f ★

length of A plus the length of B plus the absolute value of n and minus one (an integer input as N
is internally represented in a form equivalent to N/1[0] so the minus one means that the extended
\xintLen behaves the same as the original for integers).
\xintLen{201710/298219}=\xintLen{201710}+\xintLen{298219}-1\newline

\xintLen{1234/1}=\xintLen{1234}=\xintLen{1234[0]}=\xintiLen{1234}\newline

\xintLen{-1e3/5.425} (\xintRaw {-1e3/5.425})\par

11=6+6-1

4=4=4=4

10 (-1/5425[6])

The length is computed on the A/B[n] which would have been returned by \xintRaw, as illustrated

by the last example above.

\xintLen is only for use with such (scientific) numbers or fractions. See also \xintNthElt from

xinttools. See also \xintLength (which however does not expand its argument) from xintkernel for

counting more general tokens (or rather braced items).
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10. Macros of the xintbinhex package
This package provides expandable conversions of (big) integers to and from binary and hexadecimal.

First version of this package was in the 1.08 (2013/06/07) release of xint. Its routines remained

un-modified until their complete rewrite at release 1.2m (2017/07/31). The new macros are faster,

using techniques from the 1.2 (2015/10/10) release of xintcore. But the inputs are now limited to

a few thousand digits, whereas the 1.08 could handle (slowly...) tens of thousands of digits.

Table 3 recapitulates the maximal allowed sizes (they got increased at 1.2n): for macro \xin⤸
tFooToBar in the first column, the value in the second column is the maximal N such that \edef\⤸
X{\xintFooToBar{<N digits>}} does not raise an error with standard TEX memory parameters (input

stack size=5000, expansion depth=10000, parameter stack size=10000). The tests were done with

TL2017 and etex. Nested calls will allow slightly lesser values only. The third column gives the

corresponding maximal size of output. The fourth column gives the TEX parameter cited in the error

message when trying with N+1 digits.

Max length of input -> length of output Limiting factor

\xintDecToHex 6014 4995 input stack size=5000

\xintDecToBin 6014 19979 input stack size=5000

\xintHexToDec 8298 9992 input stack size=5000

\xintBinToDec 19988 6017 input stack size=5000

\xintBinToHex 19988 4997 input stack size=5000

\xintHexToBin 4996 19984 input stack size=5000

\xintCHexToBin 4997 19988 input stack size=5000

Table 3: Maximal sizes of inputs (at 1.2n) for xintbinhex macros

Roughly, base 10 numbers are limited to 6000 digits, hexadecimal numbers to (almost) 5000 dig-

its, and binary numbers to (almost) 20000 digits. With the surprising exception of \xintHexToDec

which allows almost 8300 hexadecimal digits on input.

The argument is first f-expanded. It may optionally have a unique leading minus sign (a plus

sign is not allowed), and leading zeroes.

An input (possibly signed) with no leading zeroes is guaranteed to give an output without lead-

ing zero, with the sole, deliberate, exception of \xintCHexToBin: from N hexadecimal digits it

produces 4N binary digits, hence possibly with up to three leading zeroes (if the input had none.)

Inputs with leading zeroes usually produce outputs with an unspecified, case-dependent, number

of leading zeroes (\xintBinToHex always uses the minimal number of hexadecimal digits needed to

represent the binary digits, inclusive of leading zeroes if present.)

The macros converting from binary or decimal are robust against non terminated inputs like \the⤸
\numexpr 2+3 or \the\mathcode`\-. The macro \xintHexToDec also but not \xintHexToBin and \xint-

CHexToBin (anyway there are no primitive in (e)-TEX to my knowledge which will generate hexadecimal

digits and may force expansion of next token).

Hexadecimal digits A..F must be in uppercase. Category code for them on input may be letter or

other. On output they are of category code letter, and in uppercase.

Low-level unrecoverable errors will happen if for example a supposedly binary input contains

other digits than 0 and 1. Inputs can not start with a 0b, 0x, #x, " or similar prefix: only dig-

its/letters according to the binary, decimal, or hexadecimal notation.

With this package loaded additionally to xintexpr, hexadecimal input is possible in expres-

sions: simply by using the prefix ". Such hexadecimal numbers may have a fractional part. Lowercase

hexadecimal letters are currently not recognized as such in expressions. Currently the p postfix

notation from standard programming languages standing for an extra power of two multiplicand is

not implemented.

.1 \xintDecToHex . . . . . . . . . . . . . . . . . . . . . . . . . 118 .2 \xintDecToBin . . . . . . . . . . . . . . . . . . . . . . . . . 118
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.3 \xintHexToDec . . . . . . . . . . . . . . . . . . . . . . . . . 118

.4 \xintBinToDec . . . . . . . . . . . . . . . . . . . . . . . . . 118

.5 \xintBinToHex . . . . . . . . . . . . . . . . . . . . . . . . . 118

.6 \xintHexToBin . . . . . . . . . . . . . . . . . . . . . . . . . 119

.7 \xintCHexToBin . . . . . . . . . . . . . . . . . . . . . . . . 119

10.1. \xintDecToHex
Converts from decimal to hexadecimal.f ★

\xintDecToHex{2718281828459045235360287471352662497757247093699959574966967627724076630353⤸
547594571382178525166427427466391932003}

->11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918⤸
814C63

10.2. \xintDecToBin
Converts from decimal to binary.f ★

\xintDecToBin{2718281828459045235360287471352662497757247093699959574966967627724076630353⤸
547594571382178525166427427466391932003}

->100011010100100111001011111000110011010010100100110101001011100000101000111110111110100001⤸
01010000001011110010001010011100011111000001011000101111100010000011011000100011100010010001⤸
01110101110111100101011010101110110000010111011001110001101001001110010111101000110110111001⤸
11001000110110001100000001100101001001101101011111100110111110110101100100100011000100000010⤸
100110001100011

10.3. \xintHexToDec
Converts from hexadecimal to decimal.f ★

\xintHexToDec{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C603⤸
2936BF37DAC918814C63}

->271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217⤸
8525166427427466391932003

10.4. \xintBinToDec
Converts from binary to decimal.f ★

\xintBinToDec{1000110101001001110010111110001100110100101001001101010010111000001010001111⤸
10111110100001010100000010111100100010100111000111110000010110001011111000100000110110001000⤸
11100010010001011101011101111001010110101011101100000101110110011100011010010011100101111010⤸
00110110111001110010001101100011000000011001010010011011010111111001101111101101011001001000⤸
11000100000010100110001100011}

->271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217⤸
8525166427427466391932003

10.5. \xintBinToHex
Converts from binary to hexadecimal. The input is first zero-filled to 4N binary digits, hence thef ★
output will have N hexadecimal digits (thus, if the input did not have a leading zero, the output

will not either).

\xintBinToHex{1000110101001001110010111110001100110100101001001101010010111000001010001111⤸
10111110100001010100000010111100100010100111000111110000010110001011111000100000110110001000⤸
11100010010001011101011101111001010110101011101100000101110110011100011010010011100101111010⤸
00110110111001110010001101100011000000011001010010011011010111111001101111101101011001001000⤸
11000100000010100110001100011}
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->11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918⤸
814C63

10.6. \xintHexToBin
Converts from hexadecimal to binary. Up to three leading zeroes of the output are trimmed.f ★

\xintHexToBin{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C603⤸
2936BF37DAC918814C63}

->100011010100100111001011111000110011010010100100110101001011100000101000111110111110100001⤸
01010000001011110010001010011100011111000001011000101111100010000011011000100011100010010001⤸
01110101110111100101011010101110110000010111011001110001101001001110010111101000110110111001⤸
11001000110110001100000001100101001001101101011111100110111110110101100100100011000100000010⤸
100110001100011

10.7. \xintCHexToBin
Converts from hexadecimal to binary. Same as \xintHexToBin, but an input with N hexadecimal digitsf ★
will give an output with exactly 4N binary digits, leading zeroes are not trimmed.

\xintCHexToBin{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C60⤸
32936BF37DAC918814C63}

->000100011010100100111001011111000110011010010100100110101001011100000101000111110111110100⤸
00101010000001011110010001010011100011111000001011000101111100010000011011000100011100010010⤸
00101110101110111100101011010101110110000010111011001110001101001001110010111101000110110111⤸
00111001000110110001100000001100101001001101101011111100110111110110101100100100011000100000⤸
010100110001100011

This can be combined with \xintBinToHex for round-trips preserving leading zeroes for 4N binary
digits numbers, whereas using \xintHexToBin gives reproducing round-trips only for 4N binary num-
bers numbers not starting with 0000.
This zero-fills to 4N digits the input, hence gives here a leading zero in output:

\xintBinToHex{0001111}\newline

Chaining, we end up with 4N-3 digits, as three binary zeroes are trimmed:

\xintHexToBin{\xintBinToHex{0001111}}\newline

But this will always reproduce the initial input zero-filled to length 4N:

\xintCHexToBin{\xintBinToHex{0001111}}\par

Another example (visible space characters manually inserted):\newline

$000000001111101001010001\xrightarrow{\text{\string\xintBinToHex}}

\xintBinToHex{000000001111101001010001}\xrightarrow{\text{\string\xintHexToBin\hphantom{X}}}

\text{\textvisiblespace\textvisiblespace\textvisiblespace}

\xintHexToBin{\xintBinToHex{000000001111101001010001}}$\newline

$000000001111101001010001\xrightarrow{\text{\string\xintBinToHex}}

\xintBinToHex{000000001111101001010001}\xrightarrow{\text{\string\xintCHexToBin}}

\xintCHexToBin{\xintBinToHex{000000001111101001010001}}$

\par

This zero-fills to 4N digits the input, hence gives here a leading zero in output: 0F

Chaining, we end up with 4N-3 digits, as three binary zeroes are trimmed: 01111

But this will always reproduce the initial input zero-filled to length 4N: 00001111

Another example (visible space characters manually inserted):

000000001111101001010001
\xintBinToHex−−−−−−−−−−−−→ 00FA51

\xintHexToBin−−−−−−−−−−−−−→ ␣␣␣000001111101001010001

000000001111101001010001
\xintBinToHex−−−−−−−−−−−−→ 00FA51

\xintCHexToBin−−−−−−−−−−−−−→ 000000001111101001010001
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11. Macros of the xintgcd package
This package was included in the original release 1.0 (2013/03/28) of the xint bundle.

At 1.3d macros \xintiiGCD and \xintiiLCM are copied over to xint, hence gcd() and lcm() functions

in \xintiiexpr were available simply from loading only xintexpr, and the xintgcd dependency got

removed.

From 1.1 to 1.3f the package loaded only xintcore, not xint and neither xinttools.

But at 1.4 it loads automatically both xint and xinttools (the latter being a requirement

since 1.09h of the \xintTypesetEuclideAlgorithm and \xintTypesetBezoutAlgorithm macros).

The macros \xintiiGCD and \xintiiLCM got relocated into xint. The macros \xintGCD, \xintLCM,+
{

\xintGCDof, and \xintLCMof are removed: xintfrac provides under these names more powerful

macros handling general fractions and not only integers.

.1 \xintBezout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

.2 \xintEuclideAlgorithm . . . . . . . . . . . . . . . . 120

.3 \xintBezoutAlgorithm . . . . . . . . . . . . . . . . . 120

.4 \xintTypesetEuclideAlgorithm . . . . . . . . 121

.5 \xintTypesetBezoutAlgorithm . . . . . . . . . . 121

11.1. \xintBezout
\xintBezout{N}{M} returns three numbers U, V, D within braces where D is the (non-negative) GCD,

Num
f

Num
f ★

and UN + VM = D.
\oodef\X{\xintBezout {10000}{1113}}\meaning\X\par

\xintAssign {\xintBezout {10000}{1113}}\to\U\V\D

U: \meaning\U, V: \meaning\V, D: \meaning\D\par

AU+BV: \xinttheiiexpr 10000*\U+1113*\V\relax\par

\noindent\oodef\X{\xintBezout {123456789012345}{9876543210321}}\meaning\X\par

\xintAssign \X\to\U\V\D

U: \meaning\U, V: \meaning\V, D: \meaning\D\par

AU+BV: \xinttheiiexpr 123456789012345*\U+9876543210321*\V\relax

macro:->{-131}{1177}{1}

U: macro:->-131, V: macro:->1177, D: macro:->1

AU+BV: 1

macro:->{256654313730}{-3208178892607}{3}

U: macro:->256654313730, V: macro:->-3208178892607, D: macro:->3

AU+BV: 3

11.2. \xintEuclideAlgorithm
\xintEuclideAlgorithm{N}{M} applies the Euclide algorithm and keeps a copy of all quotients and

Num
f

Num
f ★

remainders.
\edef\X{\xintEuclideAlgorithm {10000}{1113}}\meaning\X

macro:->{5}{10000}{1}{1113}{8}{1096}{1}{17}{64}{8}{2}{1}{8}{0}

The first item is the number of steps, the second is N, the third is the GCD, the fourth is M then

the first quotient and remainder, the second quotient and remainder, ...until the final quotient

and last (zero) remainder.

11.3. \xintBezoutAlgorithm
\xintBezoutAlgorithm{N}{M} applies the Euclide algorithm and keeps a copy of all quotients and

Num
f

Num
f ★

remainders. Furthermore it computes the entries of the successive products of the 2 by 2 matrices(
q 1

1 0

)
formed from the quotients arising in the algorithm.
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\edef\X{\xintBezoutAlgorithm {10000}{1113}}\printnumber{\meaning\X}

macro:->{5}{10000}{0}{1}{1}{1113}{1}{0}{8}{1096}{8}{1}{1}{17}{9}{1}{64}{8}{584}{65}{2}{1}{11⤸
77}{131}{8}{0}{10000}{1113}

The first item is the number of steps, the second is N, then 0, 1, the GCD, M, 1, 0, the first

quotient, the first remainder, the top left entry of the first matrix, the bottom left entry, and

then these four things at each step until the end.

11.4. \xintTypesetEuclideAlgorithm
This macro is just an example of how to organize the data returned by \xintEuclideAlgorithm. Copy

Num
f

Num
f

the source code to a new macro and modify it to what is needed.

\xintTypesetEuclideAlgorithm {123456789012345}{9876543210321}

123456789012345 = 12 × 9876543210321 + 4938270488493

9876543210321 = 2 × 4938270488493 + 2233335

4938270488493 = 2211164 × 2233335 + 536553

2233335 = 4 × 536553 + 87123

536553 = 6 × 87123 + 13815

87123 = 6 × 13815 + 4233

13815 = 3 × 4233 + 1116

4233 = 3 × 1116 + 885

1116 = 1 × 885 + 231

885 = 3 × 231 + 192

231 = 1 × 192 + 39

192 = 4 × 39 + 36

39 = 1 × 36 + 3

36 = 12 × 3 + 0

11.5. \xintTypesetBezoutAlgorithm
This macro is just an example of how to organize the data returned by \xintBezoutAlgorithm. Copy

Num
f

Num
f

the source code to a new macro and modify it to what is needed.

\xintTypesetBezoutAlgorithm {10000}{1113}

10000 = 8 × 1113 + 1096

8 = 8 × 1 + 0

1 = 8 × 0 + 1

1113 = 1 × 1096 + 17

9 = 1 × 8 + 1

1 = 1 × 1 + 0

1096 = 64 × 17 + 8

584 = 64 × 9 + 8

65 = 64 × 1 + 1

17 = 2 × 8 + 1

1177 = 2 × 584 + 9

131 = 2 × 65 + 1

8 = 8 × 1 + 0

10000 = 8 × 1177 + 584

1113 = 8 × 131 + 65

131 × 10000 - 1177 × 1113 = -1
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12. Macros of the xintseries package
This package was first released with version 1.03 (2013/04/14) of the xint bundle.

The
Frac
f expansion type of various macro arguments is only a

Num
f if only xint but not xintfrac

is loaded. The macro \xintiSeries is special and expects summing big integers obeying the strict

format, even if xintfrac is loaded.

The arguments serving as indices are of the
num
x expansion type.

In some cases one or two of the macro arguments are only expanded at a later stage not immedi-

ately.

Since 1.3, \xintAdd and \xintSub use systematically the least common multiple of the denom-

inators. Some of the comments in this chapter refer to the earlier situation where often the

denominators were simply multiplied together. They have yet to be updated to reflect the new
situation brought by the 1.3 release. Some of these comments may now be off-synced from the

actual computation results and thus may be wrong.

.1 \xintSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

.2 \xintiSeries . . . . . . . . . . . . . . . . . . . . . . . . . . 123

.3 \xintRationalSeries . . . . . . . . . . . . . . . . . . . 124

.4 \xintRationalSeriesX . . . . . . . . . . . . . . . . . 127

.5 \xintPowerSeries . . . . . . . . . . . . . . . . . . . . . . 128

.6 \xintPowerSeriesX . . . . . . . . . . . . . . . . . . . . . 130

.7 \xintFxPtPowerSeries . . . . . . . . . . . . . . . . . 130

.8 \xintFxPtPowerSeriesX . . . . . . . . . . . . . . . . 131

.9 \xintFloatPowerSeries . . . . . . . . . . . . . . . . 132

.10 \xintFloatPowerSeriesX . . . . . . . . . . . . . . . 132

.11 Computing log 2 and 𝜋 . . . . . . . . . . . . . . . . . . 133

12.1. \xintSeries
\xintSeries{A}{B}{\coeff} computes

∑n=B
n=A\coeff{n}. The initial and final indices must obey the \n⤸

num
x

num
x

Frac
f ★

umexpr constraint of expanding to numbers at most 2^31-1. The \coeff macro must be a one-parameter

f-expandable macro, taking on input an explicit number n and producing some number or fraction

\coeff{n}; it is expanded at the time it is needed.
\def\coeff #1{\xintiiMON{#1}/#1.5} % (-1)^n/(n+1/2)

\fdef\w {\xintSeries {0}{50}{\coeff}} % we want to re-use it

\fdef\z {\xintJrr {\w}[0]} % the [0] for a microsecond gain.

% \xintJrr preferred to \xintIrr: a big common factor is suspected.

% But numbers much bigger would be needed to show the greater efficiency.

\[ \sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} = \xintFrac\z \]
n=50∑
n=0

(-1)n

n + 1
2

=
173909338287370940432112792101626602278714

110027467159390003025279917226039729050575

The definition of \coeff as \xintiiMON{#1}/#1.5 is quite suboptimal. It allows #1 to be a big

integer, but anyhow only small integers are accepted as initial and final indices (they are of the
num
x type). Second, when the xintfrac parser sees the #1.5 it will remove the dot hence create a

denominator with one digit more. For example 1/3.5 turns internally into 10/35 whereas it would

be more efficient to have 2/7. For info here is the non-reduced \w:

86954669143685470216056396050813301139357

550137335796950015126399586130198645252875
101

It would have been bigger still in releases earlier than 1.1: now, the xintfrac \xintAdd routine

does not multiply blindly denominators anymore, it checks if one is a multiple of the other. How-

ever it does not practice systematic reduction to lowest terms.
A more efficient way to code \coeff is illustrated next.
\def\coeff #1{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}%
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% The [0] in \coeff is a tiny optimization: in its presence the \xintfracname parser

% sees something which is already in internal format.

\fdef\w {\xintSeries {0}{50}{\coeff}}

\[\sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12}=\xintFrac\w\]
n=50∑
n=0

(-1)n

n + 1
2

=
173909338287370940432112792101626602278714

110027467159390003025279917226039729050575

The reduced form \z as displayed above only differs from this one by a factor of 1.
\def\coeffleibnitz #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}

\cnta 1

\loop

% in this loop we recompute from scratch each partial sum!

% we can afford that, as \xintSeries is fast enough.

\noindent\hbox to 2em{\hfil\texttt{\the\cnta.} }%

\xintTrunc {12}{\xintSeries {1}{\cnta}{\coeffleibnitz}}\dots

\endgraf

\ifnum\cnta < 30 \advance\cnta 1 \repeat

1. 1.000000000000...

2. 0.500000000000...

3. 0.833333333333...

4. 0.583333333333...

5. 0.783333333333...

6. 0.616666666666...

7. 0.759523809523...

8. 0.634523809523...

9. 0.745634920634...

10. 0.645634920634...

11. 0.736544011544...

12. 0.653210678210...

13. 0.730133755133...

14. 0.658705183705...

15. 0.725371850371...

16. 0.662871850371...

17. 0.721695379783...

18. 0.666139824228...

19. 0.718771403175...

20. 0.668771403175...

21. 0.716390450794...

22. 0.670935905339...

23. 0.714414166209...

24. 0.672747499542...

25. 0.712747499542...

26. 0.674285961081...

27. 0.711322998118...

28. 0.675608712404...

29. 0.710091471024...

30. 0.676758137691...

12.2. \xintiSeries
\xintiSeries{A}{B}{\coeff} computes

∑n=B
n=A\coeff{n} where \coeff{n} must f-expand to a (possibly

num
x

num
x f ★

long) integer in the strict format.
\def\coeff #1{\xintiTrunc {40}{\xintiiMON{#1}/#1.5}}%

% better:

\def\coeff #1{\xintiTrunc {40}

{\the\numexpr 2*\xintiiMON{#1}\relax/\the\numexpr 2*#1+1\relax [0]}}%

% better still:

\def\coeff #1{\xintiTrunc {40}

{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}}%

% (-1)^n/(n+1/2) times 10^40, truncated to an integer.

\[ \sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} \approx

\xintTrunc {40}{\xintiSeries {0}{50}{\coeff}[-40]}\dots\]

n=50∑
n=0

(-1)n

n + 1
2

≈ 1.5805993064935250412367895069567264144810

We should have cut out at least the last two digits: truncating errors originating with the first
coefficients of the sum will never go away, and each truncation introduces an uncertainty in the
last digit, so as we have 40 terms, we should trash the last two digits, or at least round at 38
digits. It is interesting to compare with the computation where rounding rather than truncation
is used, and with the decimal expansion of the exactly computed partial sum of the series:
\def\coeff #1{\xintiRound {40} % rounding at 40

{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}}%

% (-1)^n/(n+1/2) times 10^40, rounded to an integer.

\[ \sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} \approx
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\xintTrunc {40}{\xintiSeries {0}{50}{\coeff}[-40]}\]

\def\exactcoeff #1%

{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}%

\[ \sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12}

= \xintTrunc {50}{\xintSeries {0}{50}{\exactcoeff}}\dots\]

n=50∑
n=0

(-1)n

n + 1
2

≈ 1.5805993064935250412367895069567264144804

n=50∑
n=0

(-1)n

n + 1
2

= 1.58059930649352504123678950695672641448068680288367 . . .

This shows indeed that our sum of truncated terms estimated wrongly the 39th and 40th digits of the

exact result50 and that the sum of rounded terms fared a bit better.

12.3. \xintRationalSeries
\xintRationalSeries{A}{B}{f}{\ratio} evaluates

∑n=B
n=AF(n), where F(n) is specified indirectly via

num
x

num
x

Frac
f

Frac
f ★

the data of f=F(A) and the one-parameter macro \ratio which must be such that \macro{n} expands to

F(n)/F(n-1). The name indicates that \xintRationalSeries was designed to be useful in the cases

where F(n)/F(n-1) is a rational function of n but it may be anything expanding to a fraction. The

macro \ratio must be an expandable-only compatible macro and expand to its value after iterated

full expansion of its first item. A and B are fed to a \numexpr hence may be count registers or

arithmetic expressions built with such; they must obey the TEX bound. The initial term f may be a

macro \f, it will be expanded to its value representing F(A).
\def\ratio #1{2/#1[0]}% 2/n, to compute exp(2)

\cnta 0 % previously declared count

\begin{quote}

\loop \fdef\z {\xintRationalSeries {0}{\cnta}{1}{\ratio }}%

\noindent$\sum_{n=0}^{\the\cnta} \frac{2^n}{n!}=

\xintTrunc{12}\z\dots=

\xintFrac\z=\xintFrac{\xintIrr\z}$\vtop to 5pt{}\par

\ifnum\cnta<20 \advance\cnta 1 \repeat

\end{quote}∑0
n=0

2n

n! = 1.000000000000 · · · = 1 = 1∑1
n=0

2n

n! = 3.000000000000 · · · = 3 = 3∑2
n=0

2n

n! = 5.000000000000 · · · = 10
2 = 5∑3

n=0
2n

n! = 6.333333333333 · · · = 38
6 = 19

3∑4
n=0

2n

n! = 7.000000000000 · · · = 168
24 = 7∑5

n=0
2n

n! = 7.266666666666 · · · = 872
120 = 109

15∑6
n=0

2n

n! = 7.355555555555 · · · = 5296
720 = 331

45∑7
n=0

2n

n! = 7.380952380952 · · · = 37200
5040 = 155

21∑8
n=0

2n

n! = 7.387301587301 · · · = 297856
40320 = 2327

315∑9
n=0

2n

n! = 7.388712522045 · · · = 2681216
362880 = 20947

2835∑10
n=0

2n

n! = 7.388994708994 · · · = 26813184
3628800 = 34913

4725

50 as the series is alternating, we can roughly expect an error of
√
40 and the last two digits are off by 4 units, which is not

contradictory to our expectations.
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n=0

2n

n! = 7.389046015712 · · · = 294947072
39916800 = 164591

22275∑12
n=0

2n

n! = 7.389054566832 · · · = 3539368960
479001600 = 691283

93555∑13
n=0

2n

n! = 7.389055882389 · · · = 46011804672
6227020800 = 14977801

2027025∑14
n=0

2n

n! = 7.389056070325 · · · = 644165281792
87178291200 = 314533829

42567525∑15
n=0

2n

n! = 7.389056095384 · · · = 9662479259648
1307674368000 = 4718007451

638512875∑16
n=0

2n

n! = 7.389056098516 · · · = 154599668219904
20922789888000 = 1572669151

212837625∑17
n=0

2n

n! = 7.389056098884 · · · = 2628194359869440
355687428096000 = 16041225341

2170943775∑18
n=0

2n

n! = 7.389056098925 · · · = 47307498477912064
6402373705728000 = 103122162907

13956067125∑19
n=0

2n

n! = 7.389056098930 · · · = 898842471080853504
121645100408832000 = 4571749222213

618718975875∑20
n=0

2n

n! = 7.389056098930 · · · = 17976849421618118656
2432902008176640000 = 68576238333199

9280784638125

\def\ratio #1{-1/#1[0]}% -1/n, comes from the series of exp(-1)

\cnta 0 % previously declared count

\begin{quote}

\loop

\fdef\z {\xintRationalSeries {0}{\cnta}{1}{\ratio }}%

\noindent$\sum_{n=0}^{\the\cnta} \frac{(-1)^n}{n!}=

\xintTrunc{20}\z\dots=\xintFrac{\z}=\xintFrac{\xintIrr\z}$%

\vtop to 5pt{}\par

\ifnum\cnta<20 \advance\cnta 1 \repeat

\end{quote}∑0
n=0

(-1)n

n! = 1.00000000000000000000 · · · = 1 = 1∑1
n=0

(-1)n

n! = 0 · · · = 0 = 0∑2
n=0

(-1)n

n! = 0.50000000000000000000 · · · = 1
2 = 1

2∑3
n=0

(-1)n

n! = 0.33333333333333333333 · · · = 2
6 = 1

3∑4
n=0

(-1)n

n! = 0.37500000000000000000 · · · = 9
24 = 3

8∑5
n=0

(-1)n

n! = 0.36666666666666666666 · · · = 44
120 = 11

30∑6
n=0

(-1)n

n! = 0.36805555555555555555 · · · = 265
720 = 53

144∑7
n=0

(-1)n

n! = 0.36785714285714285714 · · · = 1854
5040 = 103

280∑8
n=0

(-1)n

n! = 0.36788194444444444444 · · · = 14833
40320 = 2119

5760∑9
n=0

(-1)n

n! = 0.36787918871252204585 · · · = 133496
362880 = 16687

45360∑10
n=0

(-1)n

n! = 0.36787946428571428571 · · · = 1334961
3628800 = 16481

44800∑11
n=0

(-1)n

n! = 0.36787943923360590027 · · · = 14684570
39916800 = 1468457

3991680∑12
n=0

(-1)n

n! = 0.36787944132128159905 · · · = 176214841
479001600 = 16019531

43545600∑13
n=0

(-1)n

n! = 0.36787944116069116069 · · · = 2290792932
6227020800 = 63633137

172972800∑14
n=0

(-1)n

n! = 0.36787944117216190628 · · · = 32071101049
87178291200 = 2467007773

6706022400∑15
n=0

(-1)n

n! = 0.36787944117139718991 · · · = 481066515734
1307674368000 = 34361893981

93405312000
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n=0

(-1)n

n! = 0.36787944117144498468 · · · = 7697064251745
20922789888000 = 15549624751

42268262400∑17
n=0

(-1)n

n! = 0.36787944117144217323 · · · = 130850092279664
355687428096000 = 8178130767479

22230464256000∑18
n=0

(-1)n

n! = 0.36787944117144232942 · · · = 2355301661033953
6402373705728000 = 138547156531409

376610217984000∑19
n=0

(-1)n

n! = 0.36787944117144232120 · · · = 44750731559645106
121645100408832000 = 92079694567171

250298560512000∑20
n=0

(-1)n

n! = 0.36787944117144232161 · · · = 895014631192902121
2432902008176640000 = 4282366656425369

11640679464960000

We can incorporate an indeterminate if we define \ratio to be a macro with two parameters: \de⤸
f\ratioexp #1#2{\xintDiv{#1}{#2}}% x/n: x=#1, n=#2. Then, if \x expands to some fraction x, the

macro

\xintRationalSeries {0}{b}{1}{\ratioexp{\x}}

will compute
∑n=b

n=0 x
n/n!:

\cnta 0

\def\ratioexp #1#2{\xintDiv{#1}{#2}}% #1/#2

\loop

\noindent

$\sum_{n=0}^{\the\cnta} (.57)^n/n! = \xintTrunc {50}

{\xintRationalSeries {0}{\cnta}{1}{\ratioexp{.57}}}\dots$

\vtop to 5pt {}\endgraf

\ifnum\cnta<50 \advance\cnta 10 \repeat∑0
n=0(.57)

n/n! = 1.00000000000000000000000000000000000000000000000000 . . .∑10
n=0(.57)

n/n! = 1.76826705137947002480668058035714285714285714285714 . . .∑20
n=0(.57)

n/n! = 1.76826705143373515162089324271187082272833005529082 . . .∑30
n=0(.57)

n/n! = 1.76826705143373515162089339282382144915484884979430 . . .∑40
n=0(.57)

n/n! = 1.76826705143373515162089339282382144915485219867776 . . .∑50
n=0(.57)

n/n! = 1.76826705143373515162089339282382144915485219867776 . . .
Observe that in this last example the x was directly inserted; if it had been a more complicated

explicit fraction it would have been worthwile to use \ratioexp\x with \x defined to expand to

its value. In the further situation where this fraction x is not explicit but itself defined via a

complicated, and time-costly, formula, it should be noted that \xintRationalSeries will do again

the evaluation of \x for each term of the partial sum. The easiest is thus when x can be defined as

an \edef. If however, you are in an expandable-only context and cannot store in a macro like \x the

value to be used, a variant of \xintRationalSeries is needed which will first evaluate this \x and

then use this result without recomputing it. This is \xintRationalSeriesX, documented next.
Here is a slightly more complicated evaluation:
\cnta 1

\begin{multicols}{2}

\loop \fdef\z {\xintRationalSeries

{\cnta}

{2*\cnta-1}

{\xintiiPow {\the\cnta}{\cnta}/\xintiiFac{\cnta}}

{\ratioexp{\the\cnta}}}%

\fdef\w {\xintRationalSeries {0}{2*\cnta-1}{1}{\ratioexp{\the\cnta}}}%

\noindent

$\sum_{n=\the\cnta}^{\the\numexpr 2*\cnta-1\relax} \frac{\the\cnta^n}{n!}/%

\sum_{n=0}^{\the\numexpr 2*\cnta-1\relax} \frac{\the\cnta^n}{n!} =

\xintTrunc{8}{\xintDiv\z\w}\dots$ \vtop to 5pt{}\endgraf

\ifnum\cnta<20 \advance\cnta 1 \repeat

\end{multicols}
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n=1

1n

n!/
∑1

n=0
1n

n! = 0.50000000 . . .∑3
n=2

2n

n!/
∑3

n=0
2n

n! = 0.52631578 . . .∑5
n=3

3n

n!/
∑5

n=0
3n

n! = 0.53804347 . . .∑7
n=4

4n

n!/
∑7

n=0
4n

n! = 0.54317053 . . .∑9
n=5

5n

n!/
∑9

n=0
5n

n! = 0.54502576 . . .∑11
n=6

6n

n!/
∑11

n=0
6n

n! = 0.54518217 . . .∑13
n=7

7n

n!/
∑13

n=0
7n

n! = 0.54445274 . . .∑15
n=8

8n

n!/
∑15

n=0
8n

n! = 0.54327992 . . .∑17
n=9

9n

n!/
∑17

n=0
9n

n! = 0.54191055 . . .∑19
n=10

10n

n! /
∑19

n=0
10n

n! = 0.54048295 . . .

∑21
n=11

11n

n! /
∑21

n=0
11n

n! = 0.53907332 . . .∑23
n=12

12n

n! /
∑23

n=0
12n

n! = 0.53772178 . . .∑25
n=13

13n

n! /
∑25

n=0
13n

n! = 0.53644744 . . .∑27
n=14

14n

n! /
∑27

n=0
14n

n! = 0.53525726 . . .∑29
n=15

15n

n! /
∑29

n=0
15n

n! = 0.53415135 . . .∑31
n=16

16n

n! /
∑31

n=0
16n

n! = 0.53312615 . . .∑33
n=17

17n

n! /
∑33

n=0
17n

n! = 0.53217628 . . .∑35
n=18

18n

n! /
∑35

n=0
18n

n! = 0.53129566 . . .∑37
n=19

19n

n! /
∑37

n=0
19n

n! = 0.53047810 . . .∑39
n=20

20n

n! /
∑39

n=0
20n

n! = 0.52971771 . . .

12.4. \xintRationalSeriesX
\xintRationalSeriesX{A}{B}{\first}{\ratio}{\g} is a parametrized version of \xintRationalSeries

num
x

num
x

Frac
f

Frac
f f ★

where \first is now a one-parameter macro such that \first{\g} gives the initial term and \ratio

is a two-parameter macro such that \ratio{n}{\g} represents the ratio of one term to the previ-

ous one. The parameter \g is evaluated only once at the beginning of the computation, and can thus

itself be the yet unevaluated result of a previous computation.

Let \ratio be such a two-parameter macro; note the subtle differences between

\xintRationalSeries {A}{B}{\first}{\ratio{\g}}

and \xintRationalSeriesX {A}{B}{\first}{\ratio}{\g}.

First the location of braces differ... then, in the former case \first is a no-parameter macro

expanding to a fractional number, and in the latter, it is a one-parameter macro which will use \⤸
g. Furthermore the X variant will expand \g at the very beginning whereas the former non-X former

variant will evaluate it each time it needs it (which is bad if this evaluation is time-costly, but

good if \g is a big explicit fraction encapsulated in a macro).
The example will use the macro \xintPowerSeries which computes efficiently exact partial sums

of power series, and is discussed in the next section.
\def\firstterm #1{1[0]}% first term of the exponential series

% although it is the constant 1, here it must be defined as a

% one-parameter macro. Next comes the ratio function for exp:

\def\ratioexp #1#2{\xintDiv {#1}{#2}}% x/n

% These are the (-1)^{n-1}/n of the log(1+h) series:

\def\coefflog #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}%

% Let L(h) be the first 10 terms of the log(1+h) series and

% let E(t) be the first 10 terms of the exp(t) series.

% The following computes E(L(a/10)) for a=1,...,12.

\begin{multicols}{3}\raggedcolumns

\cnta 0

\loop

\noindent\xintTrunc {18}{%

\xintRationalSeriesX {0}{9}{\firstterm}{\ratioexp}

{\xintPowerSeries{1}{10}{\coefflog}{\the\cnta[-1]}}}\dots

\endgraf

\ifnum\cnta < 12 \advance \cnta 1 \repeat

\end{multicols}

1.000000000000000000...

1.099999999999083906...

1.199999998111624029...

1.299999835744121464...

1.399996091955359088...

1.499954310225476533...

1.599659266069210466...

1.698137473697423757...

1.791898112718884531...

1.870485649686617459...

1.907197560339468199...

1.845117565491393752...

1.593831932293536053...
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These completely exact operations rapidly create numbers with many digits. Let us print in full

the raw fractions created by the operation illustrated above:

E(L(1[-1]))=163591443693117889303431088806087634148250735791023497657261314014159107395739⤸
0639913787199465741057336677116573252341295218688/1487194942665946638644674560000000000[-90]

(length of numerator: 127)

E(L(12[-2]))=16656583357757234467643895619026874191327320993157183247568125775059356018362⤸
23193439604540053754226444871502834816644808336288211299845887246066795041160882231219805166⤸
927273729660728412213074817261522841754729971712/1487194942665946638644674560000000000[-180]

(length of numerator: 217)

E(L(123[-3]))=1670119920600555026998663239069002278266215966968669508145191626887938734862⤸
73269986546078658803979014003116903378025935148900448814698936627633558066738151958530603167⤸
40612785673175692992742863679398303407413205084692383474722719804622771982161117197045873620⤸
25769049115687215712723182386527055033735053312/1487194942665946638644674560000000000[-270] (length

of numerator: 307)

We see that the denominators here remain the same, as our input only had various powers of ten as

denominators, and xintfrac efficiently assemble (some only, as we can see) powers of ten. Notice

that 1 more digit in an input denominator seems to mean 90 more in the raw output. We can check that

with some other test cases:

E(L(1/7))=48228203862750885848048032297655163193719083498752126622944863683478921463537652⤸
0421966954177876452794933/421996783816227187824437252776031227863306380633210580813174165609⤸
500569367213288120561612881920000000000[0] (length of numerator: 105; length of denominator:

105)

E(L(1/71))=6190039670785350346406550995159476540272948182884398462882888922997238323197498⤸
85971940015218249059435720836832839237391067287499316324605873244670430502854291696282116287⤸
58603878135499973539887212860467/61040668975799982582643863990035761895246771100033570420271⤸
67109220333298498184289107451083577982695694446256675834390041749715017225626389830761170775⤸
7919998778523559418340083473473151235522560000000000[0] (length of numerator: 203; length of

denominator: 203)

E(L(1/712))=300356435377840602055967040841188592538909311419930838799656013626071029784174⤸
49681929088495804136203813242174405561415315426829241317287053037273453329055814153891517325⤸
75694112320026364569495366534918031439051104610487529796192058205725999641657806615904929048⤸
98946463533146662233869249/29993517810522090976696848959176310536177550755703969736435921535⤸
22460410892328532539738041911202121412424715881734049254716640082470987340985151932504281494⤸
24064596788874441470533147848207863549778847000617103264666638782677019019130113930837421531⤸
810478062025966102914017525760000000000[0] (length of numerator: 288; length of denominator:

288)

Thus decimal numbers such as 0.123 (equivalently 123[-3]) give less computing intensive tasks

than fractions such as 1/712: in the case of decimal numbers the (raw) denominators originate in

the coefficients of the series themselves, powers of ten of the input within brackets being treated

separately. And even then the numerators will grow with the size of the input in a sort of linear

way, the coefficient being given by the order of series: here 10 from the log and 9 from the exp,

so 90. One more digit in the input means 90 more digits in the numerator of the output: obviously

we can not go on composing such partial sums of series and hope that xint will joyfully do all at

the speed of light!

Hence, truncating the output (or better, rounding) is the only way to go if one needs a gen-

eral calculus of special functions. This is why the package xintseries provides, besides \xint-

Series, \xintRationalSeries, or \xintPowerSeries which compute exact sums, \xintFxPtPowerSeries

for fixed-point computations and a (tentative naive) \xintFloatPowerSeries.

12.5. \xintPowerSeries
\xintPowerSeries{A}{B}{\coeff}{f} evaluates the sum

∑n=B
n=A\coeff{n} · fn. The initial and final in-

num
x

num
x

Frac
f

Frac
f ★

dices are given to a \numexpr expression. The \coeff macro (which, as argument to \xintPowerSeries
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is expanded only at the time \coeff{n} is needed) should be defined as a one-parameter expandable

macro, its input will be an explicit number.

The f can be either a fraction directly input or a macro \f expanding to such a fraction. It

is actually more efficient to encapsulate an explicit fraction f in such a macro, if it has big

numerators and denominators (`big' means hundreds of digits) as it will then take less space in

the processing until being (repeatedly) used.

This macro computes the exact result (one can use it also for polynomial evaluation), using a

Horner scheme which helps avoiding a denominator build-up (this problem however, even if using a

naive additive approach, is much less acute since release 1.1 and its new policy regarding \xint-

Add).
\def\geom #1{1[0]} % the geometric series

\def\f {5/17[0]}

\[ \sum_{n=0}^{n=20} \Bigl(\frac 5{17}\Bigr)^n

=\xintFrac{\xintIrr{\xintPowerSeries {0}{20}{\geom}{\f}}}

=\xintFrac{\xinttheexpr (17^21-5^21)/12/17^20\relax}\]
n=20∑
n=0

( 5
17

)n
=
5757661159377657976885341

4064231406647572522401601
=
69091933912531895722624092

48770776879770870268819212

\def\coefflog #1{1/#1[0]}% 1/n

\def\f {1/2[0]}%

\[ \log 2 \approx \sum_{n=1}^{20} \frac1{n\cdot 2^n}

= \xintFrac {\xintIrr {\xintPowerSeries {1}{20}{\coefflog}{\f}}}\]

\[ \log 2 \approx \sum_{n=1}^{50} \frac1{n\cdot 2^n}

= \xintFrac {\xintIrr {\xintPowerSeries {1}{50}{\coefflog}{\f}}}\]

log 2 ≈
20∑
n=1

1

n · 2n =
42299423848079

61025172848640

log 2 ≈
50∑
n=1

1

n · 2n =
60463469751752265663579884559739219

87230347965792839223946208178339840

\setlength{\columnsep}{0pt}

\begin{multicols}{3}

\cnta 1 % previously declared count

\loop % in this loop we recompute from scratch each partial sum!

% we can afford that, as \xintPowerSeries is fast enough.

\noindent\hbox to 2em{\hfil\texttt{\the\cnta.} }%

\xintTrunc {12}

{\xintPowerSeries {1}{\cnta}{\coefflog}{\f}}\dots

\endgraf

\ifnum \cnta < 30 \advance\cnta 1 \repeat

\end{multicols}

1. 0.500000000000...

2. 0.625000000000...

3. 0.666666666666...

4. 0.682291666666...

5. 0.688541666666...

6. 0.691145833333...

7. 0.692261904761...

8. 0.692750186011...

9. 0.692967199900...

10. 0.693064856150...

11. 0.693109245355...

12. 0.693129590407...

13. 0.693138980431...

14. 0.693143340085...

15. 0.693145374590...

16. 0.693146328265...

17. 0.693146777052...

18. 0.693146988980...

19. 0.693147089367...

20. 0.693147137051...

21. 0.693147159757...

22. 0.693147170594...

23. 0.693147175777...

24. 0.693147178261...

25. 0.693147179453...

26. 0.693147180026...

27. 0.693147180302...

28. 0.693147180435...

29. 0.693147180499...

30. 0.693147180530...

\def\coeffarctg #1{1/\the\numexpr\ifodd #1 -2*#1-1\else2*#1+1\fi\relax }%

129



TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac, xinttools, xintexpr, Examples

% the above gives (-1)^n/(2n+1). The sign being in the denominator,

% **** no [0] should be added ****,

% else nothing is guaranteed to work (even if it could by sheer luck)

% Notice in passing this aspect of \numexpr:

% **** \numexpr -(1)\relax is ilegal !!! ****
\def\f {1/25[0]}% 1/5^2

\[\mathrm{Arctg}(\frac15)\approx \frac15\sum_{n=0}^{15} \frac{(-1)^n}{(2n+1)25^n}

= \xintFrac{\xintIrr {\xintDiv {\xintPowerSeries {0}{15}{\coeffarctg}{\f}}{5}}}\]

Arctg(
1

5
) ≈ 1

5

15∑
n=0

(-1)n

(2n + 1)25n
=
165918726519122955895391793269168

840539304153062403202056884765625

12.6. \xintPowerSeriesX
This is the same as \xintPowerSeries apart from the fact that the last parameter f is expanded once

num
x

num
x

Frac
f

Frac
f

and for all before being then used repeatedly. If the f parameter is to be an explicit big fraction
with many (dozens) digits, rather than using it directly it is slightly better to have some macro
\g defined to expand to the explicit fraction and then use \xintPowerSeries with \g; but if f has
not yet been evaluated and will be the output of a complicated expansion of some \f, and if, due to
an expanding only context, doing \edef\g{\f} is no option, then \xintPowerSeriesX should be used
with \f as last parameter.
\def\ratioexp #1#2{\xintDiv {#1}{#2}}% x/n

% These are the (-1)^{n-1}/n of the log(1+h) series:

\def\coefflog #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}%

% Let L(h) be the first 10 terms of the log(1+h) series and

% let E(t) be the first 10 terms of the exp(t) series.

% The following computes L(E(a/10)-1) for a=1,..., 12.

\begin{multicols}{3}\raggedcolumns

\cnta 1

\loop

\noindent\xintTrunc {18}{%

\xintPowerSeriesX {1}{10}{\coefflog}

{\xintSub

{\xintRationalSeries {0}{9}{1[0]}{\ratioexp{\the\cnta[-1]}}}

{1}}}\dots

\endgraf

\ifnum\cnta < 12 \advance \cnta 1 \repeat

\end{multicols}

0.099999999998556159...

0.199999995263443554...

0.299999338075041781...

0.399974460740121112...

0.499511320760604148...

0.593980619762352217...

0.645144282733914916...

0.398118280111436442...

-1.597091692317639401...

-12.648937932093322763...

-66.259639046914679687...

-304.768437445462801227...

12.7. \xintFxPtPowerSeries
\xintFxPtPowerSeries{A}{B}{\coeff}{f}{D} computes

∑n=B
n=A\coeff{n} ·f n with each term of the series

num
x

num
x ★

truncated to D digits after the decimal point. As usual, A and B are completely expanded through
Frac
f

Frac
f

num
x ★

their inclusion in a \numexpr expression. Regarding D it will be similarly be expanded each time

it is used inside an \xintTrunc. The one-parameter macro \coeff is similarly expanded at the time

it is used inside the computations. Idem for f. If f itself is some complicated macro it is thus

better to use the variant \xintFxPtPowerSeriesX which expands it first and then uses the result

of that expansion.

The current (1.04) implementation is: the first power f^A is computed exactly, then truncated.
Then each successive power is obtained from the previous one by multiplication by the exact value
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of f, and truncated. And \coeff{n}.f^n is obtained from that by multiplying by \coeff{n} (untrun-

cated) and then truncating. Finally the sum is computed exactly. Apart from that \xintFxPtPow-

erSeries (where FxPt means `fixed-point') is like \xintPowerSeries.

There should be a variant for things of the type
∑
cn

fn

n! to avoid having to compute the factorial

from scratch at each coefficient, the same way \xintFxPtPowerSeries does not compute f^n from

scratch at each n. Perhaps in the next package release.

e-
1
2 ≈

1.00000000000000000000

0.50000000000000000000

0.62500000000000000000

0.60416666666666666667

0.60677083333333333333

0.60651041666666666667

0.60653211805555555555

0.60653056795634920635

0.60653066483754960317

0.60653065945526069224

0.60653065972437513778

0.60653065971214266299

0.60653065971265234943

0.60653065971263274611

0.60653065971263344622

0.60653065971263342289

0.60653065971263342361

0.60653065971263342359

0.60653065971263342359

0.60653065971263342359

\def\coeffexp #1{1/\xintiiFac {#1}[0]}% 1/n!

\def\f {-1/2[0]}% [0] for faster input parsing

\cnta 0 % previously declared \count register

\noindent\loop

$\xintFxPtPowerSeries {0}{\cnta}{\coeffexp}{\f}{20}$\\

\ifnum\cnta<19 \advance\cnta 1 \repeat\par

\xintFxPtPowerSeries {0}{19}{\coeffexp}{\f}{25}= 0.6065306597126334236037992

It is no difficulty for xintfrac to compute exactly, with the help of \xintPowerSeries, the

nineteenth partial sum, and to then give (the start of) its exact decimal expansion:

\xintPowerSeries {0}{19}{\coeffexp}{\f} =
38682746160036397317757

63777066403145711616000

= 0.606530659712633423603799152126 . . .
Thus, one should always estimate a priori how many ending digits are not reliable: if there are N

terms and N has k digits, then digits up to but excluding the last k may usually be trusted. If we

are optimistic and the series is alternating we may even replace N with
√
N to get the number k of

digits possibly of dubious significance.

12.8. \xintFxPtPowerSeriesX
\xintFxPtPowerSeriesX{A}{B}{\coeff}{\f}{D} computes, exactly as \xintFxPtPowerSeries, the sum

num
x

num
x

of \coeff{n}.\f^n from n=A to n=B with each term of the series being truncated to D digits after
Frac
f

Frac
f

num
x ★

the decimal point. The sole difference is that \f is first expanded and it is the result of this

which is used in the computations.
Let us illustrate this on the numerical exploration of the identity
log(1+x) = -log(1/(1+x))

Let L(h)=log(1+h), and D(h)=L(h)+L(-h/(1+h)). Theoretically thus, D(h)=0 but we shall evaluate
L(h) and -h/(1+h) keeping only 10 terms of their respective series. We will assume h < 0.5. With
only ten terms kept in the power series we do not have quite 3 digits precision as 210 = 1024. So it
wouldn't make sense to evaluate things more precisely than, say circa 5 digits after the decimal
points.
\cnta 0

\def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]}% (-1)^{n-1}/n

\def\coeffalt #1{\the\numexpr\ifodd#1 -1\else1\fi\relax [0]}% (-1)^n

\begin{multicols}2

\loop

\noindent \hbox to 2.5cm {\hss\texttt{D(\the\cnta/100): }}%

\xintAdd {\xintFxPtPowerSeriesX {1}{10}{\coefflog}{\the\cnta [-2]}{5}}

{\xintFxPtPowerSeriesX {1}{10}{\coefflog}

{\xintFxPtPowerSeriesX {1}{10}{\coeffalt}{\the\cnta [-2]}{5}}

{5}}\endgraf
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\ifnum\cnta < 49 \advance\cnta 7 \repeat

\end{multicols}

D(0/100): 0/1[0]

D(7/100): 2/1[-5]

D(14/100): 2/1[-5]

D(21/100): 3/1[-5]

D(28/100): 4/1[-5]

D(35/100): 4/1[-5]

D(42/100): 9/1[-5]

D(49/100): 42/1[-5]
Let's say we evaluate functions on [-1/2,+1/2] with values more or less also in [-1/2,+1/2] and

we want to keep 4 digits of precision. So, roughly we need at least 14 terms in series like the
geometric or log series. Let's make this 15. Then it doesn't make sense to compute intermediate
summands with more than 6 digits precision. So we compute with 6 digits precision but return only
4 digits (rounded) after the decimal point. This result with 4 post-decimal points precision is
then used as input to the next evaluation.
\begin{multicols}2

\loop

\noindent \hbox to 2.5cm {\hss\texttt{D(\the\cnta/100): }}%

\dtt{\xintRound{4}

{\xintAdd {\xintFxPtPowerSeriesX {1}{15}{\coefflog}{\the\cnta [-2]}{6}}

{\xintFxPtPowerSeriesX {1}{15}{\coefflog}

{\xintRound {4}{\xintFxPtPowerSeriesX {1}{15}{\coeffalt}

{\the\cnta [-2]}{6}}}

{6}}%

}}\endgraf

\ifnum\cnta < 49 \advance\cnta 7 \repeat

\end{multicols}

D(0/100): 0

D(7/100): 0.0000

D(14/100): 0.0000

D(21/100): -0.0001

D(28/100): -0.0001

D(35/100): -0.0001

D(42/100): -0.0000

D(49/100): -0.0001

Not bad... I have cheated a bit: the `four-digits precise' numeric evaluations were left un-

rounded in the final addition. However the inner rounding to four digits worked fine and made the

next step faster than it would have been with longer inputs. The morale is that one should not use

the raw results of \xintFxPtPowerSeriesX with the D digits with which it was computed, as the last

are to be considered garbage. Rather, one should keep from the output only some smaller number

of digits. This will make further computations faster and not less precise. I guess there should

be some macro to do this final truncating, or better, rounding, at a given number D'<D of digits.

Maybe for the next release.

12.9. \xintFloatPowerSeries
\xintFloatPowerSeries[P]{A}{B}{\coeff}{f} computes

∑n=B
n=A\coeff{n} · f n with a floating point pre-[

num
x ]

num
x

num
x

cision given by the optional parameter P or by the current setting of \xintDigits.
Frac
f

Frac
f ★

In the current, preliminary, version, no attempt has been made to try to guarantee to the final

result the precision P. Rather, P is used for all intermediate floating point evaluations. So

rounding errors will make some of the last printed digits invalid. The operations done are first

the evaluation of f^A using \xintFloatPow, then each successive power is obtained from this first

one by multiplication by f using \xintFloatMul, then again with \xintFloatMul this is multiplied

with \coeff{n}, and the sum is done adding one term at a time with \xintFloatAdd. To sum up, this

is just the naive transformation of \xintFxPtPowerSeries from fixed point to floating point.
\def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]}%

\xintFloatPowerSeries [8]{1}{30}{\coefflog}{-1/2[0]}

-6.9314718e-1

12.10. \xintFloatPowerSeriesX
\xintFloatPowerSeriesX[P]{A}{B}{\coeff}{f} is like \xintFloatPowerSeries with the difference[

num
x ]

num
x

num
x
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that f is expanded once and for all at the start of the computation, thus allowing efficient chain-
Frac
f

Frac
f ★

ing of such series evaluations.
\def\coeffexp #1{1/\xintiiFac {#1}[0]}% 1/n! (exact, not float)

\def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]}%

\xintFloatPowerSeriesX [8]{0}{30}{\coeffexp}

{\xintFloatPowerSeries [8]{1}{30}{\coefflog}{-1/2[0]}}

5.0000001e-1

12.11. Computing log 2 and 𝜋

In this final section, the use of \xintFxPtPowerSeries (and \xintPowerSeries) will be illustrated

on the (expandable... why make things simple when it is so easy to make them difficult!) computa-

tions of the first digits of the decimal expansion of the familiar constants log 2 and 𝜋.
Let us start with log 2. We will get it from this formula (which is left as an exercise):

log(2)=-2 log(1-13/256)-5 log(1-1/9)

The number of terms to be kept in the log series, for a desired precision of 10^{-D} was roughly

estimated without much theoretical analysis. Computing exactly the partial sums with \xintPow-

erSeries and then printing the truncated values, from D=0 up to D=100 showed that it worked in

terms of quality of the approximation. Because of possible strings of zeroes or nines in the ex-

act decimal expansion (in the present case of log 2, strings of zeroes around the fourtieth and the

sixtieth decimals), this does not mean though that all digits printed were always exact. In the

end one always end up having to compute at some higher level of desired precision to validate the

earlier result.

Then we tried with \xintFxPtPowerSeries: this is worthwile only for D's at least 50, as the exact

evaluations are faster (with these short-length f's) for a lower number of digits. And as expected

the degradation in the quality of approximation was in this range of the order of two or three

digits. This meant roughly that the 3+1=4 ending digits were wrong. Again, we ended up having to

compute with five more digits and compare with the earlier value to validate it. We use truncation

rather than rounding because our goal is not to obtain the correct rounded decimal expansion but

the correct exact truncated one.
\def\coefflog #1{1/#1[0]}% 1/n

\def\xa {13/256[0]}% we will compute log(1-13/256)

\def\xb {1/9[0]}% we will compute log(1-1/9)

\def\LogTwo #1%

% get log(2)=-2log(1-13/256)- 5log(1-1/9)

{% we want to use \printnumber, hence need something expanding in two steps

% only, so we use here the \romannumeral0 method

\romannumeral0\expandafter\LogTwoDoIt \expandafter

% Nb Terms for 1/9:

{\the\numexpr #1*150/143\expandafter}\expandafter

% Nb Terms for 13/256:

{\the\numexpr #1*100/129\expandafter}\expandafter

% We print #1 digits, but we know the ending ones are garbage

{\the\numexpr #1\relax}% allows #1 to be a count register

}%

\def\LogTwoDoIt #1#2#3%

% #1=nb of terms for 1/9, #2=nb of terms for 13/256,

{% #3=nb of digits for computations, also used for printing

\xinttrunc {#3} % lowercase form to stop the \romannumeral0 expansion!

{\xintAdd

{\xintMul {2}{\xintFxPtPowerSeries {1}{#2}{\coefflog}{\xa}{#3}}}

{\xintMul {5}{\xintFxPtPowerSeries {1}{#1}{\coefflog}{\xb}{#3}}}%

}%

}%

\noindent $\log 2 \approx \LogTwo {60}\dots$\endgraf
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\noindent\phantom{$\log 2$}${}\approx{}$\printnumber{\LogTwo {65}}\dots\endgraf

\noindent\phantom{$\log 2$}${}\approx{}$\printnumber{\LogTwo {70}}\dots\endgraf

log 2 ≈ 0.693147180559945309417232121458176568075500134360255254120484 . . .
≈ 0.69314718055994530941723212145817656807550013436025525412068000711...

≈ 0.6931471805599453094172321214581765680755001343602552541206800094933723...
Here is the code doing an exact evaluation of the partial sums. We have added a +1 to the number

of digits for estimating the number of terms to keep from the log series: we experimented that this
gets exactly the first D digits, for all values from D=0 to D=100, except in one case (D=40) where
the last digit is wrong. For values of D higher than 100 it is more efficient to use the code using
\xintFxPtPowerSeries.
\def\LogTwo #1% get log(2)=-2log(1-13/256)- 5log(1-1/9)

{%

\romannumeral0\expandafter\LogTwoDoIt \expandafter

{\the\numexpr (#1+1)*150/143\expandafter}\expandafter

{\the\numexpr (#1+1)*100/129\expandafter}\expandafter

{\the\numexpr #1\relax}%

}%

\def\LogTwoDoIt #1#2#3%

{% #3=nb of digits for truncating an EXACT partial sum

\xinttrunc {#3}

{\xintAdd

{\xintMul {2}{\xintPowerSeries {1}{#2}{\coefflog}{\xa}}}

{\xintMul {5}{\xintPowerSeries {1}{#1}{\coefflog}{\xb}}}%

}%

}%

Let us turn now to Pi, computed with the Machin formula (but see also the approach via the Brent-

Salamin algorithm with \xintfloatexpr) Again the numbers of terms to keep in the two arctg series

were roughly estimated, and some experimentations showed that removing the last three digits was

enough (at least for D=0-100 range). And the algorithm does print the correct digits when used

with D=1000 (to be convinced of that one needs to run it for D=1000 and again, say for D=1010.)

A theoretical analysis could help confirm that this algorithm always gets better than 10^{-D}

precision, but again, strings of zeroes or nines encountered in the decimal expansion may falsify

the ending digits, nines may be zeroes (and the last non-nine one should be increased) and zeroes

may be nine (and the last non-zero one should be decreased).
\def\coeffarctg #1{\the\numexpr\ifodd#1 -1\else1\fi\relax/%

\the\numexpr 2*#1+1\relax [0]}%

%\def\coeffarctg #1{\romannumeral0\xintmon{#1}/\the\numexpr 2*#1+1\relax }%

\def\xa {1/25[0]}% 1/5^2, the [0] for faster parsing

\def\xb {1/57121[0]}% 1/239^2, the [0] for faster parsing

\def\Machin #1{% #1 may be a count register, \Machin {\mycount} is allowed

\romannumeral0\expandafter\MachinA \expandafter

% number of terms for arctg(1/5):

{\the\numexpr (#1+3)*5/7\expandafter}\expandafter

% number of terms for arctg(1/239):

{\the\numexpr (#1+3)*10/45\expandafter}\expandafter

% do the computations with 3 additional digits:

{\the\numexpr #1+3\expandafter}\expandafter

% allow #1 to be a count register:

{\the\numexpr #1\relax }}%

\def\MachinA #1#2#3#4%

{\xinttrunc {#4}

{\xintSub

{\xintMul {16/5}{\xintFxPtPowerSeries {0}{#1}{\coeffarctg}{\xa}{#3}}}

{\xintMul{4/239}{\xintFxPtPowerSeries {0}{#2}{\coeffarctg}{\xb}{#3}}}%

}}%

\begin{framed}
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\[ \pi = \Machin {60}\dots \]

\end{framed}

𝜋 = 3.141592653589793238462643383279502884197169399375105820974944 . . .

Here is a variant\MachinBis, which evaluates the partial sums exactly using \xintPowerSeries,
before their final truncation. No need for a ``+3'' then.
\def\MachinBis #1{% #1 may be a count register,

% the final result will be truncated to #1 digits post decimal point

\romannumeral0\expandafter\MachinBisA \expandafter

% number of terms for arctg(1/5):

{\the\numexpr #1*5/7\expandafter}\expandafter

% number of terms for arctg(1/239):

{\the\numexpr #1*10/45\expandafter}\expandafter

% allow #1 to be a count register:

{\the\numexpr #1\relax }}%

\def\MachinBisA #1#2#3%

{\xinttrunc {#3} %

{\xintSub

{\xintMul {16/5}{\xintPowerSeries {0}{#1}{\coeffarctg}{\xa}}}

{\xintMul{4/239}{\xintPowerSeries {0}{#2}{\coeffarctg}{\xb}}}%

}}%

Let us use this variant for a loop showing the build-up of digits:
\begin{multicols}{2}

\cnta 0 % previously declared \count register

\loop \noindent

\centeredline{\dtt{\MachinBis{\cnta}}}%

\ifnum\cnta < 30

\advance\cnta 1 \repeat

\end{multicols}

3.

3.1

3.14

3.141

3.1415

3.14159

3.141592

3.1415926

3.14159265

3.141592653

3.1415926535

3.14159265358

3.141592653589

3.1415926535897

3.14159265358979

3.141592653589793

3.1415926535897932

3.14159265358979323

3.141592653589793238

3.1415926535897932384

3.14159265358979323846

3.141592653589793238462

3.1415926535897932384626

3.14159265358979323846264

3.141592653589793238462643

3.1415926535897932384626433

3.14159265358979323846264338

3.141592653589793238462643383

3.1415926535897932384626433832

3.14159265358979323846264338327

3.141592653589793238462643383279
You want more digits and have some time? compile this copy of the \Machin with etex (or pdftex):

% Compile with e-TeX extensions enabled (etex, pdftex, ...)

\input xintfrac.sty

\input xintseries.sty

% pi = 16 Arctg(1/5) - 4 Arctg(1/239) (John Machin's formula)

\def\coeffarctg #1{\the\numexpr\ifodd#1 -1\else1\fi\relax/%

\the\numexpr 2*#1+1\relax [0]}%
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\def\xa {1/25[0]}%

\def\xb {1/57121[0]}%

\def\Machin #1{%

\romannumeral0\expandafter\MachinA \expandafter

{\the\numexpr (#1+3)*5/7\expandafter}\expandafter

{\the\numexpr (#1+3)*10/45\expandafter}\expandafter

{\the\numexpr #1+3\expandafter}\expandafter

{\the\numexpr #1\relax }}%

\def\MachinA #1#2#3#4%

{\xinttrunc {#4}

{\xintSub

{\xintMul {16/5}{\xintFxPtPowerSeries {0}{#1}{\coeffarctg}{\xa}{#3}}}

{\xintMul {4/239}{\xintFxPtPowerSeries {0}{#2}{\coeffarctg}{\xb}{#3}}}%

}}%

\pdfresettimer

\fdef\Z {\Machin {1000}}

\odef\W {\the\pdfelapsedtime}

\message{\Z}

\message{computed in \xintRound {2}{\W/65536} seconds.}

\bye

This will log the first 1000 digits of 𝜋 after the decimal point. On my laptop (a 2012 model)

this took about 5.05 seconds last time I tried.51 52

As mentioned in the introduction, the file pi.tex by D. Roegel shows that orders of magnitude

faster computations are possible within TEX, but recall our constraints of complete expandability

and be merciful, please.

Why truncating rather than rounding? One of our main competitors on the market of scientific com-

puting, a canadian product (not encumbered with expandability constraints, and having barely ever

heard of TEX ;-), prints numbers rounded in the last digit. Why didn't we follow suit in the macros

\xintFxPtPowerSeries and \xintFxPtPowerSeriesX? To round at D digits, and excluding a rewrite or

cloning of the division algorithm which anyhow would add to it some overhead in its final steps,

xintfrac needs to truncate at D+1, then round. And rounding loses information! So, with more time

spent, we obtain a worst result than the one truncated at D+1 (one could imagine that additions and

so on, done with only D digits, cost less; true, but this is a negligeable effect per summand com-

pared to the additional cost for this term of having been truncated at D+1 then rounded). Rounding

is the way to go when setting up algorithms to evaluate functions destined to be composed one after

the other: exact algebraic operations with many summands and an f variable which is a fraction are

costly and create an even bigger fraction; replacing f with a reasonable rounding, and rounding

the result, is necessary to allow arbitrary chaining.

But, for the computation of a single constant, we are really interested in the exact decimal

expansion, so we truncate and compute more terms until the earlier result gets validated. Finally

if we do want the rounding we can always do it on a value computed with D+1 truncation.

51 With 1.09i and earlier xint, this used to be 42 seconds; starting with 1.09j, and prior to 1.2, it was 16 seconds (this was
probably due to a more efficient division with denominators at most 9999). The 1.2 xintcore achieves a further gain at 5.6 seconds.
52 With \xintDigits :=1001\relax, the non-optimized implementation with the iter of xintexpr fame using the Brent-Salamin
algorithm, took, last time I tried (1.2i), about 7 seconds on my laptop (the last two digits were wrong, which is ok as they serve
as guard digits), and for obtaining about 500 digits, it was about 1.7s. This is not bad, taking into account that the syntax is
almost free rolling speech, contrarily to the code above for the Machin formula computation; we would like to use the quadratically
convergent Brent-Salamin algorithm for more digits, but with such computations with numbers of one thousand digits we are
beyond the border of the reasonable range for xint. Innocent people not knowing what it means to compute with TEX, and with
the extra constraint of expandability will wonder why this is at least thousands of times slower than with any other language (with
a little Python program using the Decimal library, I timed the Brent-Salamin algorithm to 4.4ms for about 1000 digits and 1.14ms
for 500 digits.) I will just say that for example digits are represented and manipulated via their ascii-code ! all computations must
convert from ascii-code to cpu words; furthermore nothing can be stored away. And there is no memory storage with O(1) time
access... if expandability is to be verified.
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13. Macros of the xintcfrac package
First version of this package was included in release 1.04 (2013/04/25) of the xint bundle. It was

kept almost unchanged until 1.09m of 2014/02/26 which brought some new macros: \xintFtoC, \xint-

CtoF, \xintCtoCv, dealing with sequences of braced partial quotients rather than comma separated

ones, \xintFGtoC which is to produce ``guaranteed'' coefficients of some real number known approx-

imately, and \xintGGCFrac for displaying arbitrary material as a continued fraction; also, some

changes to existing macros: \xintFtoCs and \xintCntoCs insert spaces after the commas, \xintCstoF

and \xintCstoCv authorize spaces in the input also before the commas.

Note: \xintCstoF and \xintCstoCv create a partial dependency on xinttools (its \xintCSVtoList.)

.1 Package overview . . . . . . . . . . . . . . . . . . . . . . . 137

.2 \xintCFrac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

.3 \xintGCFrac . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

.4 \xintGGCFrac . . . . . . . . . . . . . . . . . . . . . . . . . . 142

.5 \xintGCtoGCx . . . . . . . . . . . . . . . . . . . . . . . . . . 143

.6 \xintFtoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

.7 \xintFtoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

.8 \xintFtoCx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

.9 \xintFtoGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

.10 \xintFGtoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

.11 \xintFtoCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

.12 \xintCstoF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

.13 \xintCtoF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

.14 \xintGCtoF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

.15 \xintCstoCv . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

.16 \xintCtoCv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

.17 \xintGCtoCv . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

.18 \xintFtoCv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

.19 \xintFtoCCv . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

.20 \xintCntoF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

.21 \xintGCntoF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

.22 \xintCntoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

.23 \xintCntoGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

.24 \xintGCntoGC . . . . . . . . . . . . . . . . . . . . . . . . . . 148

.25 \xintCstoGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

.26 \xintiCstoF, \xintiGCtoF, \xintiCstoCv,
\xintiGCtoCv . . . . . . . . . . . . . . . . . . . . . . . . . . 149

.27 \xintGCtoGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

.28 Euler’s number e . . . . . . . . . . . . . . . . . . . . . . . . 149

13.1. Package overview
The package computes partial quotients and convergents of a fraction, or conversely start from co-

efficients and obtain the corresponding fraction; three macros \xintCFrac, \xintGCFrac and \xint-

GGCFrac are for typesetting (the first two assume that the coefficients are numeric quantities

acceptable by the xintfrac \xintFrac macro, the last one will display arbitrary material), the

others can be nested (if applicable) or see their outputs further processed by other macros from

the xint bundle, particularly the macros of xinttools dealing with sequences of braced items or

comma separated lists.

A simple continued fraction has coefficients [c0,c1,...,cN] (usually called partial quotients,

but I dislike this entrenched terminology), where c0 is a positive or negative integer and the

others are positive integers.
Typesetting is usually done via the amsmath macro \cfrac:
\[ c_0 + \cfrac{1}{c_1+\cfrac1{c_2+\cfrac1{c_3+\cfrac1{\ddots}}}}\]

c0 +
1

c1 +
1

c2 +
1

c3 +
1

...

Here is a concrete example:
\[ \xintFrac {208341/66317}=\xintCFrac {208341/66317}\]%
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208341

66317
= 3 +

1

7 +
1

15 +
1

1 +
1

292 +
1

2
But it is the macro \xintCFrac which did all the work of computing the continued fraction and
using \cfrac from amsmath to typeset it.

A generalized continued fraction has the same structure but the numerators are not restricted
to be 1, and numbers used in the continued fraction may be arbitrary, also fractions, irrationals,
complex, indeterminates.53 The centered continued fraction is an example:
\[ \xintFrac {915286/188421}=\xintGCFrac {5+-1/7+1/39+-1/53+-1/13}

=\xintCFrac {915286/188421}\]

915286

188421
= 5 -

1

7 +
1

39 -
1

53 -
1

13

= 4 +
1

1 +
1

6 +
1

38 +
1

1 +
1

51 +
1

1 +
1

12

The macro \xintGCFrac, contrarily to \xintCFrac, does not compute anything, it just typesets

starting from a generalized continued fraction in inline format, which in this example was input

literally. We also used \xintCFrac for comparison of the two types of continued fractions.
To let TEX compute the centered continued fraction of f there is \xintFtoCC:
\[\xintFrac {915286/188421}\to\xintFtoCC {915286/188421}\]

915286

188421
→ 5 + -1/7 + 1/39 + -1/53 + -1/13

The package macros are expandable and may be nested (naturally \xintCFrac and \xintGCFrac must
be at the top level, as they deal with typesetting).
\[\xintGCFrac {\xintFtoCC{915286/188421}}\]

5 -
1

7 +
1

39 -
1

53 -
1

13

The `inline' format expected on input by \xintGCFrac is
a0 + b0/a1 + b1/a2 + b2/a3 + · · · + bn-2/an-1 + bn-1/an

Fractions among the coefficients are allowed but they must be enclosed within braces. Signed in-
tegers may be left without braces (but the + signs are mandatory). No spaces are allowed around the
plus and fraction symbols. The coefficients may themselves be macros, as long as these macros are
f-expandable.
\[ \xintFrac{\xintGCtoF {1+-1/57+\xintPow {-3}{7}/\xintiiQuo {132}{25}}}

= \xintGCFrac {1+-1/57+\xintPow {-3}{7}/\xintiiQuo {132}{25}}\]

1907

1902
= 1 -

1

57 -
2187

5
To compute the actual fraction one has \xintGCtoF:

53 xintcfrac may be used with indeterminates, for basic conversions from one inline format to another, but not for actual compu-
tations. See \xintGGCFrac.
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\[\xintFrac{\xintGCtoF {1+-1/57+\xintPow {-3}{7}/\xintiiQuo {132}{25}}}\]
1907

1902

For non-numeric input there is \xintGGCFrac.
\[\xintGGCFrac {a_0+b_0/a_1+b_1/a_2+b_2/\ddots+\ddots/a_{n-1}+b_{n-1}/a_n}\]

a0 +
b0

a1 +
b1

a2 +
b2

... +

...

an-1 +
bn-1

an

For regular continued fractions, there is a simpler comma separated format:
\[-7,6,19,1,33\to\xintFrac{\xintCstoF{-7,6,19,1,33}}=\xintCFrac{\xintCstoF{-7,6,19,1,33}}\]

-7, 6, 19, 1, 33 → -28077

4108
= -7 +

1

6 +
1

19 +
1

1 +
1

33

The macro \xintFtoCs produces from a fraction f the comma separated list of its coefficients.
\[\xintFrac{1084483/398959}=[\xintFtoCs{1084483/398959}]\]

1084483

398959
= [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 2]

If one prefers other separators, one can use the two arguments macros \xintFtoCx whose first
argument is the separator (which may consist of more than one token) which is to be used.
\[\xintFrac{2721/1001}=\xintFtoCx {+1/(}{2721/1001})\cdots)\]

2721

1001
= 2 + 1/(1 + 1/(2 + 1/(1 + 1/(1 + 1/(4 + 1/(1 + 1/(1 + 1/(6 + 1/(2) · · · )

This allows under Plain TEX with amstex to obtain the same effect as with LATEX+\amsmath+\xintCFrac:

$$\xintFwOver{2721/1001}=\xintFtoCx {+\cfrac1\\ }{2721/1001}\endcfrac$$
As a shortcut to \xintFtoCx with separator 1+/, there is \xintFtoGC:
2721/1001=\xintFtoGC {2721/1001}

2721/1001=2+1/1+1/2+1/1+1/1+1/4+1/1+1/1+1/6+1/2 Let us compare in that case with the output of
\xintFtoCC:
2721/1001=\xintFtoCC {2721/1001}

2721/1001=3+-1/4+-1/2+1/5+-1/2+1/7+-1/2 To obtain the coefficients as a sequence of braced num-

bers, there is \xintFtoC (this is a shortcut for \xintFtoCx {}). This list (sequence) may then

be manipulated using the various macros of xinttools such as the non-expandable macro \xint-

AssignArray or the expandable \xintApply and \xintListWithSep.

Conversely to go from such a sequence of braced coefficients to the corresponding fraction there

is \xintCtoF.
The `\printnumber' (subsection 1.4) macro which we use in this document to print long numbers

can also be useful on long continued fractions.
\printnumber{\xintFtoCC {35037018906350720204351049/244241737886197404558180}}

143+1/2+1/5+-1/4+-1/4+-1/4+-1/3+1/2+1/2+1/6+-1/22+1/2+1/10+-1/5+-1/11+-1/3+1/4+-1/2+1/2+1/4+⤸
-1/2+1/23+1/3+1/8+-1/6+-1/9 If we apply \xintGCtoF to this generalized continued fraction, we

discover that the original fraction was reducible:

\xintGCtoF {143+1/2+...+-1/9}=2897319801297630107/20197107104701740

When a generalized continued fraction is built with integers, and numerators are only 1's or -⤸
1's, the produced fraction is irreducible. And if we compute it again with the last sub-fraction

omitted we get another irreducible fraction related to the bigger one by a Bézout identity. Doing

this here we get:
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\xintGCtoF {143+1/2+...+-1/6}=328124887710626729/2287346221788023

and indeed: ����2897319801297630107 328124887710626729

20197107104701740 2287346221788023

���� = 1

The various fractions obtained from the truncation of a continued fraction to its initial terms

are called the convergents. The macros of xintcfrac such as \xintFtoCv, \xintFtoCCv, and others

which compute such convergents, return them as a list of braced items, with no separator (as does

\xintFtoC for the partial quotients). Here is an example:
\[\xintFrac{915286/188421}\to

\xintListWithSep{,}{\xintApply\xintFrac{\xintFtoCv{915286/188421}}}\]
915286

188421
→ 4, 5,

34

7
,
1297

267
,
1331

274
,
69178

14241
,
70509

14515
,
915286

188421

\[\xintFrac{915286/188421}\to

\xintListWithSep{,}{\xintApply\xintFrac{\xintFtoCCv{915286/188421}}}\]
915286

188421
→ 5,

34

7
,
1331

274
,
70509

14515
,
915286

188421

We thus see that the `centered convergents' obtained with \xintFtoCCv are among the fuller list

of convergents as returned by \xintFtoCv.

Here is a more complicated use of \xintApply and \xintListWithSep. We first define a macro which

will be applied to each convergent:

\newcommand{\mymacro}[1]{$\xintFrac{#1}=[\xintFtoCs{#1}]$\vtop to 6pt{}}

Next, we use the following code:

$\xintFrac{49171/18089}\to{}$

\xintListWithSep {, }{\xintApply{\mymacro}{\xintFtoCv{49171/18089}}}

It produces:
49171
18089 → 2 = [2], 3 = [3], 8

3 = [2, 1, 2], 11
4 = [2, 1, 3], 19

7 = [2, 1, 2, 2], 87
32 = [2, 1, 2, 1, 1, 4], 106

39 =

[2, 1, 2, 1, 1, 5], 193
71 = [2, 1, 2, 1, 1, 4, 2], 1264

465 = [2, 1, 2, 1, 1, 4, 1, 1, 6], 1457
536 = [2, 1, 2, 1, 1, 4, 1, 1, 7],

2721
1001 = [2, 1, 2, 1, 1, 4, 1, 1, 6, 2], 23225

8544 = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8], 49171
18089 = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 2].

The macro \xintCntoF allows to specify the coefficients as a function given by a one-parameter
macro. The produced values do not have to be integers.
\def\cn #1{\xintiiPow {2}{#1}}% 2^n

\[\xintFrac{\xintCntoF {6}{\cn}}=\xintCFrac [l]{\xintCntoF {6}{\cn}}\]

3541373

2449193
= 1 +

1

2 +
1

4 +
1

8 +
1

16 +
1

32 +
1

64

Notice the use of the optional argument [l] to \xintCFrac. Other possibilities are [r] and (de-
fault) [c].
\def\cn #1{\xintPow {2}{-#1}}%

\[\xintFrac{\xintCntoF {6}{\cn}}=\xintGCFrac [r]{\xintCntoGC {6}{\cn}}=

[\xintFtoCs {\xintCntoF {6}{\cn}}]\]
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3159019

2465449
= 1 +

1

1
2 +

1

1
4 +

1

1
8 +

1

1
16 +

1

1
32 +

1

1
64

= [1, 3, 1, 1, 4, 14, 1, 1, 1, 1, 79, 2, 1, 1, 2]

We used \xintCntoGC as we wanted to display also the continued fraction and not only the fraction

returned by \xintCntoF.
There are also \xintGCntoF and \xintGCntoGC which allow the same for generalized fractions. An

initial portion of a generalized continued fraction for 𝜋 is obtained like this
\def\an #1{\the\numexpr 2*#1+1\relax }%

\def\bn #1{\the\numexpr (#1+1)*(#1+1)\relax }%

\[\xintFrac{\xintDiv {4}{\xintGCntoF {5}{\an}{\bn}}} =

\cfrac{4}{\xintGCFrac{\xintGCntoGC {5}{\an}{\bn}}} =

\xintTrunc {10}{\xintDiv {4}{\xintGCntoF {5}{\an}{\bn}}}\dots\]

92736

29520
=

4

1 +
1

3 +
4

5 +
9

7 +
16

9 +
25

11

= 3.1414634146 . . .

We see that the quality of approximation is not fantastic compared to the simple continued frac-
tion of 𝜋 with about as many terms:
\[\xintFrac{\xintCstoF{3,7,15,1,292,1,1}}=

\xintGCFrac{3+1/7+1/15+1/1+1/292+1/1+1/1}=

\xintTrunc{10}{\xintCstoF{3,7,15,1,292,1,1}}\dots\]

208341

66317
= 3 +

1

7 +
1

15 +
1

1 +
1

292 +
1

1 +
1

1

= 3.1415926534 . . .

When studying the continued fraction of some real number, there is always some doubt about how
many terms are valid, when computed starting from some approximation. If f ⩽ x ⩽ g and f, g both
have the same first K partial quotients, then x also has the same first K quotients and convergents.
The macro \xintFGtoC outputs as a sequence of braced items the common partial quotients of its two
arguments. We can thus use it to produce a sure list of valid convergents of 𝜋 for example, starting
from some proven lower and upper bound:
$$\pi\to [\xintListWithSep{,}

{\xintFGtoC {3.14159265358979323}{3.14159265358979324}}, \dots]$$

\noindent$\pi\to\xintListWithSep{,\allowbreak\;}

{\xintApply{\xintFrac}

{\xintCtoCv{\xintFGtoC {3.14159265358979323}{3.14159265358979324}}}}, \dots$

𝜋 → [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, . . . ]
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𝜋 → 3, 22
7 ,

333
106,

355
113,

103993
33102 ,

104348
33215 ,

208341
66317 ,

312689
99532 ,

833719
265381,

1146408
364913 ,

4272943
1360120,

5419351
1725033,

80143857
25510582,

165707065
52746197 ,

245850922
78256779 ,

411557987
131002976, . . .

13.2. \xintCFrac
\xintCFrac{f} is a math-mode only, LATEX with amsmath only, macro which first computes then displays

Frac
f

with the help of \cfrac the simple continued fraction corresponding to the given fraction. It

admits an optional argument which may be [l], [r] or (the default) [c] to specify the location of

the one's in the numerators of the sub-fractions. Each coefficient is typeset using the \xint-

Frac macro from the xintfrac package. This macro is f-expandable in the sense that it prepares

expandably the whole expression with the multiple \cfrac's, but it is not completely expandable

naturally as \cfrac isn't.

13.3. \xintGCFrac
\xintGCFrac{a+b/c+d/e+f/g+h/...+x/y} uses similarly \cfrac to prepare the typesetting with the a⤸f
msmath \cfrac (LATEX) of a generalized continued fraction given in inline format (or as macro which
will f-expand to it). It admits the same optional argument as \xintCFrac. Plain TEX with amstex
users, see \xintGCtoGCx.
\[\xintGCFrac {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintiiFac {6}}\]

1 +
3375 · 10-3

1
7 -

3
5

720

This is mostly a typesetting macro, although it does provoke the expansion of the coefficients.

See \xintGCtoF if you are impatient to see this specific fraction computed.

It admits an optional argument within square brackets which may be either [l], [c] or [r]. De-

fault is [c] (numerators are centered).

Numerators and denominators are made arguments to the \xintFrac macro. This allows them to be

themselves fractions or anything f-expandable giving numbers or fractions, but also means however

that they can not be arbitrary material, they can not contain color changing macros for example.

One of the reasons is that \xintGCFrac tries to determine the signs of the numerators and chooses

accordingly to use + or -.

13.4. \xintGGCFrac
\xintGGCFrac{a+b/c+d/e+f/g+h/...+x/y} is a clone of \xintGCFrac, hence again LATEX specific withf
package amsmath. It does not assume the coefficients to be numbers as understood by xintfrac. The
macro can be used for displaying arbitrary content as a continued fraction with \cfrac, using only
plus signs though. Note though that it will first f-expand its argument, which may be thus be one
of the xintcfrac macros producing a (general) continued fraction in inline format, see \xintFtoCx
for an example. If this expansion is not wished, it is enough to start the argument with a space.
\[\xintGGCFrac {1+q/1+q^2/1+q^3/1+q^4/1+q^5/\ddots}\]

1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
q5

...
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13.5. \xintGCtoGCx
\xintGCtoGCx{sepa}{sepb}{a+b/c+d/e+f/...+x/y} returns the list of the coefficients of the gen-n n f ★
eralized continued fraction of f, each one within a pair of braces, and separated with the help of

sepa and sepb. Thus

\xintGCtoGCx :;{1+2/3+4/5+6/7} gives 1:2;3:4;5:6;7

The following can be used byt Plain TEX+amstex users to obtain an output similar as the ones pro-

duced by \xintGCFrac and \xintGGCFrac:
$$\xintGCtoGCx {+\cfrac}{\\}{a+b/...}\endcfrac$$

$$\xintGCtoGCx {+\cfrac\xintFwOver}{\\\xintFwOver}{a+b/...}\endcfrac$$

13.6. \xintFtoC
\xintFtoC{f} computes the coefficients of the simple continued fraction of f and returns them as

Frac
f ★

a list (sequence) of braced items.
\fdef\test{\xintFtoC{-5262046/89233}}\texttt{\meaning\test}

macro:->{-59}{33}{27}{100}

13.7. \xintFtoCs
\xintFtoCs{f} returns the comma separated list of the coefficients of the simple continued frac-

Frac
f ★

tion of f. Notice that starting with 1.09m a space follows each comma (mainly for usage in text
mode, as in math mode spaces are produced in the typeset output by TEX itself).
\[ \xintSignedFrac{-5262046/89233} \to [\xintFtoCs{-5262046/89233}]\]

-
5262046

89233
→ [-59, 33, 27, 100]

13.8. \xintFtoCx
\xintFtoCx{sep}{f} returns the list of the coefficients of the simple continued fraction of fn

Frac
f ★

separated with the help of sep, which may be anything (and is kept unexpanded). For example, with
Plain TEX and amstex,
$$\xintFtoCx {+\cfrac1\\ }{-5262046/89233}\endcfrac$$

will display the continued fraction using \cfrac. Each coefficient is inside a brace pair { },
allowing a macro to end the separator and fetch it as argument, for example, again with Plain TEX
and amstex:

\def\highlight #1{\ifnum #1>200 \textcolor{red}{#1}\else #1\fi}

$$\xintFtoCx {+\cfrac1\\ \highlight}{104348/33215}\endcfrac$$

Due to the different and extremely cumbersome syntax of \cfrac under LATEX it proves a bit tortuous
to obtain there the same effect. Actually, it is partly for this purpose that 1.09m added \xint-
GGCFrac. We thus use \xintFtoCx with a suitable separator, and then the whole thing as argument
to \xintGGCFrac:
\def\highlight #1{\ifnum #1>200 \fcolorbox{blue}{white}{\boldmath\color{red}$#1$}%

\else #1\fi}

\[\xintGGCFrac {\xintFtoCx {+1/\highlight}{208341/66317}}\]

3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

2
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13.9. \xintFtoGC
\xintFtoGC{f} does the same as \xintFtoCx{+1/}{f}. Its output may thus be used in the package

Frac
f ★

macros expecting such an `inline format'.
566827/208524=\xintFtoGC {566827/208524}

566827/208524=2+1/1+1/2+1/1+1/1+1/4+1/1+1/1+1/6+1/1+1/1+1/8+1/1+1/1+1/11

13.10. \xintFGtoC
\xintFGtoC{f}{g} computes the common initial coefficients to two given fractions f and g. Notice

Frac
f

Frac
f ★

that any real number f<x<g or f>x>g will then necessarily share with f and g these common initial

coefficients for its regular continued fraction. The coefficients are output as a sequence of

braced numbers. This list can then be manipulated via macros from xinttools, or other macros of

xintcfrac.
\fdef\test{\xintFGtoC{-5262046/89233}{-5314647/90125}}\texttt{\meaning\test}

macro:->{-59}{33}{27}
\fdef\test{\xintFGtoC{3.141592653}{3.141592654}}\texttt{\meaning\test}

macro:->{3}{7}{15}{1}
\fdef\test{\xintFGtoC{3.1415926535897932384}{3.1415926535897932385}}\meaning\test

macro:->{3}{7}{15}{1}{292}{1}{1}{1}{2}{1}{3}{1}{14}{2}{1}{1}{2}{2}{2}
\xintRound {30}{\xintCstoF{\xintListWithSep{,}{\test}}}

3.141592653589793238386377506390
\xintRound {30}{\xintCtoF{\test}}

3.141592653589793238386377506390
\fdef\test{\xintFGtoC{1.41421356237309}{1.4142135623731}}\meaning\test

macro:->{1}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}

13.11. \xintFtoCC
\xintFtoCC{f} returns the `centered' continued fraction of f, in `inline format'.

Frac
f ★

566827/208524=\xintFtoCC {566827/208524}

566827/208524=3+-1/4+-1/2+1/5+-1/2+1/7+-1/2+1/9+-1/2+1/11
\[\xintFrac{566827/208524} = \xintGCFrac{\xintFtoCC{566827/208524}}\]

566827

208524
= 3 -

1

4 -
1

2 +
1

5 -
1

2 +
1

7 -
1

2 +
1

9 -
1

2 +
1

11

13.12. \xintCstoF
\xintCstoF{a,b,c,d,...,z} computes the fraction corresponding to the coefficients, which may bef ★
fractions or even macros expanding to such fractions. The final fraction may then be highly re-

ducible.

Usage of this macro requires the user to load xinttools.+
{

Starting with release 1.09m spaces before commas are allowed and trimmed automatically (spaces
after commas were already silently handled in earlier releases).
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\[\xintGCFrac {-1+1/3+1/-5+1/7+1/-9+1/11+1/-13}=

\xintSignedFrac{\xintCstoF {-1,3,-5,7,-9,11,-13}}=\xintSignedFrac{\xintGCtoF

{-1+1/3+1/-5+1/7+1/-9+1/11+1/-13}}\]

-1 +
1

3 +
1

-5 +
1

7 +
1

-9 +
1

11 +
1

-13

= -
75887

118187
= -

75887

118187

\[\xintGCFrac{{1/2}+1/{1/3}+1/{1/4}+1/{1/5}}=\xintFrac{\xintCstoF {1/2,1/3,1/4,1/5}}\]

1

2
+

1

1
3 +

1

1
4 +

1

1
5

=
159

66

A generalized continued fraction may produce a reducible fraction (\xintCstoF tries its best not

to accumulate in a silly way superfluous factors but will not do simplifications which would be

obvious to a human, like simplification by 3 in the result above).

13.13. \xintCtoF
\xintCtoF{{a}{b}{c}...{z}} computes the fraction corresponding to the coefficients, which may bef ★
fractions or even macros.
\xintCtoF {\xintApply {\xintiiPow 3}{\xintSeq {1}{5}}}

14946960/4805083
\[ \xintFrac{14946960/4805083}=\xintCFrac {14946960/4805083}\]

14946960

4805083
= 3 +

1

9 +
1

27 +
1

81 +
1

243

In the example above the power of 3 was already pre-computed via the expansion done by \xintAppl⤸
y, but if we try with \xintApply { \xintiiPow 3} where the space will stop this expansion, we can

check that \xintCtoF will itself provoke the needed coefficient expansion.

13.14. \xintGCtoF
\xintGCtoF{a+b/c+d/e+f/g+......+v/w+x/y} computes the fraction defined by the inline general-f ★
ized continued fraction. Coefficients may be fractions but must then be put within braces. They
can be macros. The plus signs are mandatory.
\[\xintGCFrac {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintiiFac {6}} =

\xintFrac{\xintGCtoF {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintiiFac {6}}} =

\xintFrac{\xintIrr{\xintGCtoF

{1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintiiFac {6}}}}\]

1 +
3375 · 10-3

1
7 -

3
5

720

=
88629000

3579000
=
29543

1193

\[ \xintGCFrac{{1/2}+{2/3}/{4/5}+{1/2}/{1/5}+{3/2}/{5/3}} =

\xintFrac{\xintGCtoF {{1/2}+{2/3}/{4/5}+{1/2}/{1/5}+{3/2}/{5/3}}} \]
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1

2
+

2
3

4
5 +

1
2

1
5 +

3
2
5
3

=
4270

4140

The macro tries its best not to accumulate superfluous factor in the denominators, but doesn't

reduce the fraction to irreducible form before returning it and does not do simplifications which

would be obvious to a human.

13.15. \xintCstoCv
\xintCstoCv{a,b,c,d,...,z} returns the sequence of the corresponding convergents, each onef ★
within braces.

Usage of this macro requires the user to load xinttools.+
{

It is allowed to use fractions as coefficients (the computed convergents have then no reason to
be the real convergents of the final fraction). When the coefficients are integers, the conver-
gents are irreducible fractions, but otherwise it is not necessarily the case.
\xintListWithSep:{\xintCstoCv{1,2,3,4,5,6}}

1/1:3/2:10/7:43/30:225/157:1393/972
\xintListWithSep:{\xintCstoCv{1,1/2,1/3,1/4,1/5,1/6}}

1/1:3/1:9/7:45/19:225/159:1575/729
\[\xintListWithSep{\to}{\xintApply\xintFrac{\xintCstoCv {\xintPow

{-.3}{-5},7.3/4.57,\xintCstoF{3/4,9,-1/3}}}}\]
-100000

243
→ -72888949

177390
→ -2700356878

6567804

13.16. \xintCtoCv
\xintCtoCv{{a}{b}{c}...{z}} returns the sequence of the corresponding convergents, each onef ★
within braces.
\fdef\test{\xintCtoCv {11111111111}}\texttt{\meaning\test}

macro:->{1/1}{2/1}{3/2}{5/3}{8/5}{13/8}{21/13}{34/21}{55/34}{89/55}{144/89}

13.17. \xintGCtoCv
\xintGCtoCv{a+b/c+d/e+f/g+......+v/w+x/y} returns the list of the corresponding convergents.f ★
The coefficients may be fractions, but must then be inside braces. Or they may be macros, too.

The convergents will in the general case be reducible. To put them into irreducible form, one
needs one more step, for example it can be done with \xintApply\xintIrr.
\[\xintListWithSep{,}{\xintApply\xintFrac

{\xintGCtoCv{3+{-2}/{7/2}+{3/4}/12+{-56}/3}}}\]

\[\xintListWithSep{,}{\xintApply\xintFrac{\xintApply\xintIrr

{\xintGCtoCv{3+{-2}/{7/2}+{3/4}/12+{-56}/3}}}}\]

3,
17

7
,
834

342
,
1306

542

3,
17

7
,
139

57
,
653

271
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13.18. \xintFtoCv
\xintFtoCv{f} returns the list of the (braced) convergents of f, with no separator. To be treated

Frac
f ★

with \xintAssignArray or \xintListWithSep.
\[\xintListWithSep{\to}{\xintApply\xintFrac{\xintFtoCv{5211/3748}}}\]

1 → 3

2
→ 4

3
→ 7

5
→ 25

18
→ 32

23
→ 57

41
→ 317

228
→ 374

269
→ 691

497
→ 5211

3748

13.19. \xintFtoCCv
\xintFtoCCv{f} returns the list of the (braced) centered convergents of f, with no separator. To

Frac
f ★

be treated with \xintAssignArray or \xintListWithSep.
\[\xintListWithSep{\to}{\xintApply\xintFrac{\xintFtoCCv{5211/3748}}}\]

1 → 4

3
→ 7

5
→ 32

23
→ 57

41
→ 374

269
→ 691

497
→ 5211

3748

13.20. \xintCntoF
\xintCntoF{N}{\macro} computes the fraction f having coefficients c(j)=\macro{j} for j=0,1,...,⤸

num
x f ★

N. The N parameter is given to a \numexpr. The values of the coefficients, as returned by \macro do
not have to be positive, nor integers, and it is thus not necessarily the case that the original
c(j) are the true coefficients of the final f.
\def\macro #1{\the\numexpr 1+#1*#1\relax} \xintCntoF {5}{\macro}

72625/49902[0]

This example shows that the fraction is output with a trailing number in square brackets (rep-

resenting a power of ten), this is for consistency with what do most macros of xintfrac, and does

not have to be always this annoying [0] as the coefficients may for example be numbers in scien-

tific notation. To avoid these trailing square brackets, for example if the coefficients are known

to be integers, there is always the possibility to filter the output via \xintPRaw, or \xintIrr

(the latter is overkill in the case of integer coefficients, as the fraction is guaranteed to be

irreducible then).

13.21. \xintGCntoF
\xintGCntoF{N}{\macroA}{\macroB} returns the fraction f corresponding to the inline generalized

num
x f f ★

continued fraction a0+b0/a1+b1/a2+....+b(N-1)/aN, with a(j)=\macroA{j} and b(j)=\macroB{j}. The
N parameter is given to a \numexpr.
\def\coeffA #1{\the\numexpr #1+4-3*((#1+2)/3)\relax }%

\def\coeffB #1{\the\numexpr \ifodd #1 -\fi 1\relax }% (-1)^n

\[\xintGCFrac{\xintGCntoGC {6}{\coeffA}{\coeffB}} =

\xintFrac{\xintGCntoF {6}{\coeffA}{\coeffB}}\]

1 +
1

2 -
1

3 +
1

1 -
1

2 +
1

3 -
1

1

=
39

25

There is also \xintGCntoGC to get the `inline format' continued fraction.
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13.22. \xintCntoCs
\xintCntoCs{N}{\macro} produces the comma separated list of the corresponding coefficients, from

num
x f ★

n=0 to n=N. The N is given to a \numexpr.
\xintCntoCs {5}{\macro}

1, 2, 5, 10, 17, 26
\[ \xintFrac{\xintCntoF{5}{\macro}}=\xintCFrac{\xintCntoF {5}{\macro}}\]

72625

49902
= 1 +

1

2 +
1

5 +
1

10 +
1

17 +
1

26

13.23. \xintCntoGC
\xintCntoGC{N}{\macro} evaluates the c(j)=\macro{j} from j=0 to j=N and returns a continued frac-

num
x f ★

tion written in inline format: {c(0)}+1/{c(1)}+1/...+1/{c(N)}. The parameter N is given to a \num⤸
expr. The coefficients, after expansion, are, as shown, being enclosed in an added pair of braces,
they may thus be fractions.
\def\macro #1{\the\numexpr\ifodd#1 -1-#1\else1+#1\fi\relax/\the\numexpr 1+#1*#1\relax}

\fdef\x{\xintCntoGC {5}{\macro}}\meaning\x

\[\xintGCFrac{\xintCntoGC {5}{\macro}}\]

macro:->{1/\the \numexpr 1+0*0\relax }+1/{-2/\the \numexpr 1+1*1\relax }+1/{3/\the \numexpr

1+2*2\relax }+1/{-4/\the \numexpr 1+3*3\relax }+1/{5/\the \numexpr 1+4*4\relax }+1/{-6/\the

\numexpr 1+5*5\relax }

1 +
1

-2
2 +

1

3
5 +

1

-4
10 +

1

5
17 +

1

-6
26

13.24. \xintGCntoGC
\xintGCntoGC{N}{\macroA}{\macroB} evaluates the coefficients and then returns the corresponding

num
x f f ★

{a0}+{b0}/{a1}+{b1}/{a2}+...+{b(N-1)}/{aN} inline generalized fraction. N is givent to a \nume⤸
xpr. The coefficients are enclosed into pairs of braces, and may thus be fractions, the fraction
slash will not be confused in further processing by the continued fraction slashes.
\def\an #1{\the\numexpr #1*#1*#1+1\relax}%

\def\bn #1{\the\numexpr \ifodd#1 -\fi 1*(#1+1)\relax}%

$\xintGCntoGC {5}{\an}{\bn}=\xintGCFrac {\xintGCntoGC {5}{\an}{\bn}} =

\displaystyle\xintFrac {\xintGCntoF {5}{\an}{\bn}}$\par

1 + 1/2 + -2/9 + 3/28 + -4/65 + 5/126 = 1 +
1

2 -
2

9 +
3

28 -
4

65 +
5

126

=
5797655

3712466
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13.25. \xintCstoGC
\xintCstoGC{a,b,..,z} transforms a comma separated list (or something expanding to such a list)f ★
into an `inline format' continued fraction {a}+1/{b}+1/...+1/{z}. The coefficients are just
copied and put within braces, without expansion. The output can then be used in \xintGCFrac for
example.
\[\xintGCFrac {\xintCstoGC {-1,1/2,-1/3,1/4,-1/5}}=\xintSignedFrac{\xintCstoF {-1,1/2,-1/3,1/4,-1/5}}\]

-1 +
1

1
2 +

1

-1
3 +

1

1
4 +

1

-1
5

= -
145

83

13.26. \xintiCstoF, \xintiGCtoF, \xintiCstoCv, \xintiGCtoCv
Essentially the same as the corresponding macros without the `i', but for integer-only input.f ★
Infinitesimally faster, mainly for internal use by the package.

13.27. \xintGCtoGC
\xintGCtoGC{a+b/c+d/e+f/g+......+v/w+x/y} expands (with the usual meaning) each one of the co-f ★
efficients and returns an inline continued fraction of the same type, each expanded coefficient
being enclosed within braces.
\fdef\x {\xintGCtoGC {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/%

\xintiiFac {6}+\xintCstoF {2,-7,-5}/16}} \meaning\x

macro:->{1}+{3375/1[-3]}/{1/7}+{-3/5}/{720}+{67/36}/{16}

To be honest I have forgotten for which purpose I wrote this macro in the first place.

13.28. Euler’s number e

Let us explore the convergents of Euler's number e. The volume of computation is kept minimal by

the following steps:

• a comma separated list of the first 36 coefficients is produced by \xintCntoCs,

• this is then given to \xintiCstoCv which produces the list of the convergents (there is also

\xintCstoCv, but our coefficients being integers we used the infinitesimally faster \xint-

iCstoCv),

• then the whole list was converted into a sequence of one-line paragraphs, each convergent

becomes the argument to a macro printing it together with its decimal expansion with 30 digits

after the decimal point.

• A count register \cnta was used to give a line count serving as a visual aid: we could also have

done that in an expandable way, but well, let's relax from time to time...

\def\cn #1{\the\numexpr\ifcase \numexpr #1+3-3*((#1+2)/3)\relax

1\or1\or2*(#1/3)\fi\relax }

% produces the pattern 1,1,2,1,1,4,1,1,6,1,1,8,... which are the

% coefficients of the simple continued fraction of e-1.

\cnta 0

\def\mymacro #1{\advance\cnta by 1

\noindent

\hbox to 3em {\hfil\small\dtt{\the\cnta.} }%

$\xintTrunc {30}{\xintAdd {1[0]}{#1}}\dots=
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\xintFrac{\xintAdd {1[0]}{#1}}$}%

\xintListWithSep{\vtop to 6pt{}\vbox to 12pt{}\par}

{\xintApply\mymacro{\xintiCstoCv{\xintCntoCs {35}{\cn}}}}

1. 2.000000000000000000000000000000 · · · = 2

2. 3.000000000000000000000000000000 · · · = 3

3. 2.666666666666666666666666666666 · · · = 8
3

4. 2.750000000000000000000000000000 · · · = 11
4

5. 2.714285714285714285714285714285 · · · = 19
7

6. 2.718750000000000000000000000000 · · · = 87
32

7. 2.717948717948717948717948717948 · · · = 106
39

8. 2.718309859154929577464788732394 · · · = 193
71

9. 2.718279569892473118279569892473 · · · = 1264
465

10. 2.718283582089552238805970149253 · · · = 1457
536

11. 2.718281718281718281718281718281 · · · = 2721
1001

12. 2.718281835205992509363295880149 · · · = 23225
8544

13. 2.718281822943949711891042430591 · · · = 25946
9545

14. 2.718281828735695726684725523798 · · · = 49171
18089

15. 2.718281828445401318035025074172 · · · = 517656
190435

16. 2.718281828470583721777828930962 · · · = 566827
208524

17. 2.718281828458563411277850606202 · · · = 1084483
398959

18. 2.718281828459065114074529546648 · · · = 13580623
4996032

19. 2.718281828459028013207065591026 · · · = 14665106
5394991

20. 2.718281828459045851404621084949 · · · = 28245729
10391023

21. 2.718281828459045213521983758221 · · · = 410105312
150869313

22. 2.718281828459045254624795027092 · · · = 438351041
161260336

23. 2.718281828459045234757560631479 · · · = 848456353
312129649

24. 2.718281828459045235379013372772 · · · = 14013652689
5155334720

25. 2.718281828459045235343535532787 · · · = 14862109042
5467464369

26. 2.718281828459045235360753230188 · · · = 28875761731
10622799089

27. 2.718281828459045235360274593941 · · · = 534625820200
196677847971

28. 2.718281828459045235360299120911 · · · = 563501581931
207300647060

29. 2.718281828459045235360287179900 · · · = 1098127402131
403978495031

30. 2.718281828459045235360287478611 · · · = 22526049624551
8286870547680

31. 2.718281828459045235360287464726 · · · = 23624177026682
8690849042711
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32. 2.718281828459045235360287471503 · · · = 46150226651233
16977719590391

33. 2.718281828459045235360287471349 · · · = 1038929163353808
382200680031313

34. 2.718281828459045235360287471355 · · · = 1085079390005041
399178399621704

35. 2.718281828459045235360287471352 · · · = 2124008553358849
781379079653017

36. 2.718281828459045235360287471352 · · · = 52061284670617417
19152276311294112

One can with no problem compute much bigger convergents. Let's get the 200th convergent. It
turns out to have the same first 268 digits after the decimal point as e-1. Higher convergents get
more and more digits in proportion to their index: the 500th convergent already gets 799 digits
correct! To allow speedy compilation of the source of this document when the need arises, I limit
here to the 200th convergent.
\fdef\z {\xintCntoF {199}{\cn}}%

\begingroup\parindent 0pt \leftskip 2.5cm

\indent\llap {Numerator = }\printnumber{\xintNumerator\z}\par

\indent\llap {Denominator = }\printnumber{\xintDenominator\z}\par

\indent\llap {Expansion = }\printnumber{\xintTrunc{268}\z}\dots\par\endgroup

Numerator = 568964038871896267597523892315807875293889017667917446057232024547192296961118⤸
23017524386017499531081773136701241708609749634329382906

Denominator = 331123817669737619306256360816356753365468823729314438156205615463246659728581⤸
86546133769206314891601955061457059255337661142645217223

Expansion = 1.7182818284590452353602874713526624977572470936999595749669676277240766303535⤸
475945713821785251664274274663919320030599218174135966290435729003342952605956⤸
307381323286279434907632338298807531952510190115738341879307021540891499348841⤸
675092447614606680822648001684774118...

One can also use a centered continued fraction: we get more digits but there are also more com-

putations as the numerators may be either 1 or -1.

151



TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac, xinttools , xintexpr, Examples

14. Macros of the xinttools package
These utilities used to be provided within the xint package; since 1.09g (2013/11/22) they have

been moved to an independently usable package xinttools, which has none of the xint facilities

regarding big numbers. Whenever relevant release 1.09h has made the macros \long so they accept

\par tokens on input.

The completely expandable utilities (up to \xintiloop) are documented first, then the non ex-

pandable utilities.

section 16 gives additional (also dated) examples of use of macros of this package.

.1 \xintRevWithBraces . . . . . . . . . . . . . . . . . . . . 152

.2 \xintZapFirstSpaces, \xintZapLas-

tSpaces, \xintZapSpaces, \xintZapSpacesB152
.3 \xintCSVtoList . . . . . . . . . . . . . . . . . . . . . . . . 153
.4 \xintNthElt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
.5 \xintNthOnePy . . . . . . . . . . . . . . . . . . . . . . . . . 155
.6 \xintKeep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
.7 \xintKeepUnbraced . . . . . . . . . . . . . . . . . . . . . 156
.8 \xintTrim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
.9 \xintTrimUnbraced . . . . . . . . . . . . . . . . . . . . . 156
.10 \xintListWithSep . . . . . . . . . . . . . . . . . . . . . . 157
.11 \xintApply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
.12 \xintApplyUnbraced . . . . . . . . . . . . . . . . . . . . 158
.13 \xintSeq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
.14 \xintloop, \xintbreakloop, \xintbreak-

loopanddo, \xintloopskiptonext . . . . . . . 158

.15 \xintiloop, \xintiloopindex, \xintouter-
iloopindex, \xintbreakiloop, \xint-

breakiloopanddo, \xintiloopskiptonext,
\xintiloopskipandredo . . . . . . . . . . . . . . . . 161

.16 \xintApplyInline . . . . . . . . . . . . . . . . . . . . . . 163

.17 \xintFor, \xintFor* . . . . . . . . . . . . . . . . . . . 165

.18 \xintifForFirst, \xintifForLast . . . . . . 167

.19 \xintBreakFor, \xintBreakForAndDo . . . . 167

.20 \xintintegers, \xintdimensions, \xin-
trationals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

.21 \xintForpair, \xintForthree, \xintFor-
four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

.22 \xintAssign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

.23 \xintAssignArray . . . . . . . . . . . . . . . . . . . . . . 170

.24 \xintDigitsOf . . . . . . . . . . . . . . . . . . . . . . . . . 171

.25 \xintRelaxArray . . . . . . . . . . . . . . . . . . . . . . . 171

14.1. \xintRevWithBraces
\xintRevWithBraces{⟨list⟩} first does the f-expansion of its argument then it reverses the orderf ★
of the tokens, or braced material, it encounters, maintaining existing braces and adding a brace

pair around each naked token encountered. Space tokens (in-between top level braces or naked to-

kens) are gobbled. This macro is mainly thought out for use on a ⟨list⟩ of such braced material;

with such a list as argument the f-expansion will only hit against the first opening brace, hence

do nothing, and the braced stuff may thus be macros one does not want to expand.

\edef\x{\xintRevWithBraces{12345}}

\meaning\x:macro:->{5}{4}{3}{2}{1}

\edef\y{\xintRevWithBraces\x}

\meaning\y:macro:->{1}{2}{3}{4}{5}

The examples above could be defined with \edef's because the braced material did not contain

macros. Alternatively:

\expandafter\def\expandafter\w\expandafter

{\romannumeral0\xintrevwithbraces{{\A}{\B}{\C}{\D}{\E}}}

\meaning\w:macro:->{\E }{\D }{\C }{\B }{\A }

The macro \xintReverseWithBracesNoExpand does the same job without the initial expansion of itsn ★
argument.

14.2. \xintZapFirstSpaces, \xintZapLastSpaces, \xintZapSpaces, \xintZapSpacesB
\xintZapFirstSpaces{⟨stuff ⟩} does not do any expansion of its argument, nor brace removal of anyn ★
sort, nor does it alter ⟨stuff ⟩ in anyway apart from stripping away all leading spaces.
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This macro will be mostly of interest to programmers who will know what I will now be talking

about. The essential points, naturally, are the complete expandability and the fact that no brace
removal nor any other alteration is done to the input.
TEX's input scanner already converts consecutive blanks into single space tokens, but \xintZa⤸

pFirstSpaces handles successfully also inputs with consecutive multiple space tokens. However,

it is assumed that ⟨stuff ⟩ does not contain (except inside braced sub-material) space tokens of

character code distinct from 32.

It expands in two steps, and if the goal is to apply it to the expansion text of \x to define \y,

then one can do: \odef\y{\romannumeral0\expandafter\xintzapfirstspaces\expandafter{\x}} (one

can also define a wrapper macro to \xintZapFirstSpaces in order to expand once the argument first,

but xinttools not being a programming layer, it provides no «Generate Variants» facilities).

Other use case: inside a macro which received a parameter #1, one can do \oodef\x{\xintZapFirst⤸
Spaces {#1}}, or, if #1, after leading spaces have been stripped can accept \edef expansion, one

can do \edef\x{\xintZapFirstSpaces{#1}}.

\xintZapFirstSpaces { \a { \X } { \b \Y } }->\a { \X } { \b \Y } +++

\xintZapLastSpaces{⟨stuff ⟩} does not do any expansion of its argument, nor brace removal of anyn ★
sort, nor does it alter ⟨stuff ⟩ in anyway apart from stripping away all ending spaces. The same

remarks as for \xintZapFirstSpaces apply.

\xintZapLastSpaces { \a { \X } { \b \Y } }-> \a { \X } { \b \Y }+++

\xintZapSpaces{⟨stuff ⟩} does not do any expansion of its argument, nor brace removal of any sort,n ★
nor does it alter ⟨stuff ⟩ in anyway apart from stripping away all leading and all ending spaces.

The same remarks as for \xintZapFirstSpaces apply.

\xintZapSpaces { \a { \X } { \b \Y } }->\a { \X } { \b \Y }+++

\xintZapSpacesB{⟨stuff ⟩} does not do any expansion of its argument, nor does it alter ⟨stuff ⟩n ★
in anyway apart from stripping away all leading and all ending spaces and possibly removing one

level of braces if ⟨stuff ⟩ had the shape <spaces>{braced}<spaces>. The same remarks as for \xint-

ZapFirstSpaces apply.

\xintZapSpacesB { \a { \X } { \b \Y } }->\a { \X } { \b \Y }+++

\xintZapSpacesB { { \a { \X } { \b \Y } } }-> \a { \X } { \b \Y } +++

The spaces here at the start and end of the output come from the braced material, and are not

removed (one would need a second application for that; recall though that the xint zapping macros

do not expand their argument).

14.3. \xintCSVtoList
\xintCSVtoList{a,b,c...,z} returns {a}{b}{c}...{z}. A list is by convention in this manual simplyf ★
a succession of tokens, where each braced thing will count as one item (``items'' are defined

according to the rules of TEX for fetching undelimited parameters of a macro, which are exactly

the same rules as for LATEX and macro arguments [they are the same things]). The word `list' in

`comma separated list of items' has its usual linguistic meaning, and then an ``item'' is what is

delimited by commas.

So \xintCSVtoList takes on input a `comma separated list of items' and converts it into a `TEX

list of braced items'. The argument to \xintCSVtoList may be a macro: it will first be f-expanded.
Hence the item before the first comma, if it is itself a macro, will be expanded which may or may not

be a good thing. A space inserted at the start of the first item serves to stop that expansion (and

disappears). The macro \xintCSVtoListNoExpand does the same job without the initial expansion ofn ★
the list argument.

Apart from that no expansion of the items is done and the list items may thus be completely

arbitrary (and even contain perilous stuff such as unmatched \if and \fi tokens).

Contiguous spaces and tab characters, are collapsed by TEX into single spaces. All such spaces
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around commas54 are removed , as well as the spaces at the start and the spaces at the end of the

list.55 The items may contain explicit \par's or empty lines (converted by the TEX input parsing

into \par tokens).

\xintCSVtoList { 1 ,{ 2 , 3 , 4 , 5 }, a , {b,T} U , { c , d } , { {x , y} } }

->{1}{2 , 3 , 4 , 5}{a}{{b,T} U}{ c , d }{ {x , y} }

One sees on this example how braces protect commas from sub-lists to be perceived as delimiters

of the top list. Braces around an entire item are removed, even when surrounded by spaces before

and/or after. Braces for sub-parts of an item are not removed.

We observe also that there is a slight difference regarding the brace stripping of an item: if

the braces were not surrounded by spaces, also the initial and final (but no other) spaces of the

enclosed material are removed. This is the only situation where spaces protected by braces are

nevertheless removed.

From the rules above: for an empty argument (only spaces, no braces, no comma) the output is {}

(a list with one empty item), for ``<opt. spaces>{}<opt. spaces>'' the output is {} (again a list

with one empty item, the braces were removed), for ``{ }'' the output is {} (again a list with one

empty item, the braces were removed and then the inner space was removed), for `` { }'' the output

is {} (again a list with one empty item, the initial space served only to stop the expansion, so

this was like ``{ }'' as input, the braces were removed and the inner space was stripped), for `` {

} '' the output is { } (this time the ending space of the first item meant that after brace removal

the inner spaces were kept; recall though that TEX collapses on input consecutive blanks into one

space token), for ``,'' the output consists of two consecutive empty items {}{}. Recall that on

output everything is braced, a {} is an ``empty'' item. Most of the above is mainly irrelevant for

every day use, apart perhaps from the fact to be noted that an empty input does not give an empty

output but a one-empty-item list (it is as if an ending comma was always added at the end of the

input).

\def\y{ \a,\b,\c,\d,\e} \xintCSVtoList\y->{\a }{\b }{\c }{\d }{\e }

\def\t {{\if},\ifnum,\ifx,\ifdim,\ifcat,\ifmmode}

\xintCSVtoList\t->{\if }{\ifnum }{\ifx }{\ifdim }{\ifcat }{\ifmmode }

The results above were automatically displayed using TEX's primitive \meaning, which adds a

space after each control sequence name. These spaces are not in the actual braced items of the

produced lists. The first items \a and \if were either preceded by a space or braced to prevent

expansion. The macro \xintCSVtoListNoExpand would have done the same job without the initial ex-

pansion of the list argument, hence no need for such protection but if \y is defined as \def\y{\a,⤸
\b,\c,\d,\e} we then must do:

\expandafter\xintCSVtoListNoExpand\expandafter {\y}

Else, we may have direct use:

\xintCSVtoListNoExpand {\if,\ifnum,\ifx,\ifdim,\ifcat,\ifmmode}

->{\if }{\ifnum }{\ifx }{\ifdim }{\ifcat }{\ifmmode }

Again these spaces are an artefact from the use in the source of the document of \meaning (or rather

here, \detokenize) to display the result of using \xintCSVtoListNoExpand (which is done for real

in this document source).

For the similar conversion from comma separated list to braced items list, but without removal

of spaces around the commas, there is \xintCSVtoListNonStripped and \xintCSVtoListNonStripped-f ★
NoExpand.n ★

14.4. \xintNthElt
\xintNthElt{x}{⟨list⟩} gets (expandably) the xth item of the ⟨list⟩. A braced item will lose one

num
x f ★

level of brace pairs. The token list is first f-expanded.

54 and multiple space tokens are not a problem; but those at the top level (not hidden inside braces) must be of character code
32. 55 let us recall that this is all done completely expandably... There is absolutely no alteration of any sort of the item apart
from the stripping of initial and final space tokens (of character code 32) and brace removal if and only if the item apart from
intial and final spaces (or more generally multiple char 32 space tokens) is braced.
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Items are counted starting at one.

\xintNthElt {3}{{agh}\u{zzz}\v{Z}} is zzz

\xintNthElt {3}{{agh}\u{{zzz}}\v{Z}} is {zzz}

\xintNthElt {2}{{agh}\u{{zzz}}\v{Z}} is \u

\xintNthElt {37}{\xintiiFac {100}}=9 is the thirty-seventh digit of 100!.

\xintNthElt {10}{\xintFtoCv {566827/208524}}=1457/536

is the tenth convergent of 566827/208524 (uses xintcfrac package).

\xintNthElt {7}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}=7

\xintNthElt {0}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}=9

\xintNthElt {-3}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}=7

If x=0, the macro returns the length of the expanded list: this is not equivalent to \xintLength

which does no pre-expansion. And it is different from \xintLen which is to be used only on integers

or fractions.

If x<0, the macro returns the |x|th element from the end of the list. Thus for example x=-1 will

fetch the last item of the list.

\xintNthElt {-5}{{{agh}}\u{zzz}\v{Z}} is {agh}

The macro \xintNthEltNoExpand does the same job but without first expanding the list argument:
num
x n ★

\xintNthEltNoExpand {-4}{\u\v\w T\x\y\z} is T.

If x is strictly larger (in absolute value) than the length of the list then \xintNthElt produces

empty contents.

14.5. \xintNthOnePy
\xintNthOnePy{x}{⟨list⟩} gets (expandably) the xth item of the ⟨list⟩, adding a brace pair if there

num
x f ★

wasn't one.New with
1.4 Attention, items are counted starting at zero. For negative index, behaves as \xintNthElt.

If the index is out of range, the empty output is returned. If the input list was empty (had no

items) the empty output is returned.

14.6. \xintKeep
\xintKeep{x}{⟨list⟩} expands the token list argument L and produces a new list, depending on the

num
x f ★

value of x:

• if x>0, the new list contains the first x items from L (counting starts at one.) Each such item
will be output within a brace pair. Use \xintKeepUnbraced if this is not desired. This means

that if the list item was braced to start with, there is no modification, but if it was a token

without braces, then it acquires them.

• if x>=length(L), the new list is the old one with all its items now braced.

• if x=0 the empty list is returned.

• if x<0 the last |x| elements compose the output in the same order as in the initial list; as the

macro proceeds by removing head items the kept items end up in output as they were in input:

no added braces.

• if x<=-length(L) the output is identical with the input.
\xintKeepNoExpand does the same without first f-expanding its list argument.
\fdef\test {\xintKeep {17}{\xintKeep {-69}{\xintSeq {1}{100}}}}\meaning\test\par

\noindent\fdef\test {\xintKeep {7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintKeep {-7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintKeep {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintKeep {-7}{123456789}}\meaning\test\par

macro:->{32}{33}{34}{35}{36}{37}{38}{39}{40}{41}{42}{43}{44}{45}{46}{47}{48}

macro:->{1}{2}{3}{4}{5}{6}{7}

macro:->{3}{4}{5}{6}{7}{8}{9}

macro:->{1}{2}{3}{4}{5}{6}{7}
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macro:->3456789

14.7. \xintKeepUnbraced
Same as \xintKeep but no brace pairs are added around the kept items from the head of the list in

the case x>0: each such item will lose one level of braces. Thus, to remove braces from all items of

the list, one can use \xintKeepUnbraced with its first argument larger than the length of the list;

the same is obtained from \xintListWithSep{}{⟨list⟩}. But the new list will then have generally

many more items than the original ones, corresponding to the unbraced original items.

For x<0 the macro is no different from \xintKeep. Hence the name is a bit misleading because

brace removal will happen only if x>0.
\xintKeepUnbracedNoExpand does the same without first f-expanding its list argument.
\fdef\test {\xintKeepUnbraced {10}{\xintSeq {1}{100}}}\meaning\test\par

\noindent\fdef\test {\xintKeepUnbraced {7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintKeepUnbraced {-7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintKeepUnbraced {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintKeepUnbraced {-7}{123456789}}\meaning\test\par

macro:->12345678910

macro:->1234567

macro:->{3}{4}{5}{6}{7}{8}{9}

macro:->1234567

macro:->3456789

14.8. \xintTrim
\xintTrim{x}{⟨list⟩} expands the list argument and gobbles its first x elements.

num
x f ★

• if x>0, the first x items from L are gobbled. The remaining items are not modified.

• if x>=length(L), the returned list is empty.

• if x=0 the original list is returned (with no added braces.)

• if x<0 the last |x| items of the list are removed. The head items end up braced in the output.
Use \xintTrimUnbraced if this is not desired.

• if x<=-length(L) the output is empty.
\xintTrimNoExpand does the same without first f-expanding its list argument.
\fdef\test {\xintTrim {17}{\xintTrim {-69}{\xintSeq {1}{100}}}}\meaning\test\par

\noindent\fdef\test {\xintTrim {7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintTrim {-7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintTrim {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintTrim {-7}{123456789}}\meaning\test\par

macro:->{18}{19}{20}{21}{22}{23}{24}{25}{26}{27}{28}{29}{30}{31}

macro:->{8}{9}

macro:->{1}{2}

macro:->89

macro:->{1}{2}

14.9. \xintTrimUnbraced
Same as \xintTrim but in case of a negative x (cutting items from the tail), the kept items from

the head are not enclosed in brace pairs. They will lose one level of braces. The name is a bit

misleading because when x>0 there is no brace-stripping done on the kept items, because the macro

works simply by gobbling the head ones.

\xintTrimUnbracedNoExpand does the same without first f-expanding its list argument.
\fdef\test {\xintTrimUnbraced {-90}{\xintSeq {1}{100}}}\meaning\test\par

\noindent\fdef\test {\xintTrimUnbraced {7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintTrimUnbraced {-7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par
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\noindent\fdef\test {\xintTrimUnbraced {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintTrimUnbraced {-7}{123456789}}\meaning\test\par

macro:->12345678910

macro:->{8}{9}

macro:->12

macro:->89

macro:->12

14.10. \xintListWithSep
\xintListWithSep{⟨sep⟩}{⟨list⟩} inserts the separator ⟨sep⟩ in-between all items of the given listn f ★
of braced items (or individual tokens). The items are fetched as does TEX with undelimited macro

arguments, thus they end up unbraced in output. If the ⟨list⟩ is only one (or multiple) space to-

kens, the output is empty.

The list argument ⟨list⟩ gets f-expanded first (thus if it is a macro whose contents are braced

items, the first opening brace stops the expansion, and it is as if the macro had been expanded

once.) The separator ⟨sep⟩ is not pre-expanded, it ends up as is in the output (if the ⟨list⟩ con-

tained at least two items.)
The variant \xintListWithSepNoExpand does the same job without the initial expansion of then n ★

⟨list⟩ argument.
\edef\foo{\xintListWithSep{, }{123456789{10}{11}{12}}}\meaning\foo\newline

\edef\foo{\xintListWithSep{:}{\xintiiFac{20}}}\meaning\foo\newline

\oodef\FOO{\xintListWithSepNoExpand{\FOO}{\bat\baz\biz\buz}}\meaning\FOO\newline

% a braced item or a space stops the f-expansion:

\oodef\foo{\xintListWithSep{\FOO}{{\bat}\baz\biz\buz}}\meaning\foo\newline

\oodef\foo{\xintListWithSep{\FOO}{ \bat\baz\biz\buz}}\meaning\foo\par

macro:->1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

macro:->2:4:3:2:9:0:2:0:0:8:1:7:6:6:4:0:0:0:0

macro:->\bat \FOO \baz \FOO \biz \FOO \buz

macro:->\bat \FOO \baz \FOO \biz \FOO \buz

macro:->\bat \FOO \baz \FOO \biz \FOO \buz

14.11. \xintApply
\xintApply{\macro}{⟨list⟩} expandably applies the one parameter macro \macro to each item in thef f ★
⟨list⟩ given as second argument and returns a new list with these outputs: each item is given one

after the other as parameter to \macro which is expanded at that time (as usual, i.e. fully for what

comes first), the results are braced and output together as a succession of braced items (if \mac⤸
ro is defined to start with a space, the space will be gobbled and the \macro will not be expanded;

it is allowed to have its own arguments, the list items serve as last arguments to \macro). Hence

\xintApply{\macro}{{1}{2}{3}} returns {\macro{1}}{\macro{2}}{\macro{3}} where all instances of

\macro have been already f-expanded.
Being expandable, \xintApply is useful for example inside alignments where implicit groups make

standard loops constructs usually fail. In such situation it is often not wished that the new list

elements be braced, see \xintApplyUnbraced. The \macro does not have to be expandable: \xintApply

will try to expand it, the expansion may remain partial.

The ⟨list⟩ may itself be some macro expanding (in the previously described way) to the list of

tokens to which the macro \macro will be applied. For example, if the ⟨list⟩ expands to some posi-

tive number, then each digit will be replaced by the result of applying \macro on it.

\def\macro #1{\the\numexpr 9-#1\relax}

\xintApply\macro{\xintiiFac {20}}=7567097991823359999

The macro \xintApplyNoExpand does the same job without the first initial expansion which gavef n ★
the ⟨list⟩ of braced tokens to which \macro is applied.
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14.12. \xintApplyUnbraced
\xintApplyUnbraced{\macro}{⟨list⟩} is like \xintApply. The difference is that after having ex-f f ★
panded its list argument, and applied \macro in turn to each item from the list, it reassembles
the outputs without enclosing them in braces. The net effect is the same as doing
\xintListWithSep {}{\xintApply {\macro}{⟨list⟩}}

This is useful for preparing a macro which will itself define some other macros or make assign-
ments, as the scope will not be limited by brace pairs.
\def\macro #1{\expandafter\def\csname myself#1\endcsname {#1}}

\xintApplyUnbraced\macro{{elta}{eltb}{eltc}}

\begin{enumerate}[nosep,label=(\arabic{*})]

\item \meaning\myselfelta

\item \meaning\myselfeltb

\item \meaning\myselfeltc

\end{enumerate}

(1) macro:->elta

(2) macro:->eltb

(3) macro:->eltc

The macro \xintApplyUnbracedNoExpand does the same job without the first initial expansionf n ★
which gave the ⟨list⟩ of braced tokens to which \macro is applied.

14.13. \xintSeq
\xintSeq[d]{x}{y} generates expandably {x}{x+d}... up to and possibly including {y} if d>0 or down[

num
x ]

num
x

num
x ★

to and including {y} if d<0. Naturally {y} is omitted if y-x is not a multiple of d. If d=0 the macro

returns {x}. If y-x and d have opposite signs, the macro returns nothing. If the optional argument

d is omitted it is taken to be the sign of y-x. Hence \xintSeq {1}{0} is not empty but {1}{0}. But

\xintSeq [1]{1}{0} is empty.

The arguments x and y are expanded inside a \numexpr so they may be count registers or a LATEX

\value{countername}, or arithmetic with such things.
\xintListWithSep{,\hskip2pt plus 1pt minus 1pt }{\xintSeq {12}{-25}}

12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15,
-16, -17, -18, -19, -20, -21, -22, -23, -24, -25
\xintiiSum{\xintSeq [3]{1}{1000}}

167167

When the macro is used without the optional argument d, it can only generate up to about 5000

numbers, the precise value depends upon some TEX memory parameter (input save stack).+
{

With the optional argument d the macro proceeds differently (but less efficiently) and does not

stress the input save stack.

14.14. \xintloop, \xintbreakloop, \xintbreakloopanddo, \xintloopskiptonext
\xintloop⟨stuff ⟩\if<test>...\repeat is an expandable loop compatible with nesting. However toI
break out of the loop one almost always need some un-expandable step. The cousin \xintiloop is

\xintloop with an embedded expandable mechanism allowing to exit from the loop. The iterated

macros may contain \par tokens or empty lines.

If a sub-loop is to be used all the material from the start of the main loop and up to the end of

the entire subloop should be braced; these braces will be removed and do not create a group. The

simplest to allow the nesting of one or more sub-loops is to brace everything between \xintloop

and \repeat, being careful not to leave a space between the closing brace and \repeat.

As this loop and \xintiloop will primarily be of interest to experienced TEX macro programmers,

my description will assume that the user is knowledgeable enough. Some examples in this document

will be perhaps more illustrative than my attemps at explanation of use.

One can abort the loop with \xintbreakloop; this should not be used inside the final test, and

one should expand the \fi from the corresponding test before. One has also \xintbreakloopanddo
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whose first argument will be inserted in the token stream after the loop; one may need a macro

such as \xint_afterfi to move the whole thing after the \fi, as a simple \expandafter will not be

enough.

One will usually employ some count registers to manage the exit test from the loop; this breaks

expandability, see \xintiloop for an expandable integer indexed loop. Use in alignments will be

complicated by the fact that cells create groups, and also from the fact that any encountered un-

expandable material will cause the TEX input scanner to insert \endtemplate on each encountered &

or \cr; thus \xintbreakloop may not work as expected, but the situation can be resolved via \xin⤸
t_firstofone{&} or use of \TAB with \def\TAB{&}. It is thus simpler for alignments to use rather

than \xintloop either the expandable \xintApplyUnbraced or the non-expandable but alignment com-

patible \xintApplyInline, \xintFor or \xintFor*.

As an example, let us suppose we have two macros \A{⟨i⟩}{⟨j⟩} and \B{⟨i⟩}{⟨j⟩} behaving like

(small) integer valued matrix entries, and we want to define a macro \C{⟨i⟩}{⟨j⟩} giving the ma-

trix product (i and j may be count registers). We will assume that \A[I] expands to the number of

rows, \A[J] to the number of columns and want the produced \C to act in the same manner. The code is

very dispendious in use of \count registers, not optimized in any way, not made very robust (the

defined macro can not have the same name as the first two matrices for example), we just wanted to

quickly illustrate use of the nesting capabilities of \xintloop.56

\newcount\rowmax \newcount\colmax \newcount\summax

\newcount\rowindex \newcount\colindex \newcount\sumindex

\newcount\tmpcount

\makeatletter

\def\MatrixMultiplication #1#2#3{%

\rowmax #1[I]\relax

\colmax #2[J]\relax

\summax #1[J]\relax

\rowindex 1

\xintloop % loop over row index i

{\colindex 1

\xintloop % loop over col index k

{\tmpcount 0

\sumindex 1

\xintloop % loop over intermediate index j

\advance\tmpcount \numexpr #1\rowindex\sumindex*#2\sumindex\colindex\relax

\ifnum\sumindex<\summax

\advance\sumindex 1

\repeat }%

\expandafter\edef\csname\string#3{\the\rowindex.\the\colindex}\endcsname

{\the\tmpcount}%

\ifnum\colindex<\colmax

\advance\colindex 1

\repeat }%

\ifnum\rowindex<\rowmax

\advance\rowindex 1

\repeat

\expandafter\edef\csname\string#3{I}\endcsname{\the\rowmax}%

\expandafter\edef\csname\string#3{J}\endcsname{\the\colmax}%

\def #3##1{\ifx[##1\expandafter\Matrix@helper@size

\else\expandafter\Matrix@helper@entry\fi #3{##1}}%

}%

\def\Matrix@helper@size #1#2#3]{\csname\string#1{#3}\endcsname }%

\def\Matrix@helper@entry #1#2#3%

{\csname\string#1{\the\numexpr#2.\the\numexpr#3}\endcsname }%

56 for a more sophisticated implementation of matrix multiplication, inclusive of determinants, inverses, and display utilities, with
entries big integers or decimal numbers or even fractions see some code online posted from November 11, 2013.
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\def\A #1{\ifx[#1\expandafter\A@size

\else\expandafter\A@entry\fi {#1}}%

\def\A@size #1#2]{\ifx I#23\else4\fi}% 3rows, 4columns

\def\A@entry #1#2{\the\numexpr #1+#2-1\relax}% not pre-computed...

\def\B #1{\ifx[#1\expandafter\B@size

\else\expandafter\B@entry\fi {#1}}%

\def\B@size #1#2]{\ifx I#24\else3\fi}% 4rows, 3columns

\def\B@entry #1#2{\the\numexpr #1-#2\relax}% not pre-computed...

\makeatother

\MatrixMultiplication\A\B\C \MatrixMultiplication\C\C\D

\MatrixMultiplication\C\D\E \MatrixMultiplication\C\E\F

\begin{multicols}2

\[\begin{pmatrix}

\A11&\A12&\A13&\A14\\

\A21&\A22&\A23&\A24\\

\A31&\A32&\A33&\A34

\end{pmatrix}

\times

\begin{pmatrix}

\B11&\B12&\B13\\

\B21&\B22&\B23\\

\B31&\B32&\B33\\

\B41&\B42&\B43

\end{pmatrix}

=

\begin{pmatrix}

\C11&\C12&\C13\\

\C21&\C22&\C23\\

\C31&\C32&\C33

\end{pmatrix}\]

\[\begin{pmatrix}

\C11&\C12&\C13\\

\C21&\C22&\C23\\

\C31&\C32&\C33

\end{pmatrix}^2 = \begin{pmatrix}

\D11&\D12&\D13\\

\D21&\D22&\D23\\

\D31&\D32&\D33

\end{pmatrix}\]

\[\begin{pmatrix}

\C11&\C12&\C13\\

\C21&\C22&\C23\\

\C31&\C32&\C33

\end{pmatrix}^3 = \begin{pmatrix}

\E11&\E12&\E13\\

\E21&\E22&\E23\\

\E31&\E32&\E33

\end{pmatrix}\]

\[\begin{pmatrix}

\C11&\C12&\C13\\

\C21&\C22&\C23\\

\C31&\C32&\C33

\end{pmatrix}^4 = \begin{pmatrix}

\F11&\F12&\F13\\

\F21&\F22&\F23\\

\F31&\F32&\F33

\end{pmatrix}\]
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\end{multicols}

©­«
1 2 3 4

2 3 4 5

3 4 5 6

ª®¬ ×
©­­­«
0 -1 -2

1 0 -1

2 1 0

3 2 1

ª®®®¬ =
©­«
20 10 0

26 12 -2

32 14 -4

ª®¬
©­«
20 10 0

26 12 -2

32 14 -4

ª®¬
2

=
©­«
660 320 -20

768 376 -16

876 432 -12

ª®¬

©­«
20 10 0

26 12 -2

32 14 -4

ª®¬
3

=
©­«
20880 10160 -560

24624 11968 -688

28368 13776 -816

ª®¬
©­«
20 10 0

26 12 -2

32 14 -4

ª®¬
4

=
©­«
663840 322880 -18080

781632 380224 -21184

899424 437568 -24288

ª®¬
14.15. \xintiloop, \xintiloopindex, \xintouteriloopindex, \xintbreakiloop,

\xintbreakiloopanddo, \xintiloopskiptonext, \xintiloopskipandredo
\xintiloop[start+delta]⟨stuff ⟩\if<test> ... \repeat is a completely expandable nestable loop.I
complete expandability depends naturally on the actual iterated contents, and complete expansion

will not be achievable under a sole f-expansion, as is indicated by the hollow star in the margin;

thus the loop can be used inside an \edef but not inside arguments to the package macros. It can be

used inside an \xintexpr..\relax. The [start+delta] is mandatory, not optional.

This loop benefits via \xintiloopindex to (a limited access to) the integer index of the iter-

ation. The starting value start (which may be a \count) and increment delta (id.) are mandatory

arguments. A space after the closing square bracket is not significant, it will be ignored. Spaces

inside the square brackets will also be ignored as the two arguments are first given to a \numexpr⤸
...\relax. Empty lines and explicit \par tokens are accepted.

As with \xintloop, this tool will mostly be of interest to advanced users. For nesting, one

puts inside braces all the material from the start (immediately after [start+delta]) and up to

and inclusive of the inner loop, these braces will be removed and do not create a loop. In case

of nesting, \xintouteriloopindex gives access to the index of the outer loop. If needed one could

write on its model a macro giving access to the index of the outer outer loop (or even to the nth

outer loop).

The \xintiloopindex and \xintouteriloopindex can not be used inside braces, and generally

speaking this means they should be expanded first when given as argument to a macro, and that this

macro receives them as delimited arguments, not braced ones. Or, but naturally this will break ex-

pandability, one can assign the value of \xintiloopindex to some \count. Both \xintiloopindex and

\xintouteriloopindex extend to the litteral representation of the index, thus in \ifnum tests, if

it comes last one has to correctly end the macro with a \space, or encapsulate it in a \numexpr..\⤸
relax.

When the repeat-test of the loop is, for example, \ifnum\xintiloopindex<10 \repeat, this means

that the last iteration will be with \xintiloopindex=10 (assuming delta=1). There is also \ifnum⤸
\xintiloopindex=10 \else\repeat to get the last iteration to be the one with \xintiloopindex=10.

One has \xintbreakiloop and \xintbreakiloopanddo to abort the loop. The syntax of \xintbreakil⤸
oopanddo is a bit surprising, the sequence of tokens to be executed after breaking the loop is not

within braces but is delimited by a dot as in:

\xintbreakiloopanddo <afterloop>.etc.. etc... \repeat

The reason is that one may wish to use the then current value of \xintiloopindex in <afterloop> but

it can't be within braces at the time it is evaluated. However, it is not that easy as \xintiloopi⤸
ndex must be expanded before, so one ends up with code like this:

\expandafter\xintbreakiloopanddo\expandafter\macro\xintiloopindex.%

etc.. etc.. \repeat

As moreover the \fi from the test leading to the decision of breaking out of the loop must be

cleared out of the way, the above should be a branch of an expandable conditional test, else one

needs something such as:
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\xint_afterfi{\expandafter\xintbreakiloopanddo\expandafter\macro\xintiloopindex.}%

\fi etc..etc.. \repeat

There is \xintiloopskiptonext to abort the current iteration and skip to the next, \xintiloopskip-

andredo to skip to the end of the current iteration and redo it with the same value of the index

(something else will have to change for this not to become an eternal loop...).

Inside alignments, if the looped-over text contains a & or a \cr, any un-expandable material

before a \xintiloopindex will make it fail because of \endtemplate; in such cases one can always

either replace & by a macro expanding to it or replace it by a suitable \firstofone{&}, and simi-

larly for \cr.
As an example, let us construct an \edef\z{...} which will define \z to be a list of prime num-

bers:
\begingroup

\edef\z

{\xintiloop [10001+2]

{\xintiloop [3+2]

\ifnum\xintouteriloopindex<\numexpr\xintiloopindex*\xintiloopindex\relax

\xintouteriloopindex,

\expandafter\xintbreakiloop

\fi

\ifnum\xintouteriloopindex=\numexpr

(\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax

\else

\repeat

}% no space here

\ifnum \xintiloopindex < 10999 \repeat }%

\meaning\z\endgroup

macro:->10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103,

10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243,

10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337,

10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, 10463, 10477, 10487,

10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631,

10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, 10753,

10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891,

10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, and we should have taken

some steps to not have a trailing comma, but the point was to show that one can do that in an \edef !

See also subsection 16.3 which extracts from this code its way of testing primality.
Let us create an alignment where each row will contain all divisors of its first entry. Here is

the output, thus obtained without any count register:
\begin{multicols}2

\tabskip1ex \normalcolor

\halign{&\hfil#\hfil\cr

\xintiloop [1+1]

{\expandafter\bfseries\xintiloopindex &

\xintiloop [1+1]

\ifnum\xintouteriloopindex=\numexpr

(\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax

\xintiloopindex&\fi

\ifnum\xintiloopindex<\xintouteriloopindex\space % CRUCIAL \space HERE

\repeat \cr }%

\ifnum\xintiloopindex<30

\repeat

}

\end{multicols}
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1 1

2 1 2

3 1 3

4 1 2 4

5 1 5

6 1 2 3 6

7 1 7

8 1 2 4 8

9 1 3 9

10 1 2 5 10

11 1 11

12 1 2 3 4 6 12

13 1 13

14 1 2 7 14

15 1 3 5 15

16 1 2 4 8 16

17 1 17

18 1 2 3 6 9 18

19 1 19

20 1 2 4 5 10 20

21 1 3 7 21

22 1 2 11 22

23 1 23

24 1 2 3 4 6 8 12 24

25 1 5 25

26 1 2 13 26

27 1 3 9 27

28 1 2 4 7 14 28

29 1 29

30 1 2 3 5 6 10 15 30
We wanted this first entry in bold face, but \bfseries leads to unexpandable tokens, so the \exp⤸
andafter was necessary for \xintiloopindex and \xintouteriloopindex not to be confronted with a
hard to digest \endtemplate. An alternative way of coding:
\tabskip1ex

\def\firstofone #1{#1}%

\halign{&\hfil#\hfil\cr

\xintiloop [1+1]

{\bfseries\xintiloopindex\firstofone{&}%

\xintiloop [1+1] \ifnum\xintouteriloopindex=\numexpr

(\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax

\xintiloopindex\firstofone{&}\fi

\ifnum\xintiloopindex<\xintouteriloopindex\space % \space is CRUCIAL

\repeat \firstofone{\cr}}%

\ifnum\xintiloopindex<30 \repeat }

The next utilities are not compatible with expansion-only context.

14.16. \xintApplyInline
\xintApplyInline{\macro}{⟨list⟩} works non expandably. It applies the one-parameter \macro to theo *f
first element of the expanded list (\macro may have itself some arguments, the list item will be

appended as last argument), and is then re-inserted in the input stream after the tokens resulting

from this first expansion of \macro. The next item is then handled.

This is to be used in situations where one needs to do some repetitive things. It is not expand-

able and can not be completely expanded inside a macro definition, to prepare material for later

execution, contrarily to what \xintApply or \xintApplyUnbraced achieve.
\def\Macro #1{\advance\cnta #1 , \the\cnta}

\cnta 0

0\xintApplyInline\Macro {3141592653}.

0, 3, 4, 8, 9, 14, 23, 25, 31, 36, 39. The first argument \macro does not have to be an expandable

macro.

\xintApplyInline submits its second, token list parameter to an f-expansion. Then, each un-
braced item will also be f-expanded. This provides an easy way to insert one list inside another.

Braced items are not expanded. Spaces in-between items are gobbled (as well as those at the start

or the end of the list), but not the spaces inside the braced items.

\xintApplyInline, despite being non-expandable, does survive to contexts where the executed \⤸
macro closes groups, as happens inside alignments with the tabulation character &. This tabular

provides an example:
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\centerline{\normalcolor\begin{tabular}{ccc}

$N$ & $N^2$ & $N^3$ \\ \hline

\def\Row #1{ #1 & \xintiiSqr {#1} & \xintiiPow {#1}{3} \\ \hline }%

\xintApplyInline \Row {\xintCSVtoList{17,28,39,50,61}}

\end{tabular}}\medskip
N N2 N3

17 289 4913

28 784 21952

39 1521 59319

50 2500 125000

61 3721 226981

We see that despite the fact that the first encountered tabulation character in the first row

close a group and thus erases \Row from TEX's memory, \xintApplyInline knows how to deal with this.

Using \xintApplyUnbraced is an alternative: the difference is that this would have prepared all

rows first and only put them back into the token stream once they are all assembled, whereas with

\xintApplyInline each row is constructed and immediately fed back into the token stream: when one

does things with numbers having hundreds of digits, one learns that keeping on hold and shuffling

around hundreds of tokens has an impact on TEX's speed (make this ``thousands of tokens'' for the

impact to be noticeable).

One may nest various \xintApplyInline's. For example (see the table on this page):
\begin{figure*}[ht!]

\centering\phantomsection\label{float}

\def\Row #1{#1:\xintApplyInline {\Item {#1}}{0123456789}\\ }%

\def\Item #1#2{&\xintiiPow {#1}{#2}}%

\centeredline {\begin{tabular}{ccccccccccc} &0&1&2&3&4&5&6&7&8&9\\ \hline

\xintApplyInline \Row {0123456789}

\end{tabular}}

\end{figure*}

0 1 2 3 4 5 6 7 8 9

0: 1 0 0 0 0 0 0 0 0 0

1: 1 1 1 1 1 1 1 1 1 1

2: 1 2 4 8 16 32 64 128 256 512

3: 1 3 9 27 81 243 729 2187 6561 19683

4: 1 4 16 64 256 1024 4096 16384 65536 262144

5: 1 5 25 125 625 3125 15625 78125 390625 1953125

6: 1 6 36 216 1296 7776 46656 279936 1679616 10077696

7: 1 7 49 343 2401 16807 117649 823543 5764801 40353607

8: 1 8 64 512 4096 32768 262144 2097152 16777216 134217728

9: 1 9 81 729 6561 59049 531441 4782969 43046721 387420489

One could not move the definition of \Item inside the tabular, as it would get lost after the
first &. But this works:
\begin{tabular}{ccccccccccc}

&0&1&2&3&4&5&6&7&8&9\\ \hline

\def\Row #1{#1:\xintApplyInline {&\xintiiPow {#1}}{0123456789}\\ }%

\xintApplyInline \Row {0123456789}

\end{tabular}

A limitation is that, contrarily to what one may have expected, the \macro for an \xintApplyInl⤸
ine can not be used to define the \macro for a nested sub-\xintApplyInline. For example, this does

not work:
\def\Row #1{#1:\def\Item ##1{&\xintiiPow {#1}{##1}}%

\xintApplyInline \Item {0123456789}\\ }%

\xintApplyInline \Row {0123456789} % does not work
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But see \xintFor.

14.17. \xintFor, \xintFor*
\xintFor is a new kind of for loop.57 Rather than using macros for encapsulating list items, itso n
behaviour is like a macro with parameters: #1, #2, ..., #9 are used to represent the items for up
to nine levels of nested loops. Here is an example:
\xintFor #9 in {1,2,3} \do {%

\xintFor #1 in {4,5,6} \do {%

\xintFor #3 in {7,8,9} \do {%

\xintFor #2 in {10,11,12} \do {%

$$#9\times#1\times#3\times#2=\xintiiPrd{{#1}{#2}{#3}{#9}}$$}}}}

This example illustrates that one does not have to use #1 as the first one: the order is arbitrary.

But each level of nesting should have its specific macro parameter. Nine levels of nesting is

presumably overkill, but I did not know where it was reasonable to stop. \par tokens are accepted

in both the comma separated list and the replacement text.

TEXnical notes:

• The #1 is replaced in the iterated-over text exactly as in general TEX macros or LATEX com-

mands. This spares the user quite a few \expandafter's or other tricks needed with loops

which have the values encapsulated in macros, like LATEX's \@for and \@tfor.

• \xintFor (and \xintFor*) isn't purely expandable: one can not use it inside an \edef. But

it may be used, as will be shown in examples, in some contexts such as LATEX's tabular which

are usually hostile to non-expandable loops.

• \xintFor (and \xintFor*) does some assignments prior to executing each iteration of the

replacement text, but it acts purely expandably after the last iteration, hence if for

example the replacement text ends with a \\, the loop can be used insided a tabular and be

followed by a \hline without creating the dreaded ``Misplaced \noalign'' error.

• As stated in previous item the first iteration follows some non-expandable internal deal-

ings. This means for example that in LATEX, one can not inject a \multicolumn in the first

iteration. Sometimes one way work around this by injecting father &\multicolumn or \\ \m⤸
ulticolumn.

• It does not create groups.

• It makes no global assignments.

• The iterated replacement text may close a group which was opened even before the start of
the loop (typical example being with & in alignments).

\begin{tabular}{rccccc}

\hline

\xintFor #1 in {A, B, C} \do {%

#1:\xintFor #2 in {a, b, c, d, e} \do {&($ #2 \to #1 $)}\\ }%

\hline

\end{tabular}
A: (a → A) (b → A) (c → A) (d → A) (e → A)

B: (a → B) (b → B) (c → B) (d → B) (e → B)

C: (a → C) (b → C) (c → C) (d → C) (e → C)

57 first introduced with xint 1.09c of 2013/10/09.
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• There is no facility provided which would give access to a count of the number of itera-

tions as it is technically not easy to do so it in a way working with nested loops while

maintaining the ``expandable after done'' property; something in the spirit of \xint-

iloopindex is possible but this approach would bring its own limitations and complica-

tions. Hence the user is invited to update her own count or LATEX counter or macro at each

iteration, if needed.

• A \macro whose definition uses internally an \xintFor loop may be used inside another

\xintFor loop even if the two loops both use the same macro parameter. The loop definition

inside \macro must use ## as is the general rule for definitions done inside macros.

• \xintFor is for comma separated values and \xintFor* for lists of braced items; their

respective expansion policies differ. They are described later.

Regarding \xintFor:

• the spaces between the various declarative elements are all optional,

• in the list of comma separated values, spaces around the commas or at the start and end are

ignored,

• if an item must contain itself its own commas, then it should be braced, and the braces will

be removed before feeding the iterated-over text,

• the list may be a macro, it is expanded only once,

• items are not pre-expanded. The first item should be braced or start with a space if the list

is explicit and the item should not be pre-expanded,

• empty items give empty #1's in the replacement text, they are not skipped,

• an empty list executes once the replacement text with an empty parameter value,

• the list, if not a macro, must be braced.

Regarding \xintFor*:*f n
• it handles lists of braced items (or naked tokens),

• it f-expands the list,

• and more generally it f-expands each naked token encountered before assigning the #1 values

(gobbling spaces in the process); this makes it easy to simulate concatenation of multiple

lists\x, \y: if \x expands to {1}{2}{3} and \y expands to {4}{5}{6} then {\x\y} as argument to

\xintFor* has the same effect as {{1}{2}{3}{4}{5}{6}}.

For a further illustration see the use of \xintFor* at the end of subsection 15.18.

• spaces at the start, end, or in-between items are gobbled (but naturally not the spaces inside

braced items),

• except if the list argument is a macro (with no parameters), it must be braced. ,

• an empty list leads to an empty result.
The macro \xintSeq which generates arithmetic sequences is to be used with \xintFor* as its

output consists of successive braced numbers (given as digit tokens).
\xintFor* #1 in {\xintSeq [+2]{-7}{+2}}\do {stuff

with #1\xintifForLast{\par}{\newline}}

stuff with -7

stuff with -5

stuff with -3

stuff with -1

stuff with 1
When nesting \xintFor* loops, using \xintSeq in the inner loops is inefficient, as the arith-

metic sequence will be re-created each time. A more efficient style is:
\edef\innersequence {\xintSeq[+2]{-50}{50}}%

\xintFor* #1 in {\xintSeq {13}{27}} \do

{\xintFor* #2 in \innersequence \do {stuff with #1 and #2}%

.. some other macros .. }
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This is a general remark applying for any nesting of loops, one should avoid recreating the inner

lists of arguments at each iteration of the outer loop.
When the loop is defined inside a macro for later execution the # characters must be doubled.58

For example:
\def\T{\def\z {}%

\xintFor* ##1 in {{u}{v}{w}} \do {%

\xintFor ##2 in {x,y,z} \do {%

\expandafter\def\expandafter\z\expandafter {\z\sep (##1,##2)} }%

}%

}%

\T\def\sep {\def\sep{, }}\z

(u,x), (u,y), (u,z), (v,x), (v,y), (v,z), (w,x), (w,y), (w,z)

Similarly when the replacement text of \xintFor defines a macro with parameters, the macro char-

acter # must be doubled.

The iterated macros as well as the list items are allowed to contain explicit \par tokens.

14.18. \xintifForFirst, \xintifForLast
\xintifForFirst {YES branch}{NO branch} and \xintifForLast {YES branch}{NO branch} execute then n ★n n ★
YES or NO branch if the \xintFor or \xintFor* loop is currently in its first, respectively last,

iteration.

Designed to work as expected under nesting (but see frame next.) Don't forget an empty brace pair

{} if a branch is to do nothing. May be used multiple times in the replacement text of the loop.

Pay attention to these implementation features:

• if an inner \xintFor loop is positioned before the \xintifForFirst or \xintifForLast of
the outer loop it will contaminate their settings. This applies also naturally if the
inner loop arises from the expansion of some macro located before the outer conditionals.

One fix is to make sure that the outer conditionals are expanded before the inner loop

is executed, e.g. this will be the case if the inner loop is located inside one of the

branches of the conditional.

Another approach is to enclose, if feasible, the inner loop in a group of its own.

• if the replacement text closes a group (e.g. from a & inside an alignment), the condition-
als will lose their ascribed meanings and end up possibly undefined, depending whether
there is some outer loop whose execution started before the opening of the group.

The fix is to arrange things so that the conditionals are expanded before TEX encounters

the closing-group token.

14.19. \xintBreakFor, \xintBreakForAndDo
One may immediately terminate an \xintFor or \xintFor* loop with \xintBreakFor.

As it acts by clearing up all the rest of the replacement text when encountered, it will not

work from inside some \if...\fi without suitable \expandafter or swapping technique.

Also it can't be used from inside braces as from there it can't see the end of the replacement

text.

There is also \xintBreakForAndDo. Both are illustrated by various examples in the next section

which is devoted to ``forever'' loops.

58 sometimes what seems to be a macro argument isn’t really; in \raisebox{1cm}{\xintFor #1 in {a,b,c}\do {#1}} no doubling
should be done.
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14.20. \xintintegers, \xintdimensions, \xintrationals
If the list argument to \xintFor (or \xintFor*, both are equivalent in this context) is \xint-

integers (equivalently \xintegers) or more generally \xintintegers[start+delta] (the whole
within braces!)59, then \xintFor does an infinite iteration where #1 (or #2, ..., #9) will run

through the arithmetic sequence of (short) integers with initial value start and increment delt⤸
a (default values: start=1, delta=1; if the optional argument is present it must contains both of

them, and they may be explicit integers, or macros or count registers). The #1 (or #2, ..., #9)

will stand for \numexpr <opt sign><digits>\relax, and the litteral representation as a string of

digits can thus be obtained as \the#1 or \number#1. Such a #1 can be used in an \ifnum test with

no need to be postfixed with a space or a \relax and one should not add them.

If the list argument is \xintdimensions or more generally \xintdimensions[start+delta] (within
braces!), then \xintFor does an infinite iteration where #1 (or #2, ..., #9) will run through the

arithmetic sequence of dimensions with initial value start and increment delta. Default values: s⤸
tart=0pt, delta=1pt; if the optional argument is present it must contain both of them, and they may

be explicit specifications, or macros, or dimen registers, or length macros in LATEX (the stretch

and shrink components will be discarded). The #1 will be \dimexpr <opt sign><digits>sp\relax,

from which one can get the litteral (approximate) representation in points via \the#1. So #1 can

be used anywhere TEX expects a dimension (and there is no need in conditionals to insert a \rela⤸
x, and one should not do it), and to print its value one uses \the#1 . The chosen representation

guarantees exact incrementation with no rounding errors accumulating from converting into points

at each step.
If the list argument to \xintFor (or \xintFor*) is \xintrationals or more generally \xint-

rationals[start+delta] (within braces!), then \xintFor does an infinite iteration where #1 (or
#2, ..., #9) will run through the arithmetic sequence of xintfrac fractions with initial value
start and increment delta (default values: start=1/1, delta=1/1). This loop works only with xint-
frac loaded. if the optional argument is present it must contain both of them, and they may be given
in any of the formats recognized by xintfrac (fractions, decimal numbers, numbers in scientific
notations, numerators and denominators in scientific notation, etc...) , or as macros or count
registers (if they are short integers). The #1 (or #2, ..., #9) will be an a/b fraction (without
a [n] part), where the denominator b is the product of the denominators of start and delta (for
reasons of speed #1 is not reduced to irreducible form, and for another reason explained later st⤸
art and delta are not put either into irreducible form; the input may use explicitely \xintIrr to
achieve that).
\begingroup\small

\noindent\parbox{\dimexpr\linewidth-3em}{\color[named]{OrangeRed}%

\xintFor #1 in {\xintrationals [10/21+1/21]} \do

{#1=\xintifInt {#1}

{\textcolor{blue}{\xintTrunc{10}{#1}}}

{\xintTrunc{10}{#1}}% display in blue if an integer

\xintifGt {#1}{1.123}{\xintBreakFor}{, }%

}}

\endgroup\smallskip
10/21=0.4761904761, 11/21=0.5238095238, 12/21=0.5714285714, 13/21=0.6190476190,

14/21=0.6666666666, 15/21=0.7142857142, 16/21=0.7619047619, 17/21=0.8095238095,

18/21=0.8571428571, 19/21=0.9047619047, 20/21=0.9523809523, 21/21=1.0000000000,

22/21=1.0476190476, 23/21=1.0952380952, 24/21=1.1428571428

The example above confirms that computations are done exactly, and illustrates that the two

initial (reduced) denominators are not multiplied when they are found to be equal. It is thus

recommended to input start and delta with a common smallest possible denominator, or as fixed

point numbers with the same numbers of digits after the decimal mark; and this is also the reason

why start and delta are not by default made irreducible. As internally the computations are done

with numerators and denominators completely expanded, one should be careful not to input numbers

59 the start+delta optional specification may have extra spaces around the plus sign of near the square brackets, such spaces are
removed. The same applies with \xintdimensions and \xintrationals.
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in scientific notation with exponents in the hundreds, as they will get converted into as many

zeroes.
\noindent\parbox{\dimexpr.7\linewidth}{\raggedright

\xintFor #1 in {\xintrationals [0.000+0.125]} \do

{\edef\tmp{\xintTrunc{3}{#1}}%

\xintifInt {#1}

{\textcolor{blue}{\tmp}}

{\tmp}%

\xintifGt {#1}{2}{\xintBreakFor}{, }%

}}\smallskip
0, 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1.000, 1.125,

1.250, 1.375, 1.500, 1.625, 1.750, 1.875, 2.000, 2.125
We see here that \xintTrunc outputs (deliberately) zero as 0, not (here) 0.000, the idea being

not to lose the information that the truncated thing was truly zero. Perhaps this behaviour should

be changed? or made optional? Anyhow printing of fixed points numbers should be dealt with via

dedicated packages such as numprint or siunitx.

14.21. \xintForpair, \xintForthree, \xintForfour
The syntax is illustrated in this example. The notation is the usual one for n-uples, with paren-o n
theses and commas. Spaces around commas and parentheses are ignored.
{\centering\begin{tabular}{cccc}

\xintForpair #1#2 in { ( A , a ) , ( B , b ) , ( C , c ) } \do {%

\xintForpair #3#4 in { ( X , x ) , ( Y , y ) , ( Z , z ) } \do {%

$\Biggl($\begin{tabular}{cc}

-#1- & -#3-\\

-#4- & -#2-\\

\end{tabular}$\Biggr)$&}\\\noalign{\vskip1\jot}}%

\end{tabular}\\} (
-A- -X-

-x- -a-

) (
-A- -Y-

-y- -a-

) (
-A- -Z-

-z- -a-

)
(
-B- -X-

-x- -b-

) (
-B- -Y-

-y- -b-

) (
-B- -Z-

-z- -b-

)
(
-C- -X-

-x- -c-

) (
-C- -Y-

-y- -c-

) (
-C- -Z-

-z- -c-

)
\xintForpair must be followed by either #1#2, #2#3, #3#4, ..., or #8#9 with #1 usable as an

alias for #1#2, #2 as alias for #2#3, etc ... and similarly for \xintForthree (using #1#2#3 or

simply #1, #2#3#4 or simply #2, ...) and \xintForfour (with #1#2#3#4 etc...).

Nesting works as long as the macro parameters are distinct among #1, #2, ..., #9. A macro which

expands to an \xintFor or a \xintFor(pair,three,four) can be used in another one with no constraint

about using distinct macro parameters.

\par tokens are accepted in both the comma separated list and the replacement text.

14.22. \xintAssign
\xintAssign⟨braced things⟩\to⟨as many cs as they are things⟩ defines (without checking if some-

thing gets overwritten) the control sequences on the right of \to to expand to the successive

tokens or braced items located to the left of \to. \xintAssign is not an expandable macro.

f-expansion is first applied to the material in front of \xintAssign which is fetched as one

argument if it is braced. Then the expansion of this argument is examined and successive items are

assigned to the macros following \to. There must be exactly as many macros as items. No check is

done. The macro assignments are done with removal of one level of brace pairs from each item.

After the initial f-expansion, each assigned (brace-stripped) item will be expanded according

to the setting of the optional parameter.
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For example \xintAssign [e]... means that all assignments are done using \edef. With [f] the
assignments will be made using \fdef. The default is simply to make the definitions with \def,
corresponding to an empty optional paramter []. Possibilities for the optional parameter are: []⤸
, [g], [e], [x], [o], [go], [oo], [goo], [f], [gf]. For example [oo] means a double expansion.

\xintAssign \xintiiDivision{1000000000000}{133333333}\to\Q\R

\meaning\Q\newline

\meaning\R\newline

\xintAssign {{\xintiiDivision{1000000000000}{133333333}}}\to\X

\meaning\X\newline

\xintAssign [oo]{{\xintiiDivision{1000000000000}{133333333}}}\to\X

\meaning\X\newline

\xintAssign \xintiiPow{7}{13}\to\SevenToThePowerThirteen

\meaning\SevenToThePowerThirteen\par

macro:->7500

macro:->2500

macro:->\xintiiDivision {1000000000000}{133333333}

macro:->{7500}{2500}

macro:->96889010407

Two special cases:

• if after this initial expansion no brace is found immediately after \xintAssign, it is assumed

that there is only one control sequence following \to, and this control sequence is then de-

fined via \def (or what is set-up by the optional parameter) to expand to the material between

\xintAssign and \to.

• if the material between \xintAssign and \to is enclosed in two brace pairs, the first brace

pair is removed, then the f-expansion is immediately stopped by the inner brace pair, hence

\xintAssign now finds a unique item and thus defines only a single macro to be this item, which

is now stripped of the second pair of braces.

Note: prior to release 1.09j, \xintAssign did an \edef by default for each item assignment but

it now does \def corresponding to no or empty optional parameter.
It is allowed for the successive braced items to be separated by spaces. They are removed during

the assignments. But if a single macro is defined (which happens if the argument after f-expansion
does not start with a brace), naturally the scooped up material has all intervening spaces, as it
is considered a single item. But an upfront initial space will have been absorbed by f-expansion.

\def\X{ {a} {b} {c} {d} }\def\Y { u {a} {b} {c} {d} }

\xintAssign\X\to\A\B\C\D

\xintAssign\Y\to\Z

\meaning\A, \meaning\B, \meaning\C, \meaning\D+++\newline

\meaning\Z+++\par

macro:->a, macro:->b, macro:->c, macro:->d+++

macro:->u {a} {b} {c} {d} +++

As usual successive space characters in input make for a single TEX space token.

14.23. \xintAssignArray
\xintAssignArray⟨braced things⟩\to\myArray first expands fully what comes immediately after \xi⤸
ntAssignArray and expects to find a list of braced things {A}{B}... (or tokens). It then defines

\myArray as a macro with one parameter, such that \myArray{x} expands to give the xth braced thing

of this original list (the argument {x} itself is fed to a \numexpr by \myArray, and \myArray

expands in two steps to its output). With 0 as parameter, \myArray{0} returns the number M of

elements of the array so that the successive elements are \myArray{1}, ..., \myArray{M}.

\xintAssignArray \xintBezout {1000}{113}\to\Bez

will set \Bez{0} to 3, \Bez{1} to -20, \Bez{2} to 177, and \Bez{3} to 1: -20 × 1000 + 177 × 113 = 1.

This macro is incompatible with expansion-only contexts.
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\xintAssignArray admits an optional parameter, for example \xintAssignArray [e] means that

the definitions of the macros will be made with \edef. The empty optional parameter (default)

means that definitions are done with \def. Other possibilities: [], [o], [oo], [f]. Contrarily

to \xintAssign one can not use the g here to make the definitions global. For this, one should

rather do \xintAssignArray within a group starting with \globaldefs 1.

14.24. \xintDigitsOf
This is a synonym for \xintAssignArray, to be used to define an array giving all the digits of af N
given (positive, else the minus sign will be treated as first item) number.

\xintDigitsOf\xintiiPow {7}{500}\to\digits

7500 has \digits{0}=423 digits, and the 123rd among them (starting from the most significant) is

\digits{123}=3.

14.25. \xintRelaxArray
\xintRelaxArray\myArray (globally) sets to \relax all macros which were defined by the previous

\xintAssignArray with \myArray as array macro.
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The xintexpr package was first released with version 1.07 (2013/05/25) of the xint bundle. It

was substantially enhanced with release 1.1 from 2014/10/28.

The 1.4 release from 2020/01/31 maintains the same general architecture but needed adapting all

the code base for the switch from \csname to \expanded techniques. On this occasion the mechanism

for defining functions was substantially strengthened. The parser core mechanisms were improved

too.

The package loads automatically xintfrac and xinttools.

This section should be trimmed to contain only information not already covered in section 2.

15.1. The \xintexpr expressions
An xintexpression is a construct \xintexpr⟨expandable_expression⟩\relax where the expandable ex-x ★
pression is read and completely expanded from left to right.

An \xintexpr...\relax must end in a \relax (which will be absorbed). Contrarily to a \numexpr

expression, it is printable as is without a prefix \the or \number (don't use them with \xintexprChanged
at 1.4! this will raise an error).

But one can use \xintthe prefix if one does need the explicit digits and other characters as in

the final typesetted result.
As an alternative and equivalent syntax to
\xintexpr round(<expression>, D)\relax

there is
\xintiexpr [D] <expression> \relax

The parameter D must be zero or positive.60 Perhaps some future version will give a meaning to using

a negative D.61

• the expression may contain arbitrarily many levels of nested parenthesized sub-expressions,

• the expression may contain explicitely or from a macro expansion a sub-expression \xintexpr.⤸
..\relax, which itself may contain a sub-expressions etc...

• to let sub-contents evaluate as a sub-unit it should thus be either

60 D=0 corresponds to using round(<expression>) not round(<expression>,0) which would leave a trailing dot. Same for trun⤸
c. There is also function float for floating point rounding to \xinttheDigits or the given number of significant digits as second
argument. 61 Thanks to KT for this suggestion. Sorry for the delay in implementing it... matter of formatting the output and
corresponding choice of user interface are still in need of some additional thinking.
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1. parenthesized,

2. or a sub-expression \xintexpr...\relax.

• to use an expression as argument to macros from xintfrac, or more generally to macros which

expand their arguments, one must use the \xinttheexpr...\relax or \xintthe\xintexpr...\relax

forms.

• one should not use \xintthe\xintexpr...\relax as a sub-constituent of another expression but

only the \xintexpr...\relax form which is more efficient in this context.

• each xintexpression, whether prefixed or not with \xintthe, is completely expandable and ob-

tains its result in two expansion steps.

The information now following is possibly in need of updates.

• An expression is built the standard way with opening and closing parentheses, infix opera-

tors, and (big) numbers, with possibly a fractional part, and/or scientific notation (except

for \xintiiexpr which only admits big integers). All variants work with comma separated ex-

pressions. On output each comma will be followed by a space. A decimal number must have digits

either before or after the decimal mark.

• As everything gets expanded, the characters ., +, -, *, /, ^, !, &, |, ?, :, <, >, =, (, ), ", ],

[, @ and the comma , should not (if used in the expression) be active. For example, the French

language in Babel system, for pdfLATEX, activates !, ?, ; and :. Turn off the activity before

expressions using such characters.

Alternatively the macro \xintexprSafeCatcodes resets all characters potentially needed by

\xintexpr to their standard catcodes and \xintexprRestoreCatcodes restores the former status.

• Count registers and \numexpr-essions are accepted (LaTeX's counters can be inserted using \v⤸
alue) natively without \the or \number as prefix. Also dimen registers and control sequences,

skip registers and control sequences (LATEX's lengths), \dimexpr-essions, \glueexpr-essions are

automatically unpacked using \number, discarding the stretch and shrink components and giving

the dimension value in sp units (1/65536th of a TEX point). Furthermore, tacit multiplication

is implied, when the (count or dimen or glue) register or variable, or the (\numexpr or \dimexp⤸
r or \glueexpr) expression is immediately prefixed by a (decimal) number. See subsection 2.11

for the complete rules of tacit multiplication.+
{
• With a macro \x defined like this:

\def\x {\xintexpr \a + \b \relax} or \edef\x {\xintexpr \a+\b\relax}

one may then do \xintthe\x, either for printing the result on the page or to use it in some other

macros expanding their arguments. The \edef does the computation immediately but keeps it in

a protected form. Naturally, the \edef is only possible if \a and \b are already defined. With

both approaches the \x can be inserted in other expressions, as for example (assuming naturally

as we use an \edef that in the `yet-to-be computed' case the \a and \b now have some suitable

meaning):

\edef\y {\xintexpr \x^3\relax}

• There is also \xintboolexpr ... \relax and \xinttheboolexpr ... \relax.

• See also \xintifboolexpr (subsection 15.14) and the bool() and togl() functions in section 2.
Here is an example. Well in fact the example ended up using only \xintboolexpr so it was modified
to use \xintifboolexpr.

\xintdeffunc A(p,q,r) = p && (q || r) ;

\xintdeffunc B(p,q,r) = p || (q && r) ;

\xintdeffunc C(p,q,r) = xor(p, q, r) ;

\centeredline{\normalcolor

\begin{tabular}{ccrclcl}
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\xintFor* #1 in {{False}{True}} \do {%

\xintFor* #2 in {{False}{True}} \do {%

\xintFor* #3 in {{False}{True}} \do {%

#1 &AND &(#2 &OR &#3)&is&\textcolor[named]{OrangeRed}

{\xintifboolexpr{A(#1,#2,#3)}{true}{false}}\\

#1 &OR &(#2 &AND &#3)&is&\textcolor[named]{OrangeRed}

{\xintifboolexpr{B(#1,#2,#3)}{yes}{no}}\\

#1 &XOR & #2 &XOR &#3 &is&\textcolor[named]{OrangeRed}

{\xintifboolexpr{C(#1,#2,#3)}{oui}{non}}\\

}}}

\end{tabular}%

}
False AND (False OR False) is false

False OR (False AND False) is no

False XOR False XOR False is non

False AND (False OR True) is false

False OR (False AND True) is no

False XOR False XOR True is oui

False AND (True OR False) is false

False OR (True AND False) is no

False XOR True XOR False is oui

False AND (True OR True) is false

False OR (True AND True) is yes

False XOR True XOR True is non

True AND (False OR False) is false

True OR (False AND False) is yes

True XOR False XOR False is oui

True AND (False OR True) is true

True OR (False AND True) is yes

True XOR False XOR True is non

True AND (True OR False) is true

True OR (True AND False) is yes

True XOR True XOR False is non

True AND (True OR True) is true

True OR (True AND True) is yes

True XOR True XOR True is oui

• See also \xintifsgnexpr.

• There is \xintfloatexpr ... \relax where the algebra is done in floating point approximation
(also for each intermediate result). Use the syntax \xintDigits:=N\relax to set the precision.
Default: 16 digits.
\xintthefloatexpr 2^100000\relax: 9.990020930143845e30102

The square-root operation can be used in \xintexpr, it is computed as a float with the precision
set by \xintDigits or by the optional second argument:

\xinttheexpr sqrt(2,60)\relax\newline

Here the [60] is to avoid truncation to |\xinttheDigits| of precision on output.\newline

\printnumber{\xintthefloatexpr [60] sqrt(2,60)\relax}

141421356237309504880168872420969807856967187537694807317668e-59

Here the [60] is to avoid truncation to \xinttheDigits of precision on output.

1.41421356237309504880168872420969807856967187537694807317668
Floats are quickly indispensable when using the power function, as exact results will easily

have hundreds, even thousands of digits.

\xintDigits:=48\relax \xintthefloatexpr 2^100000\relax

9.99002093014384507944032764330033590980429139054e30102

Only integer and (in \xintfloatexpr...\relax) half-integer exponents are allowed.
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• if one uses macros within \xintexpr..\relax one should obviously take into account that the

parser will not see the macro arguments, hence one cannot use the syntax there, except if the

arguments are themselves wrapped as \xinttheexpr...\relax and assuming the macro f-expands
these arguments.

15.2. \numexpr or \dimexpr expressions, count and dimension registers and
variables

Count registers, count control sequences, dimen registers, dimen control sequences (like \parind⤸
ent), skips and skip control sequences, \numexpr, \dimexpr, \glueexpr, \fontdimen can be inserted

directly, they will be unpacked using \number which gives the internal value in terms of scaled

points for the dimensional variables: 1 pt = 65536 sp (stretch and shrink components are thus dis-

carded).

Tacit multiplication (see subsection 2.11) is implied, when a number or decimal number pre-

fixes such a register or control sequence. LATEX lengths are skip control sequences and LATEX counters

should be inserted using \value.

Release 1.2 of the \xintexpr parser also recognizes and prefixes with \number the \ht, \dp,

and \wd TEX primitives as well as the \fontcharht, \fontcharwd, \fontchardp and \fontcharic 𝜀-TEX
primitives.

In the case of numbered registers like \count255 or \dimen0 (or \ht0), the resulting digits
will be re-parsed, so for example \count255 0 is like 100 if \the\count255 would give 10. The same
happens with inputs such as \fontdimen6\font. And \numexpr 35+52\relax will be exactly as if 87
as been encountered by the parser, thus more digits may follow: \numexpr 35+52\relax 000 is like
87000. If a new \numexpr follows, it is treated as what would happen when \xintexpr scans a number
and finds a non-digit: it does a tacit multiplication.
\xinttheexpr \numexpr 351+877\relax\numexpr 1000-125\relax\relax{} is the same

as \xinttheexpr 1228*875\relax.

1074500 is the same as 1074500.

Control sequences however (such as \parindent) are picked up as a whole by \xintexpr, and the

numbers they define cannot be extended extra digits, a syntax error is raised if the parser finds

digits rather than a legal operation after such a control sequence.

A token list variable must be prefixed by \the, it will not be unpacked automatically (the parser

will actually try \number, and thus fail). Do not use \the but only \number with a dimen or skip, as

the \xintexpr parser doesn't understand pt and its presence is a syntax error. To use a dimension

expressed in terms of points or other TEX recognized units, incorporate it in \dimexpr...\relax.

Regarding how dimensional expressions are converted by TEX into scaled points see also subsec-

tion 5.7.

15.3. Catcodes and spaces
The main problems are caused by active characters, because \xintexpr et al. expand forward what-

ever comes from token stream; they apply \string only in a second step. For example the catcode

of & from && Boolean disjunction is not really important as long as it is not active, or comment,

or escape... or brace... or ignored... in brief, as long as it is reasonable, and in particular

whether @ is of catcode letter or other does not matter.

It is always possible to insert manually the \string in the expression before a problematic (but

reasonable) character catcode, or even to use \detokenize for a big chunk.

15.3.1. \xintexprSafeCatcodes

For an even more radical way, there is \xintexprSafeCatcodes which sets the catcodes of many char-

acters to safe values. This is a non-expandable step as it changes catcodes.
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\xintdefvar, \xintdeffunc, et al., execute it before fetching their semi-colon delimited argu-

ments, so they can be used (also in the document body) for example with Babel+French (which makes

the semi-colon active in the (LATEX) document body). This applies also to \xintNewExpr.

But, if used in the body of macro definitions problems may arise from the catcode regime at that

location. This applies in particular to the semi-colon as used by \xintdeffunc, \xintdefvar and

variants as delimiter. Thus make sure the semi-colon has its normal catcode when issueing \xint-

deffunc inside some macro definition.

\xintdeffunc is more lenient than \xintdefvar regarding catcodes of characters in expression

bodies as it does some \scantokens which will reset compatible catcodes. And also, characters

inside the expression may usually be prefixed with \string; but some aspects of the parsing use

delimited macros which need the comma, equality sign and closing parenthesis to have standard

catcodes.

Even if used in a context where catcodes are already set, \xintdeffunc, \xintdefvar and variants

ignore completely the colon in := so it can have any (reasonable) catcode. Moreover it is optional.

The semi-colon in the syntax of \xintDigits is no real problem either (cf. \xintDigits documen-

tation).

It is important to ALWAYS shortly let \xintexprSafeCatcodes be followed by \xint-

exprRestoreCatcodes. If one uses twice \xintexprSafeCatcodes then the next \xint-+
{

exprRestoreCatcodes will restore the ancient catcode regime at time of the first one.

15.3.2. \xintexprRestoreCatcodes

Restores the catcodes to the earlier state. More precisely, \xintexprSafeCatcodes sets a toggle

(with local scope). If the toggle is set already it does not restore the current catcodes. The next

\xintexprRestoreCatcodes unsets the toggle. So, in case of nesting, the catcodes are restored to

what they were when the first un-paired \xintexprSafeCatcodes got executed.

Spaces inside an \xinttheexpr...\relax should mostly be innocuous (except inside macro argu-

ments).

\xintexpr and \xinttheexpr are for the most part agnostic regarding catcodes: (unbraced) dig-

its, binary operators, minus and plus signs as prefixes, dot as decimal mark, parentheses, may be

indifferently of catcode letter or other or subscript or superscript, ..., it doesn't matter.62

The characters +, -, *, /, ^, !, &, |, ?, :, <, >, =, (, ), ", [, ], ;, the dot and the comma

should not be active if in the expression, as everything is expanded along the way. If one of them

is active, it should be prefixed with \string.

The exclamation mark ! should have its standard catcode: with catcode letter it is used inter-

nally and hence will confuse the parsers if it comes from the expression.

Digits, slash, square brackets, minus sign, in the output from an \xinttheexpr are all of catcode

12. For \xintthefloatexpr the `e' in the output has its standard catcode ``letter''.

A macro with arguments will expand and grab its arguments before the parser may get a chance to

see them, so the situation with catcodes and spaces is not the same within such macro arguments.

15.4. Expandability, \xintexpro
As is the case with all other package macros \xintexpr f-expands (in two steps) to its final (some-

what protected) result; and \xinttheexpr f-expands (in two steps) to the chain of digits (and

possibly minus sign -, decimal mark ., fraction slash /, scientific e, square brackets [, ]) rep-

resenting the result.

62 Furthermore, although \xintexpr uses \string, it is escape-char agnostic. It should work with any \escapechar setting including
-1.
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The once expanded \xintexpr is \romannumeral0\xintexpro. is similarly \xintiexpro \xintiiexpro

and \xintfloatexpro. For an example see subsection 15.18.

An expression can only be legally finished by a \relax token, which will be absorbed.

It is quite possible to nest expressions among themselves; for example, if one needs inside

an \xintiiexpr...\relax to do some computations with fractions, rounding the final result to an

integer, one just has to insert \xintiexpr...\relax. The functioning of the infix operators will

not be in the least affected from the fact that the outer ``environment'' is the \xintiiexpr one.

15.5. \xintDigits*, \xintSetDigits*
These starred variants of \xintDigits and \xintSetDigits execute \xintreloadxinttrig.

15.6. \xintiexpr, \xinttheiexpr
Equivalent to doing \xintexpr round(...)\relax (more precisely, round is applied to each leafx ★
item of the ople independently of its depth).

Intermediate calculations are exact, only the final output gets rounded. Half integers are

rounded towards +∞ for positive numbers and towards -∞ for negative ones.

An optional parameter D within brackets, immediately after \xintiexpr is allowed: it instructs

(for D>0) the expression to do its final rounding to the nearest value with that many digits af-

ter the decimal mark, i.e., \xintiexpr [D] <expression>\relax is equivalent (in case of a single

expression) to \xintexpr round(<expression>, D)\relax.

\xintiexpr [0] ... is the same as \xintiexpr ... and rounds to an integer.

The case of negative D gives quantization to an integer multiple of 1e-D.New with
1.4a If truncation rather than rounding is needed on can use \xintexpr trunc(...)\relax for trun-

cation to an integer or \xintexpr trunc(...,D)\relax for quantization to an integer multiple or

1eD. But this works only for a single scalar value.

Already on October 20, 2015, it was suggested by Kpym to give some meaning to negative D. The

suggestion was to let it act like -D but remove trailing zeroes of the output. Finally, I opted

rather for quantization.

15.7. \xintiiexpr, \xinttheiiexpr
This variant does not know fractions. It deals almost only with long integers. Comma separatedx ★
lists of expressions are allowed.

It maps / to the rounded quotient. The operator // is, like in \xintexpr...\relax, mapped

to truncated division. The Euclidean quotient (which for positive operands is like the trun-

cated quotient) was, prior to release 1.1, associated to /. The function quo(a,b) can still be

employed.

The \xintiiexpr-essions use the `ii' macros for addition, subtraction, multiplication, power,

square, sums, products, Euclidean quotient and remainder.

The round, trunc, floor, ceil functions are still available, and are about the only places where

fractions can be used, but / within, if not somehow hidden will be executed as integer rounded

division. To avoid this one can wrap the input in qfrac: this means however that none of the normal

expression parsing will be executed on the argument.

To understand the illustrative examples, recall that round and trunc have a second (non nega-

tive) optional argument. In a normal \xintexpr-essions, round and trunc are mapped to \xintRound

and \xintTrunc, in \xintiiexpr-essions, they are mapped to \xintiRound and \xintiTrunc.
\xinttheiiexpr 5/3, round(5/3,3), trunc(5/3,3), trunc(\xintDiv {5}{3},3),

trunc(\xintRaw {5/3},3)\relax{} are problematic, but
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%

\xinttheiiexpr 5/3, round(qfrac(5/3),3), trunc(qfrac(5/3),3), floor(qfrac(5/3)),

ceil(qfrac(5/3))\relax{} work!

2, 2000, 2000, 2000, 2000 are problematic, but 2, 1667, 1666, 1, 2 work!

On the other hand decimal numbers and scientific numbers can be used directly as arguments to

the num, round, or any function producing an integer.

Scientific numbers will be represented with as many zeroes as necessary, thus one does not

want to insert num(1e100000) for example in an \xintiiexpression!

\xinttheiiexpr num(13.4567e3)+num(10000123e-3)\relax % should (num truncates) compute 13456+10000

23456

The reduce function is not available and will raise an error. The frac function also. The sqr⤸
t function is mapped to \xintiiSqrt which gives a truncated square root. The sqrtr function is

mapped to \xintiiSqrtR which gives a rounded square root.

One can use the Float macros if one is careful to use num, or round etc...on their output.
\xinttheiiexpr \xintFloatSqrt [20]{2}, \xintFloatSqrt [20]{3}\relax % no operations

\noindent The next example requires the |round|, and one could not put the |+| inside it:

\xinttheiiexpr round(\xintFloatSqrt [20]{2},19)+round(\xintFloatSqrt [20]{3},19)\relax

(the second argument of |round| and |trunc| tells how many digits from after the

decimal mark one should keep.)

14142135623730950488[-19], 17320508075688772935[-19]

The next example requires the round, and one could not put the + inside it:

31462643699419723423

(the second argument of round and trunc tells how many digits from after the decimal mark one

should keep.)

The whole point of \xintiiexpr is to gain some speed in integer-only algorithms, and the above

explanations related to how to nevertheless use fractions therein are a bit peripheral. We ob-

served (2013/12/18) of the order of 30% speed gain when dealing with numbers with circa one hundred

digits (1.2: this info may be obsolete).

15.8. \xintboolexpr, \xinttheboolexpr
Equivalent to doing \xintexpr ...\relax and returning True if the result does not vanish, andx ★
False if the result is zero. As \xintexpr, this can be used on comma separated lists of expressions,

and even bracketed lists.Changed
at 1.4! It can be customized, one only needs to modify the following:

\def\xintboolexprPrintOne#1{\xintiiifNotZero{#1}{True}{False}}%

Not only are True and False usable in input, also true and false are pre-declared variables.

Maybe obsolete:
There is slight quirk in case it is used as a sub-expression: the boolean expression needs at

least one logic operation else the value is not standardized to 1 or 0, for example we get from
\xinttheexpr \xintboolexpr 1.23\relax\relax\newline

123e-2
which is to be compared with
\xinttheboolexpr 1.23\relax

True

15.9. \xintfloatexpr, \xintthefloatexpr
\xintfloatexpr...\relax is exactly like \xintexpr...\relax but with the four binary operationsx ★
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and the power function are mapped to \xintFloatAdd, \xintFloatSub, \xintFloatMul, \xintFloatDiv

and \xintFloatPower, respectively.63

The target precision for the computation is from the current setting of \xintDigits. Comma sep-

arated lists of expressions are allowed.

An optional parameter within brackets is allowed:

• if positive it instructs the macro to round the result to that many digits of precision. It thus

makes sense to employ it only if this parameter is less than the \xinttheDigits precision.

• if negative it means to trim off that many digits (of course, in the sense of rounding the

values to shorter mantissas). Don't use it to trim all digits (or more than all)!

Since 1.2f all float operations first round their arguments; a parsed number is not rounded prior

to its use as operand to such a float operation.

\thexintfloatexpr is synonym to \xintthefloatexpr.

\xintDigits:=36\relax

\xintthefloatexpr (1/13+1/121)*(1/179-1/173)/(1/19-1/18)\relax

0.00564487459334466559166166079096852897

\xintthefloatexpr\xintexpr (1/13+1/121)*(1/179-1/173)/(1/19-1/18)\relax\relax

0.00564487459334466559166166079096852912

The latter is the rounding of the exact result. The former one has its last three digits wrong

due to the cumulative effect of rounding errors in the intermediate computations, as compared to

exact evaluations.

I recall here from subsection 5.2 that with release 1.2f the float macros for addition, sub-

traction, multiplication and division round their arguments first to P significant places with P

the asked-for precision of the output; and similarly the power macros and the square root macro.

This does not modify anything for computations with arguments having at most P significant places

already.

15.10. \xinteval, \xintieval, \xintiieval, \xintfloateval
\xinteval is an f-expandable macro which is basically defined like this (DON'T BELIEVE THIS; itx ★
has been entirely revamped at 1.4):
\def\xinteval#1{\romannumeral-`0\xinttheexpr#1\relax}% OLD DEFINITION < 1.4

thus expands in two steps (its exact definition differs from the one given above in order to achieve
a slight optimization).
\xinteval{add(x^2, x = 100..110), add(x^3, x = 100..110)}

121385, 12768525
\xintieval is similarly related to \xinttheiexpr. Its optional argument must be located insidex ★

the braces:
\xintieval{[7] 355/113}

3.1415929
\xintiieval is similarly related to \xinttheiiexpr.x ★
\xintiieval{add(x^2, x = 100..110), add(x^3, x = 100..110)}

121385, 12768525
\xintfloateval is similarly related to \xintthefloatexpr. Its optional argument must be locatedx ★

inside the braces:
\xintfloateval{[7] 355/113}

3.141593
When negative it tells how many digits to remove from the prevailing precision (\xinttheDigits):

\xintfloateval{[-2] 355/113} has \xinttheDigits\ minus 2 digits.

63 Since 1.2f the ^ handles half-integer exponents, contrarily to \xintFloatPower.
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3.1415929203540 has 16 minus 2 digits.

These macros are useful when one uses some extra wrapper doing some parsing of its input, like the

\num macro of siunitx, which would choke on some of the syntax elements allowed inside \xintexpr..⤸
.\relax (for example brackets). As shown in the above examples, these macros, like the underlying

parsers accept arbitrarily many comma separated expressions.

15.11. Using an expression parser within another one
This was already illustrated before. In the following:
\xintfloatexpr \xintexpr add(1/i, i=1234..1243)\relax ^100\relax

5.136088460396579e-210, the inner sum is computed exactly. Then it will be rounded to \xinttheD⤸
igits significant digits, and then its power will be evaluated as a float operation. One should
avoid the "\xintthe" parsers in inner positions as this induces digit by digit parsing of the inner
computation result by the outer parser. Here is the same computation done with floats all the way:

\xintfloatexpr add(1/i, i=1234..1243)^100\relax

5.136088460396643e-210

Not surprisingly this differs from the previous one which was exact until raising to the 100th

power.
The fact that the inner expression occurs inside a bigger one has nil influence on its behaviour.

There is the limitation though that the outputs from \xintexpr and \xintfloatexpr can not be used
directly in \xinttheiiexpr integer-only parser. But one can do:
\xintiiexpr round(\xintfloatexpr 3.14^10\relax)\relax % or trunc

93174

15.12. The \xintthecoords macro
It converts (in two expansion steps) the expansion result of \xintfloatexpr (or \xintexpr or
\xintiiexpr) into the (a, b) (c, d) ... format for list of coordinates as expected by the TikZ
coordinates syntax.
\begin{figure}[htbp]

\centering\begin{tikzpicture}[scale=10]\xintDigits:=8\relax

\clip (-1.1,-.25) rectangle (.3,.25);

\draw [blue] (-1.1,0)--(1,0);

\draw [blue] (0,-1)--(0,+1);

\draw [red] plot[smooth] coordinates {%

%%% (\xintthecoords converts output of next expression into (x1, y1) (x2, y2)... format)

\xintthecoords\xintfloatexpr

%%% This syntax -1+[0..4]/2 is currenty dropped at xint 1.4

%%% seq((x^2-1,mul(x-t,t=-1+[0..4]/2)),x=-1.2..[0.1]..+1.2)\relax

%%% Use this:

seq((x^2-1,mul(x-t,t=seq(-1+u/2, u=0..4))),x=-1.2..[0.1]..+1.2)

\relax

};

\end{tikzpicture}

\caption{Coordinates with \cs{xintthecoords}.}

\end{figure}

It is currently undecided how \xintthecoords should handle bracketed data. Currently, it (or Tik⤸Unstable!
Z) will break it the input contains nested structures. One can use it with flat() which removes all

nesting. And in combination with zip() it is easy to plot data given by some mechanism in separate

lists of x- and y-coordinates (see an example in next section)

15.13. The \xintthespaceseparated macro
It converts (in two expansion steps) the expansion result of \xintfloatexpr (or \xintexpr orNew with

1.4a \xintiiexpr) into the space separated format suitable for usage with PS-Tricks \listplot macro.
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.

Figure 2: Coordinates with \xintthecoords.

Here is for example some syntax (the replacement text of \foo, which is used here only to show
that indeed complete expansion is attained in two steps) which can be used as argument to \listpl⤸
ot. Using 4 fractional decimal digits is sufficient when unit is the centimeter (it gives a fixed
point precision of one micron, amply enough for plots...).
\oodef\foo{%

\xintthespaceseparated\xintiexpr[4]\xintfloatexpr seq((i, log10(i)), i=1..[0.5]..10)\relax\relax

}\meaning\foo

macro:->1.0000 0 1.5000 0.1761 2.0000 0.3010 2.5000 0.3979 3.0000 0.4771 3.5000 0.5441 4.0000

0.6021 4.5000 0.6532 5.0000 0.6990 5.5000 0.7404 6.0000 0.7782 6.5000 0.8129 7.0000 0.8451 7.5000

0.8751 8.0000 0.9031 8.5000 0.9294 9.0000 0.9542 9.5000 0.9777 10.0000 1.0000

Here we don't really need the inner \xintfloatexpr...\relax because the log10() function works

the same in the exact parser \xintexpr but in general this is recommended.

It is currently undecided how \xintthespaceseparated should handle bracketed data. Currently,Unstable!
it (or \listplot) will break if the input contains nested structures. One can use it with flat()

which removes all nesting. And in combination with zip() it is easy to plot data given by some

mechanism in separate lists of x- and y-coordinates.
% let's imagine we have something like this

\def\Xcoordinates{1, 3, 5, 7, 9}

\def\Ycoordinates{1, 9, 25, 49, 81}

% then:

|\xintthespaceseparated\xintexpr flat(zip([\Xcoordinates], [\Ycoordinates]))\relax|

is suitable to use as argument to |\listplot|, as it expands to

\xintthespaceseparated\xintexpr flat(zip([\Xcoordinates], [\Ycoordinates]))\relax

\xintthespaceseparated\xintexpr flat(zip([\Xcoordinates], [\Ycoordinates]))\relax is suitable

to use as argument to \listplot, as it expands to 1 1 3 9 5 25 7 49 9 81

15.14. \xintifboolexpr, \xintifboolfloatexpr, \xintifbooliiexpr
\xintifboolexpr{⟨expr⟩}{⟨YES⟩}{⟨NO⟩} does \xinttheexpr<expr>\relax and then executes the ⟨YES⟩x n n ★
or the ⟨NO⟩ branch depending on whether the outcome was non-zero or zero. Thus one can read if bool
expr as meaning if not zero:

if ⟨expr⟩-ession does not vanish do ⟨YES⟩ else do ⟨NO⟩
The expression is not limited to using only comparison operators and Boolean logic (<, >, ==,

!=, &&, ||, all(), any(), xor(), bool(), togl(), ...), it can be the most general computation.

\xintifboolfloatexpr{⟨expr⟩}{⟨YES⟩}{⟨NO⟩} does \xintthefloatexpr⟨expr⟩\relax and then exe-x n n ★
cutes the ⟨YES⟩ or the ⟨NO⟩ branch depending on whether the outcome was non zero or zero.

\xintifbooliiexpr{⟨expr⟩}{⟨YES⟩}{⟨NO⟩} does \xinttheiiexpr⟨expr⟩\relax and then executes thex n n ★
⟨YES⟩ or the ⟨NO⟩ branch depending on whether the outcome was non zero or zero.
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The expression argument must be a single one, comma separated sub-expressions will cause low-

level errors.

15.15. \xintifsgnexpr, \xintifsgnfloatexpr, \xintifsgniiexpr
\xintifsgnexpr{⟨expr⟩}{⟨<0⟩}{⟨=0⟩}{⟨>0⟩} evaluates the \xintexpression and chooses the branchx n n n ★
corresponding to its sign.

\xintifsgnfloatexpr{⟨expr⟩}{⟨<0⟩}{⟨=0⟩}{⟨>0⟩} evaluates the \xintfloatexpression and choosesx n n n ★
the branch corresponding to its sign.

\xintifsgniiexpr{⟨expr⟩}{⟨<0⟩}{⟨=0⟩}{⟨>0⟩} evaluates the \xintiiexpression and chooses thex n n n ★
branch corresponding to its sign.

The expression argument must be a single one, comma separated sub-expressions will cause low-

level errors.

15.16. The \xintNewExpr, \xintNewIIExpr, \xintNewFloatExpr, \xintNewIExpr, and
\xintNewBoolExpr macros

\xintNewExpr macro is used as:

\xintNewExpr{\myformula}[n]{⟨stuff ⟩}, where

• ⟨stuff ⟩ will be inserted inside \xinttheexpr . . . \relax,

• n is an integer between zero and nine, inclusive, which is the number of parameters of \myfor⤸
mula,

• the placeholders #1, #2, ..., #n are used inside ⟨stuff ⟩ in their usual rôle,64 65

• the [n] is mandatory, even for n=0.66

• the macro \myformula is defined without checking if it already exists, LATEX users might prefer

to do first \newcommand*\myformula {} to get a reasonable error message in case \myformula

already exists,

• the protection against active characters is done automatically (as long as the whole thing has

not already been fetched as a macro argument and the catcodes correspondingly already frozen).

It (if it succeeds) will be a completely expandable macro entirely built-up using \xintAdd, \⤸
xintSub, \xintMul, \xintDiv, \xintPow, etc...as corresponds to the expression written with the

infix operators. Macros created by \xintNewExpr can thus be nested.
\xintNewFloatExpr \FA [2]{(#1+#2)^10}

\xintNewFloatExpr \FB [2]{sqrt(#1*#2)}

\begin{enumerate}[nosep]

\item \FA {5}{5}

\item \FB {30}{10}

\item \FA {\FB {30}{10}}{\FB {40}{20}}

\end{enumerate}

1. 1.000000000000000e10

2. 17.32050807568877

3. 3.891379490446502e16

The documentation is much shortened here because \xintNewExpr and \xintdeffunc are very much

related one with the other.

64 if \xintNewExpr is used inside a macro, the #’s must be doubled as usual. 65 the #’s will in pratice have their usual catcode,
but category code other #’s are accepted too. 66 there is some use for \xintNewExpr[0] compared to an \edef as \xintNewExpr
has some built-in catcode protection.
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ATTENTION!

The original spirit of \xintNewExpr was to define a (possibly very big) macro using only

xintfrac, and this means in particular that it must be used only with arguments compatible

with the xintfrac input format.+
{

Thus an \xintexpr declared variable has no chance to work, it must be wrapped explicitly in

\xinteval{...} to be fetched as argument to a macro constructed by \xintNewExpr.

They share essentially the same limitations.

Notice though that \xintNewFloatExpr accepts and recognizes the optional argument [Q] of \xint-

floatexpr, contrarily to \xintdeffloatfunc. Use an \empty in case the contents are not known in

advance.

Historical note: prior to 1.4, xintexpr used a \csname..\endcsname encapsulation technique

which impacted the string pool memory. The \xintNewExpr was designed as a method to pre-parse

the expression and produce one single, gigantic, nested usage of the relevant xintfrac macros.

This way, only those macros were expanded which had nil impact on the TEX string pool.

Later on it was found that this mechanism could be employed to define functions. Basically un-

derneath 98% of \xintNewExpr and \xintdeffunc are using the same shared code.

15.17. Analogies and differences of \xintiiexpr with \numexpr
\xintiiexpr..\relax is a parser of expressions knowing only (big) integers. There are, besides

the enlarged range of allowable inputs, some important differences of syntax between \numexpr and

\xintiiexpr and variants:

• Contrarily to \numexpr, the \xintiiexpr parser will stop expanding only after having encoun-

tered (and swallowed) a mandatory \relax token.

• In particular, spaces between digits (and not only around infix operators or parentheses) do

not stop \xintiiexpr, contrarily to the situation with numexpr: \the\numexpr 7 + 3 5\relax

expands (in one step)67 to 105\relax, whereas \xintthe\xintiiexpr 7 + 3 5\relax expands (in

two steps) to 42.68

• Inside an \edef, an expression \xintiiexpr...\relax get fully evaluated, whereas \numexpr

without \the or \number prefix would not, if not itself embedded in another \the\numexpr or

similar context.

• (ctd.) The private format to which \xintiiexpr...\relax (et al.) evaluates may use \xintth⤸
e prefix to turn into explicit digits, (for example in arguments to some macros which expand

their arguments). The \the TEX primitive prefix would not work here.

• (ctd.) One can embed a \numexpr...\relax (with its \relax!) inside an \xintiiexpr...\relax

without \the or \number, but the reverse situation requires usage of \xintthe or \xinteval

user interface,

• \numexpr -(1)\relax is illegal. In contrast \xintiiexpr -(1)\relax is perfectly legal and

gives the expected result (what else ?).

• \numexpr 2\cnta\relax is illegal (with \cnta a \count register.) In contrast \xintiiexpr 2\⤸
cnta\relax is perfectly legal and will do the tacit multiplication.

• \the\numexpr or \number\numexpr expands in one step, but \xintthe\xintiiexpr or \xinttheiie⤸
xpr needs two steps.

67 The \numexpr triggers continued expansion after the space following the 3 to check if some operator like + is upstream. But
after having found the 5 it treats it as and end-marker. 68 Since 1.2l one can also use the underscore _ to separate digits for
readability of long numbers.
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15.18. Chaining expressions for expandable algorithmics
We will see in this section how to chain \xintexpr-essions with \expandafter's, like it is possi-

ble with \numexpr. For this it is convenient to use \romannumeral0\xintexpro which is the once-

expanded form of \xintexpr, as we can then chain using only one \expandafter each time.

For example, here is the code employed on the title page to compute (expandably, of course!) the

1250th Fibonacci number:
\catcode`_ 11

\def\Fibonacci #1{% \Fibonacci{N} computes F(N) with F(0)=0, F(1)=1.

\expandafter\Fibonacci_a\expandafter

{\the\numexpr #1\expandafter}\expandafter

{\romannumeral0\xintiiexpro 1\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiiexpro 1\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiiexpro 1\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiiexpro 0\relax}}

%

\def\Fibonacci_a #1{%

\ifcase #1

\expandafter\Fibonacci_end_i

\or

\expandafter\Fibonacci_end_ii

\else

\ifodd #1

\expandafter\expandafter\expandafter\Fibonacci_b_ii

\else

\expandafter\expandafter\expandafter\Fibonacci_b_i

\fi

\fi {#1}%

}% * signs are omitted from the next macros, tacit multiplications

\def\Fibonacci_b_i #1#2#3{\expandafter\Fibonacci_a\expandafter

{\the\numexpr #1/2\expandafter}\expandafter

{\romannumeral0\xintiiexpro sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiiexpro (2#2-#3)#3\relax}%

}% end of Fibonacci_b_i

\def\Fibonacci_b_ii #1#2#3#4#5{\expandafter\Fibonacci_a\expandafter

{\the\numexpr (#1-1)/2\expandafter}\expandafter

{\romannumeral0\xintiiexpro sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiiexpro (2#2-#3)#3\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiiexpro #2#4+#3#5\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiiexpro #2#5+#3(#4-#5)\relax}%

}% end of Fibonacci_b_ii

% code as used on title page:

%\def\Fibonacci_end_i #1#2#3#4#5{\xintthe#5}

%\def\Fibonacci_end_ii #1#2#3#4#5{\xinttheiiexpr #2#5+#3(#4-#5)\relax}

% new definitions:

\def\Fibonacci_end_i #1#2#3#4#5{{#4}{#5}}% {F(N+1)}{F(N)} in \xintexpr format

\def\Fibonacci_end_ii #1#2#3#4#5%

{\expandafter

{\romannumeral0\xintiiexpro #2#4+#3#5\expandafter\relax

\expandafter}\expandafter

{\romannumeral0\xintiiexpro #2#5+#3(#4-#5)\relax}}% idem.

% \FibonacciN returns F(N) (in encapsulated format: needs \xintthe for printing)

\def\FibonacciN {\expandafter\xint_secondoftwo\romannumeral-`0\Fibonacci }%

\catcode`_ 8

The macro \Fibonacci produces not one specific value F(N) but a pair of successive values {F(N⤸
)}{F(N+1)} which can then serve as starting point of another routine devoted to compute a whole

sequence F(N), F(N+1), F(N+2),..... Each of F(N) and F(N+1) is kept in the encapsulated internal
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xintexpr format.

\FibonacciN produces the single F(N). It also keeps it in the private format; thus printing it

will need the \xintthe prefix.
Here a code snippet which checks the routine via a \message of the first 51 Fibonacci numbers (this is not an efficient way to

generate a sequence of such numbers, it is only for validating \FibonacciN).
\def\Fibo #1.{\xintthe\FibonacciN {#1}}%

\message{\xintiloop [0+1] \expandafter\Fibo\xintiloopindex.,

\ifnum\xintiloopindex<49 \repeat \xintthe\FibonacciN{50}.}

The way we use \expandafter's to chain successive \xintiiexpro evaluations is exactly analogous

to what is possible with \numexpr. The various \romannumeral0\xintiiexpro could very well all have

been \xintiiexpr's but then we would have needed \expandafter\expandafter\expandafter each time.

There is a difference though: \numexpr does NOT expand inside an \edef, and to force its

expansion we must prefix it with \the or \number or \romannumeral or another \numexpr which is

itself prefixed, etc....

But \xintexpr, \xintiexpr, ..., expand fully in an \edef, with the completely expanded re-

sult encapsulated in a private format.

Using \xintthe as prefix is necessary to print the result (like \the or \number in the case

of \numexpr), but it is not necessary to get the computation done (contrarily to the situation

with \numexpr).

Our \Fibonacci expands completely under f-expansion, so we can use \fdef rather than \edef in a

situation such as

\fdef \X {\FibonacciN {100}}

but it is usually about as efficient to employ \edef. And if we want

\edef \Y {(\FibonacciN{100},\FibonacciN{200})},

then \edef is necessary.

Allright, so let's now give the code to generate {F(N)}{F(N+1)}{F(N+2)}..., using \Fibonacci

for the first two and then using the standard recursion F(N+2)=F(N+1)+F(N):
\catcode`_ 11

\def\FibonacciSeq #1#2{%#1=starting index, #2>#1=ending index

\expandafter\Fibonacci_Seq\expandafter

{\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2-1}%

}%

\def\Fibonacci_Seq #1#2{%

\expandafter\Fibonacci_Seq_loop\expandafter

{\the\numexpr #1\expandafter}\romannumeral0\Fibonacci {#1}{#2}%

}%

\def\Fibonacci_Seq_loop #1#2#3#4{% standard Fibonacci recursion

{#3}\unless\ifnum #1<#4 \Fibonacci_Seq_end\fi

\expandafter\Fibonacci_Seq_loop\expandafter

{\the\numexpr #1+1\expandafter}\expandafter

{\romannumeral0\xintiiexpro #2+#3\relax}{#2}{#4}%

}%

\def\Fibonacci_Seq_end\fi\expandafter\Fibonacci_Seq_loop\expandafter

#1\expandafter #2#3#4{\fi {#3}}%

\catcode`_ 8

This \FibonacciSeq macro is completely expandable but it is not f-expandable.
This is not a problem in the next example which uses \xintFor* as the latter applies repeatedly

full expansion to what comes next each time it fetches an item from its list argument. Thus \xint-

For* still manages to generate the list via iterated full expansion.
\newcounter{myindex}% not which would overwrite theindex environment!

% (many have probably been bitten by this trap)

\tabskip 1ex
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30. 832040 0

31. 1346269 514229

32. 2178309 514229

33. 3524578 196418

34. 5702887 710647

35. 9227465 75025

36. 14930352 785672

37. 24157817 28657

38. 39088169 814329

39. 63245986 10946

40. 102334155 825275

41. 165580141 4181

42. 267914296 829456

43. 433494437 1597

44. 701408733 831053

45. 1134903170 610

46. 1836311903 831663

47. 2971215073 233

48. 4807526976 831896

49. 7778742049 89

50. 12586269025 831985

51. 20365011074 34

52. 32951280099 832019

53. 53316291173 13

54. 86267571272 832032

55. 139583862445 5

56. 225851433717 832037

57. 365435296162 2

58. 591286729879 832039

59. 956722026041 1

60. 1548008755920 0

61. 2504730781961 1

62. 4052739537881 1

63. 6557470319842 2

64. 10610209857723 3

65. 17167680177565 5

66. 27777890035288 8

67. 44945570212853 13

68. 72723460248141 21

69. 117669030460994 34

70. 190392490709135 55

71. 308061521170129 89

72. 498454011879264 144

73. 806515533049393 233

74. 1304969544928657 377

75. 2111485077978050 610

76. 3416454622906707 987

77. 5527939700884757 1597

78. 8944394323791464 2584

79. 14472334024676221 4181

80. 23416728348467685 6765

81. 37889062373143906 10946

82. 61305790721611591 17711

83. 99194853094755497 28657

84. 160500643816367088 46368

85. 259695496911122585 75025

86. 420196140727489673 121393

87. 679891637638612258 196418

88. 1100087778366101931 317811

89. 1779979416004714189 514229

90. 2880067194370816120 0

91. 4660046610375530309 514229

92. 7540113804746346429 514229

93. 12200160415121876738 196418

94. 19740274219868223167 710647

95. 31940434634990099905 75025

96. 51680708854858323072 785672

97. 83621143489848422977 28657

98. 135301852344706746049 814329

99. 218922995834555169026 10946

100. 354224848179261915075 825275

101. 573147844013817084101 4181

102. 927372692193078999176 829456

103. 1500520536206896083277 1597

104. 2427893228399975082453 831053

105. 3928413764606871165730 610

106. 6356306993006846248183 831663

107. 10284720757613717413913 233

108. 16641027750620563662096 831896

109. 26925748508234281076009 89

110. 43566776258854844738105 831985

111. 70492524767089125814114 34

112. 114059301025943970552219 832019

113. 184551825793033096366333 13

114. 298611126818977066918552 832032

115. 483162952612010163284885 5

116. 781774079430987230203437 832037

117. 1264937032042997393488322 2

118. 2046711111473984623691759 832039

119. 3311648143516982017180081 1

Some Fibonacci numbers together with their residues modulo F(30)=832040

\fdef\Fibxxx{\FibonacciN {30}}%

\setcounter{myindex}{30}%

\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr

\xintFor* #1 in {\FibonacciSeq {30}{59}}\do

{\themyindex &\xintthe#1 &

\xintiiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{myindex}\cr }}%

}\vrule

\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr

\xintFor* #1 in {\FibonacciSeq {60}{89}}\do

{\themyindex &\xintthe#1 &

\xintiiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{myindex}\cr }}%

}\vrule

\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr

\xintFor* #1 in {\FibonacciSeq {90}{119}}\do

{\themyindex &\xintthe#1 &

\xintiiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{myindex}\cr }}%

}%

This produces the Fibonacci numbers from F(30) to F(119), and computes also all the congruence

classes modulo F(30). The output has been put in a float, which appears above. I leave to the

mathematically inclined readers the task to explain the visible patterns...;-).
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15.19. When expandability is too much
Let's use the macros of subsection 15.18 related to Fibonacci numbers. Notice that the 47th Fi-

bonacci number is 2971215073 thus already too big for TEX and 𝜀-TEX.
The \FibonacciN macro found in subsection 15.18 is completely expandable, it is even f-

expandable. We need a wrapper with \xintthe prefix
\def\theFibonacciN{\xintthe\FibonacciN}

to print in the document or to use within \message (or LATEX typeout) to write to the log and terminal.
The \xintthe prefix also allows its use it as argument to the xint macros: for example if we

are interested in knowing how many digits F(1250) has, it suffices to issue \xintLen {\theFibon⤸
acciN {1250}} (which expands to 261). Or if we want to check the formula gcd(F(1859), F(1573)) =
F(gcd(1859, 1573)) = F(143), we only need69

$\xintiiGCD{\theFibonacciN{1859}}{\theFibonacciN{1573}}=%

\theFibonacciN{\xintiiGCD{1859}{1573}}$

which produces:

343358302784187294870275058337 = 343358302784187294870275058337

The \theFibonacciN macro expanded its \xintiiGCD{1859}{1573} argument via the services of \nu⤸
mexpr: this step allows only things obeying the TEX bound, naturally! (but F(2147483648) would be

rather big anyhow...).

This is very convenient but of course it repeats the complete evaluation each time it is done.

In practice, it is often useful to store the result of such evaluations in macros. Any \edef will

break expandability, but if the goal is at some point to print something to the dvi or pdf output,

and not only to the log file, then expandability has to be broken one day or another!
Hence, in practice, if we want to print in the document some computation results, we can proceed

like this and avoid having to repeat identical evaluations:
\begingroup

\def\A {1859} \def\B {1573}

\edef\X {\theFibonacciN\A} \edef\Y {\theFibonacciN\B}

\edef\GCDAB {\xintiiGCD\A\B}\edef\Z {\theFibonacciN\GCDAB}

\edef\GCDXY{\xintiiGCD\X\Y}

The identity $\gcd(F(\A),F(\B))=F(\gcd(\A,\B))$ can be checked via evaluation

of both sides: $\gcd(F(\A),F(\B))=\gcd(\printnumber\X,\printnumber\Y)=

\printnumber{\GCDXY} = F(\gcd(\A,\B)) = F(\GCDAB) =\printnumber\Z$.\par

% some further computations involving \A, \B, \X, \Y

\endgroup % closing the group removes assignments to \A, \B, ...

% or choose longer names less susceptible to overwrite something.

% Note: there is no LaTeX \newecommand which would be to \edef like \newcommand is to \def

The identity gcd(F(1859), F(1573)) = F(gcd(1859, 1573)) can be checked via evaluation of both

sides: gcd(F(1859), F(1573)) = gcd(14405827913044251198771689151504042869913161495023481014226⤸
68636701088272597575494722482437753529619459794869227357628882216309358018264080851775319974⤸
25695605529435028861585245173725088673642222849290822895245583889495442192655760412999290255⤸
65979711337876105452217623490841529979811413199660087517689703410997520079993610707576019520⤸
876324584695551467505894985013610208598628752325727241, 2443841925195118573328279459777626199⤸
85399024815706192326053609007840133940367432124452232789599095158695811031891779769058032741⤸
51632595307616686661013725200866754096569888951010022888016831459347310131566517721593249344⤸
79863439947937119575876654476582795890928239007031319713554812200493864453132952484774727316⤸
6471511289078393) = 343358302784187294870275058337 = F(gcd(1859, 1573)) = F(143) = 3433583027841⤸
87294870275058337.

One may legitimately ask the author: why expandability to such extremes, for things such as big

fractions or floating point numbers (even continued fractions...) which anyhow can not be used

directly within TEX's primitives such as \ifnum? Why insist on a concept which is foreign to the

vast majority of TEX users and even programmers?

I have no answer: it made definitely sense at the start of xint (see subsection 5.13) and once

started I could not stop.

69 The \xintiiGCD macro is provided by both the xintgcd package (since 1.0) and by the xint package (since 1.3d).
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16. More examples with xinttools or xintexpr or both
Note: xintexpr.sty automatically loads xinttools.sty.

The examples given here start to feel dated and are currently in need of some rewrite to better

illustrate newer features of the package.

.1 More examples with dummy variables . . . . . 189

.2 Completely expandable prime test . . . . . . . . 190

.3 Another completely expandable prime test 192

.4 Miller-Rabin Pseudo-Primality expandably 193

.5 A table of factorizations . . . . . . . . . . . . . . . . . 196

.6 Another table of primes . . . . . . . . . . . . . . . . . . 197

.7 Factorizing again . . . . . . . . . . . . . . . . . . . . . . . . 198

.8 The Quick Sort algorithm illustrated . . . . . . 200

16.1. More examples with dummy variables
These examples were first added to this manual at the time of the 1.1 release (2014/10/29).
Prime numbers are always cool

\xinttheiiexpr seq((seq((subs((x/:m)?{(m*m>x)?{1}{0}}{-1},m=2n+1))

??{break(0)}{omit}{break(1)},n=1++))?{x}{omit},

x=10001..[2]..10200)\relax

Prime numbers are always cool 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091,

10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193

The syntax in this last example may look a bit involved (... and it is so I admit). First x/:⤸
m computes x modulo m (this is the modulo with respect to floored division). The (x)?{yes}{no}

construct checks if x (which must be within parentheses) is true or false, i.e. non zero or zero.

It then executes either the yes or the no branch, the non chosen branch is not evaluated. Thus if

m divides x we are in the second (``false'') branch. This gives a -1. This -1 is the argument to a

?? branch which is of the type (y)??{y<0}{y=0}{y>0}, thus here the y<0, i.e., break(0) is chosen.

This 0 is thus given to another ? which consequently chooses omit, hence the number is not kept in

the list. The numbers which survive are the prime numbers.
The first Fibonacci number beyond |2^64| bound is

\xinttheiiexpr subs(iterr(0,1;(@1>N)?{break(i)}{@1+@2},i=1++),N=2^64)\relax{}

and the previous number was its index.

The first Fibonacci number beyond 2^64 bound is 94 and the previous number was its index.
One more recursion:
\def\syr #1{\xinttheiiexpr rseq(#1; (@<=1)?{break(i)}{odd(@)?{3@+1}{@//2}},i=0++)\relax}

The 3x+1 problem: \syr{231}\par

The 3x+1 problem: 231, 694, 347, 1042, 521, 1564, 782, 391, 1174, 587, 1762, 881, 2644, 1322, 661,

1984, 992, 496, 248, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91,

274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780,

890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958,

479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051,

6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61,

184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 127
OK, a final one:70

\def\syrMax #1{\xintiiexpr iterr(#1,#1;even(i)?

{(@2<=1)?{break(@1,i//2)}{odd(@2)?{3@2+1}{@2//2}}}

{(@1>@2)?{@1}{@2}},i=0++)\relax }

With initial value 1161, the maximal intermediate value and the number of steps

needed to reach 1 are respectively \syrMax{1161}.\par

With initial value 1161, the maximal intermediate value and the number of steps needed to reach 1

are respectively 190996, 181.

Look at the Brent-Salamin algorithm implementation for a more interesting recursion.

70 Prior to 1.4, the break() worked differently and here one used only break(i/2) for the same result. In retrospect this looks like
a bug of break() inside an iterr().

189



TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac, xinttools, xintexpr, Examples

16.2. Completely expandable prime test
Let us now construct a completely expandable macro which returns 1 if its given input is prime and
0 if not:
\def\remainder #1#2{\the\numexpr #1-(#1/#2)*#2\relax }

\def\IsPrime #1%

{\xintANDof {\xintApply {\remainder {#1}}{\xintSeq {2}{\xintiiSqrt{#1}}}}}

This uses \xintiiSqrt and assumes its input is at least 5. Rather than xint's own \xintiiRem we
used a quicker \numexpr expression as we are dealing with short integers. Also we used \xintANDof
which will return 1 only if all the items are non-zero. The macro is a bit silly with an even input,
ok, let's enhance it to detect an even input:
\def\IsPrime #1%

{\xintiiifOdd {#1}

{\xintANDof % odd case

{\xintApply {\remainder {#1}}

{\xintSeq [2]{3}{\xintiiSqrt{#1}}}%

}%

}

{\xintifEq {#1}{2}{1}{0}}%

}

We used the xint expandable tests (on big integers or fractions) in order for \IsPrime to be

f-expandable.
Our integers are short, but without \expandafter's with \@firstoftwo, or some other related

techniques, direct use of \ifnum..\fi tests is dangerous. So to make the macro more efficient we
are going to use the expandable tests provided by the package etoolbox71. The macro becomes:
\def\IsPrime #1%

{\ifnumodd {#1}

{\xintANDof % odd case

{\xintApply {\remainder {#1}}{\xintSeq [2]{3}{\xintiiSqrt{#1}}}}}

{\ifnumequal {#1}{2}{1}{0}}}

In the odd case however we have to assume the integer is at least 7, as \xintSeq generates an
empty list if #1=3 or 5, and \xintANDof returns 1 when supplied an empty list. Let us ease up a bit
\xintANDof's work by letting it work on only 0's and 1's. We could use:
\def\IsNotDivisibleBy #1#2%

{\ifnum\numexpr #1-(#1/#2)*#2=0 \expandafter 0\else \expandafter1\fi}

where the \expandafter's are crucial for this macro to be f-expandable and hence work within the
applied \xintANDof. Anyhow, now that we have loaded etoolbox, we might as well use:
\newcommand{\IsNotDivisibleBy}[2]{\ifnumequal{#1-(#1/#2)*#2}{0}{0}{1}}

Let us enhance our prime macro to work also on the small primes:
\newcommand{\IsPrime}[1] % returns 1 if #1 is prime, and 0 if not

{\ifnumodd {#1}

{\ifnumless {#1}{8}

{\ifnumequal{#1}{1}{0}{1}}% 3,5,7 are primes

{\xintANDof

{\xintApply

{ \IsNotDivisibleBy {#1}}{\xintSeq [2]{3}{\xintiiSqrt{#1}}}}%

}}% END OF THE ODD BRANCH

{\ifnumequal {#1}{2}{1}{0}}% EVEN BRANCH

}

The input is still assumed positive. There is a deliberate blank before \IsNotDivisibleBy to

use this feature of \xintApply: a space stops the expansion of the applied macro (and disappears).

This expansion will be done by \xintANDof, which has been designed to skip everything as soon as

it finds a false (i.e. zero) input. This way, the efficiency is considerably improved.

We did generate via the \xintSeq too many potential divisors though. Later sections give two

variants: one with \xintiloop (subsection 16.3) which is still expandable and another one (sub-

section 16.6) which is a close variant of the \IsPrime code above but with the \xintFor loop, thus

71 http://ctan.org/pkg/etoolbox
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breaking expandability. The xintiloop variant does not first evaluate the integer square root,

the xintFor variant still does. I did not compare their efficiencies.
Let us construct with this expandable primality test a table of the prime numbers up to 1000. We

need to count how many we have in order to know how many tab stops one shoud add in the last row.72

There is some subtlety for this last row. Turns out to be better to insert a \\ only when we know
for sure we are starting a new row; this is how we have designed the \OneCell macro. And for the
last row, there are many ways, we use again \xintApplyUnbraced but with a macro which gobbles its
argument and replaces it with a tabulation character. The \xintFor* macro would be more elegant
here.
\newcounter{primecount}

\newcounter{cellcount}

\newcommand{\NbOfColumns}{13}

\newcommand{\OneCell}[1]{%

\ifnumequal{\IsPrime{#1}}{1}

{\stepcounter{primecount}

\ifnumequal{\value{cellcount}}{\NbOfColumns}

{\\\setcounter{cellcount}{1}#1}

{&\stepcounter{cellcount}#1}%

} % was prime

{}% not a prime, nothing to do

}

\newcommand{\OneTab}[1]{&}

\begin{tabular}{|*{\NbOfColumns}{r}|}

\hline

2 \setcounter{cellcount}{1}\setcounter{primecount}{1}%

\xintApplyUnbraced \OneCell {\xintSeq [2]{3}{999}}%

\xintApplyUnbraced \OneTab

{\xintSeq [1]{1}{\the\numexpr\NbOfColumns-\value{cellcount}\relax}}%

\\

\hline

\end{tabular}

There are \arabic{primecount} prime numbers up to 1000.

The table has been put in float which appears on this page. We had to be careful to use in the

last row \xintSeq with its optional argument [1] so as to not generate a decreasing sequence from

1 to 0, but really an empty sequence in case the row turns out to already have all its cells (which

doesn't happen here but would with a number of columns dividing 168).

2 3 5 7 11 13 17 19 23 29 31 37 41

43 47 53 59 61 67 71 73 79 83 89 97 101

103 107 109 113 127 131 137 139 149 151 157 163 167

173 179 181 191 193 197 199 211 223 227 229 233 239

241 251 257 263 269 271 277 281 283 293 307 311 313

317 331 337 347 349 353 359 367 373 379 383 389 397

401 409 419 421 431 433 439 443 449 457 461 463 467

479 487 491 499 503 509 521 523 541 547 557 563 569

571 577 587 593 599 601 607 613 617 619 631 641 643

647 653 659 661 673 677 683 691 701 709 719 727 733

739 743 751 757 761 769 773 787 797 809 811 821 823

827 829 839 853 857 859 863 877 881 883 887 907 911

919 929 937 941 947 953 967 971 977 983 991 997

There are 168 prime numbers up to 1000.

72 although a tabular row may have less tabs than in the preamble, there is a problem with the | vertical rule, if one does that.
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16.3. Another completely expandable prime test
The \IsPrime macro from subsection 16.2 checked expandably if a (short) integer was prime, here is

a partial rewrite using \xintiloop. We use the etoolbox expandable conditionals for convenience,

but not everywhere as \xintiloopindex can not be evaluated while being braced. This is also the

reason why \xintbreakiloopanddo is delimited, and the next macro \SmallestFactor which returns

the smallest prime factor examplifies that. One could write more efficient completely expandable

routines, the aim here was only to illustrate use of the general purpose \xintiloop. A little table

giving the first values of \SmallestFactor follows, its coding uses \xintFor, which is described

later; none of this uses count registers.
\let\IsPrime\undefined \let\SmallestFactor\undefined % clean up possible previous mess

\newcommand{\IsPrime}[1] % returns 1 if #1 is prime, and 0 if not

{\ifnumodd {#1}

{\ifnumless {#1}{8}

{\ifnumequal{#1}{1}{0}{1}}% 3,5,7 are primes

{\if

\xintiloop [3+2]

\ifnum#1<\numexpr\xintiloopindex*\xintiloopindex\relax

\expandafter\xintbreakiloopanddo\expandafter1\expandafter.%

\fi

\ifnum#1=\numexpr (#1/\xintiloopindex)*\xintiloopindex\relax

\else

\repeat 00\expandafter0\else\expandafter1\fi

}%

}% END OF THE ODD BRANCH

{\ifnumequal {#1}{2}{1}{0}}% EVEN BRANCH

}%

\catcode`_ 11

\newcommand{\SmallestFactor}[1] % returns the smallest prime factor of #1>1

{\ifnumodd {#1}

{\ifnumless {#1}{8}

{#1}% 3,5,7 are primes

{\xintiloop [3+2]

\ifnum#1<\numexpr\xintiloopindex*\xintiloopindex\relax

\xint_afterfi{\xintbreakiloopanddo#1.}%

\fi

\ifnum#1=\numexpr (#1/\xintiloopindex)*\xintiloopindex\relax

\xint_afterfi{\expandafter\xintbreakiloopanddo\xintiloopindex.}%

\fi

\iftrue\repeat

}%

}% END OF THE ODD BRANCH

{2}% EVEN BRANCH

}%

\catcode`_ 8

{\centering

\begin{tabular}{|c|*{10}c|}

\hline

\xintFor #1 in {0,1,2,3,4,5,6,7,8,9}\do {&\bfseries #1}\\

\hline

\bfseries 0&--&--&2&3&2&5&2&7&2&3\\

\xintFor #1 in {1,2,3,4,5,6,7,8,9}\do

{\bfseries #1%

\xintFor #2 in {0,1,2,3,4,5,6,7,8,9}\do

{&\SmallestFactor{#1#2}}\\}%

\hline

\end{tabular}\par
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}
0 1 2 3 4 5 6 7 8 9

0 -- -- 2 3 2 5 2 7 2 3

1 2 11 2 13 2 3 2 17 2 19

2 2 3 2 23 2 5 2 3 2 29

3 2 31 2 3 2 5 2 37 2 3

4 2 41 2 43 2 3 2 47 2 7

5 2 3 2 53 2 5 2 3 2 59

6 2 61 2 3 2 5 2 67 2 3

7 2 71 2 73 2 3 2 7 2 79

8 2 3 2 83 2 5 2 3 2 89

9 2 7 2 3 2 5 2 97 2 3

16.4. Miller-Rabin Pseudo-Primality expandably
The isPseudoPrime(n) is usable in \xintiiexpr-essions and establishes if its (positive) argu-

ment is a Miller-Rabin PseudoPrime to the bases 2, 3, 5, 7, 11, 13, 17. If this is true and n <

341550071728321 (which has 15 digits) then n really is a prime number.

Similarly n = 3825123056546413051 (19 digits) is the smallest composite number which is a strong

pseudo prime for bases 2, 3, 5, 7, 11, 13, 17, 19 and 23. It is easy to extend the code below to include

these additional tests (we could make the list of tested bases an argument too, now that I think

about it.)

For more information see

https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants_of_the_test

and

http://primes.utm.edu/prove/prove2_3.html

In particular, according to Jaeschke On strong pseudoprimes to several bases, Math. Comp., 61

(1993) 915-926, if n < 4, 759, 123, 141 it is enough to establish Rabin-Miller pseudo-primality

to bases a = 2, 7, 61 to prove that n is prime. This range is enough for TEX numbers and we could

then write a very fast expandable primality test for such numbers using only \numexpr. Left as an

exercise...
% I -------------------------------- Modular Exponentiation

% Computes x^m modulo n (with m non negative).

% We will always use it with 1 < x < n

%

% With xint 1.4 we should use ? and ?? (although in the case at hand ifsgn()

% and if() would be ok but I should not say that).

%

\xintdefiifunc powmod_a(x, m, n) :=

isone(m)?

% m=1, return x modulo n

{ x /: n }

% m > 1 test if odd or even and do recursive call

{ odd(m)? { x*sqr(powmod_a(x, m//2, n)) /: n }

{ sqr(powmod_a(x, m//2, n)) /: n }

}

;

\xintdefiifunc powmod(x, m, n) := (m)?{powmod_a(x, m, n)}{1};

%% Syntax used before xint 1.4:

% \xintdefiifunc powmod_a(x, m, n) :=

% ifone(m,

% % m=1, return x modulo n

% x /: n,

% % m > 1 test if odd or even and do recursive call

193

https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants_of_the_test
http://primes.utm.edu/prove/prove2_3.html


TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac, xinttools, xintexpr, Examples

% if(odd(m), (x*sqr(powmod_a(x, m//2, n))) /: n,

% sqr(powmod_a(x, m//2, n)) /: n

% )

% );

% \xintdefiifunc powmod(x, m, n) := if(m, powmod_a(x, m, n), 1);

% II ------------------------------ Miller-Rabin compositeness witness

% n=2^k m + 1 with m odd and k at least 1

% Choose 1<x<n.

% compute y=x^m modulo n

% if equals 1 we can't say anything

% if equals n-1 we can't say anything

% else put j=1, and

% compute repeatedly the square, incrementing j by 1 each time,

% thus always we have y^{2^{j-1}}

% -> if at some point n-1 mod n found, we can't say anything and break out

% -> if however we never find n-1 mod n before reaching

% z=y^{2^{k-1}} with j=k

% we then have z^2=x^{n-1}.

% Suppose z is not -1 mod n. If z^2 is 1 mod n, then n can be prime only if

% z is 1 mod n, and we can go back up, until initial y, and we have already

% excluded y=1. Thus if z is not -1 mod n and z^2 is 1 then n is not prime.

% But if z^2 is not 1, then n is not prime by Fermat. Hence (z not -1 mod n)

% implies (n is composite). (Miller test)

% let's use again xintexpr indecipherable (except to author) syntax. Of course

% doing it with macros only would be faster.

% Here \xintdefiifunc is not usable because not compatible with iter, break, ...

% but \xintNewFunction comes to the rescue.

\xintNewFunction{isCompositeWitness}[4]{% x=#1, n=#2, m=#3, k=#4

subs((y==1)?{0}

{iter(y;(j=#4)?{break(!(@==#2-1))}

{(@==#2-1)?{break(0)}{sqr(@)/:#2}},j=1++)}

,y=powmod(#1,#3,#2))}

% added note (2018/03/07) it is possible in the above that m=#3 is never

% zero, so we should rather call powmod_a for a small gain, but I don't

% have time to re-read the code comments and settle this.

% III ------------------------------------- Strong Pseudo Primes

% cf

% http://oeis.org/A014233

% <http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html>

% <http://mathworld.wolfram.com/StrongPseudoprime.html>

% check if positive integer <49 si a prime.

% 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47

\def\IsVerySmallPrime #1%

{\ifnum#1=1 \xintdothis0\fi

\ifnum#1=2 \xintdothis1\fi

\ifnum#1=3 \xintdothis1\fi

\ifnum#1=5 \xintdothis1\fi
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\ifnum#1=\numexpr (#1/2)*2\relax\xintdothis0\fi

\ifnum#1=\numexpr (#1/3)*3\relax\xintdothis0\fi

\ifnum#1=\numexpr (#1/5)*5\relax\xintdothis0\fi

\xintorthat 1}

\xintNewFunction{isPseudoPrime}[1]{% n = #1

(#1<49)?% use ? syntax to evaluate only what is needed

% prior to 1.4 we had \xintthe#1 here but the actual tokens represented

% by this #1 when isPseudoPrime() function expands have changed and

% the correct way is now \xintiieval{#1} to hand over explicit digits to

% the \IsVerySmallPrime macro.

{\IsVerySmallPrime{\xintiieval{#1}}}

{(even(#1))?

{0}

{subs(%

% L expands to two values m, k hence isCompositeWitness does get

% its four variables x, n, m, k

isCompositeWitness(2, #1, L)?

{0}%

{isCompositeWitness(3, #1, L)?

{0}%

{isCompositeWitness(5, #1, L)?

{0}%

{isCompositeWitness(7, #1, L)?

{0}%

% above enough for N<3215031751 hence all TeX numbers

{isCompositeWitness(11, #1, L)?

{0}%

% above enough for N<2152302898747, hence all 12-digits numbers

{isCompositeWitness(13, #1, L)?

{0}%

% above enough for N<3474749660383

{isCompositeWitness(17, #1, L)?

{0}%

% above enough for N<341550071728321

{1}%

}% not needed to comment-out end of lines spaces inside

}% \xintexpr but this is too much of a habit for me with TeX!

}% I left some after the ? characters.

}%

}%

}% this computes (m, k) such that n = 2^k m + 1, m odd, k>=1

, L=iter(#1//2;(even(@))?{@//2}{break(@,k)},k=1++))%

}%

}%

}

% if needed:

%\def\IsPseudoPrime #1{\xinttheiiexpr isPseudoPrime(#1)\relax}

\noindent The smallest prime number at least equal to 3141592653589 is

\xintiiexpr

seq(isPseudoPrime(3141592653589+n)?

{break(3141592653589+n)}{omit}, n=0++)\relax.

% we could not use 3141592653589++ syntax because it works only with TeX numbers

\par

The smallest prime number at least equal to 3141592653589 is 3141592653601.
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16.5. A table of factorizations
As one more example with \xintiloop let us use an alignment to display the factorization of some

numbers. The loop will actually only play a minor rôle here, just handling the row index, the row

contents being almost entirely produced via a macro \factorize. The factorizing macro does not

use \xintiloop as it didn't appear to be the convenient tool. As \factorize will have to be used

on \xintiloopindex, it has been defined as a delimited macro.

To spare some fractions of a second in the compilation time of this document (which has many many

other things to do), 2147483629 and 2147483647, which turn out to be prime numbers, are not given

to factorize but just typeset directly; this illustrates use of \xintiloopskiptonext.

The code next generates a table which has been made into a float appearing on the next page. Here

is now the code for factorization; the conditionals use the package provided \xint_firstoftwo and

\xint_secondoftwo, one could have employed rather LATEX's own \@firstoftwo and \@secondoftwo, or,

simpler still in LATEX context, the \ifnumequal, \ifnumless ..., utilities from the package etoolb⤸
ox which do exactly that under the hood. Only TEX acceptable numbers are treated here, but it would

be easy to make a translation and use the xint macros, thus extending the scope to big numbers;

naturally up to a cost in speed.

The reason for some strange looking expressions is to avoid arithmetic overflow.
\catcode`_ 11

\def\abortfactorize #1\xint_secondoftwo\fi #2#3{\fi}

\def\factorize #1.{\ifnum#1=1 \abortfactorize\fi

\ifnum\numexpr #1-2=\numexpr ((#1/2)-1)*2\relax

\expandafter\xint_firstoftwo

\else\expandafter\xint_secondoftwo

\fi

{2&\expandafter\factorize\the\numexpr#1/2.}%

{\factorize_b #1.3.}}%

\def\factorize_b #1.#2.{\ifnum#1=1 \abortfactorize\fi

\ifnum\numexpr #1-(#2-1)*#2<#2

#1\abortfactorize

\fi

\ifnum \numexpr #1-#2=\numexpr ((#1/#2)-1)*#2\relax

\expandafter\xint_firstoftwo

\else\expandafter\xint_secondoftwo

\fi

{#2&\expandafter\factorize_b\the\numexpr#1/#2.#2.}%

{\expandafter\factorize_b\the\numexpr #1\expandafter.%

\the\numexpr #2+2.}}%

\catcode`_ 8

\begin{figure*}[ht!]

\centering\phantomsection\label{floatfactorize}\normalcolor

\tabskip1ex

\centeredline{\vbox{\halign {\hfil\strut#\hfil&&\hfil#\hfil\cr\noalign{\hrule}

\xintiloop ["7FFFFFE0+1]

\expandafter\bfseries\xintiloopindex &

\ifnum\xintiloopindex="7FFFFFED

\number"7FFFFFED\cr\noalign{\hrule}

\expandafter\xintiloopskiptonext

\fi

\expandafter\factorize\xintiloopindex.\cr\noalign{\hrule}

\ifnum\xintiloopindex<"7FFFFFFE

\repeat

\bfseries \number"7FFFFFFF&\number "7FFFFFFF\cr\noalign{\hrule}

}}}
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\centeredline{A table of factorizations}

\end{figure*}

2147483616 2 2 2 2 2 3 2731 8191

2147483617 6733 318949

2147483618 2 7 367 417961

2147483619 3 3 23 353 29389

2147483620 2 2 5 4603 23327

2147483621 14741 145681

2147483622 2 3 17 467 45083

2147483623 79 967 28111

2147483624 2 2 2 11 13 1877171

2147483625 3 5 5 5 7 199 4111

2147483626 2 19 37 1527371

2147483627 47 53 862097

2147483628 2 2 3 3 59652323

2147483629 2147483629

2147483630 2 5 6553 32771

2147483631 3 137 263 19867

2147483632 2 2 2 2 7 73 262657

2147483633 5843 367531

2147483634 2 3 12097 29587

2147483635 5 11 337 115861

2147483636 2 2 536870909

2147483637 3 3 3 13 6118187

2147483638 2 2969 361651

2147483639 7 17 18046081

2147483640 2 2 2 3 5 29 43 113 127

2147483641 2699 795659

2147483642 2 23 46684427

2147483643 3 715827881

2147483644 2 2 233 1103 2089

2147483645 5 19 22605091

2147483646 2 3 3 7 11 31 151 331

2147483647 2147483647

A table of factorizations

16.6. Another table of primes
As a further example, let us dynamically generate a tabular with the first 50 prime numbers af-

ter 12345. First we need a macro to test if a (short) number is prime. Such a completely expand-

able macro was given in subsection 16.2, here we consider a variant which will be slightly more

efficient. This new \IsPrime has two parameters. The first one is a macro which it redefines to

expand to the result of the primality test applied to the second argument. For convenience we use

the etoolbox wrappers to various \ifnum tests, although here there isn't anymore the constraint

of complete expandability (but using explicit \if..\fi in tabulars has its quirks); equivalent

tests are provided by xint, but they have some overhead as they are able to deal with arbitrarily

big integers.
\def\IsPrime #1#2% #1=\Result, #2=tested number (assumed >0).

{\edef\TheNumber {\the\numexpr #2}% hence #2 may be a count or \numexpr.

\ifnumodd {\TheNumber}
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{\ifnumgreater {\TheNumber}{1}

{\edef\ItsSquareRoot{\xintiiSqrt \TheNumber}%

\xintFor ##1 in {\xintintegers [3+2]}\do

{\ifnumgreater {##1}{\ItsSquareRoot} % ##1 is a \numexpr.

{\def#1{1}\xintBreakFor}

{}%

\ifnumequal {\TheNumber}{(\TheNumber/##1)*##1}

{\def#1{0}\xintBreakFor }

{}%

}}

{\def#1{0}}}% 1 is not prime

{\ifnumequal {\TheNumber}{2}{\def#1{1}}{\def#1{0}}}%

}

As we used \xintFor inside a macro we had to double the # in its #1 parameter. Here is now the

code which creates the prime table (the table has been put in a float, which should be found on page

198):
\newcounter{primecount}

\newcounter{cellcount}

\begin{figure*}[ht!]

\centering

\begin{tabular}{|*{7}c|}

\hline

\setcounter{primecount}{0}\setcounter{cellcount}{0}%

\xintFor #1 in {\xintintegers [12345+2]} \do

% #1 is a \numexpr.

{\IsPrime\Result{#1}%

\ifnumgreater{\Result}{0}

{\stepcounter{primecount}%

\stepcounter{cellcount}%

\ifnumequal {\value{cellcount}}{7}

{\the#1 \\\setcounter{cellcount}{0}}

{\the#1 &}}

{}%

\ifnumequal {\value{primecount}}{50}

{\xintBreakForAndDo

{\multicolumn {6}{l|}{These are the first 50 primes after 12345.}\\}}

{}%

}\hline

\end{tabular}

\end{figure*}

12347 12373 12377 12379 12391 12401 12409

12413 12421 12433 12437 12451 12457 12473

12479 12487 12491 12497 12503 12511 12517

12527 12539 12541 12547 12553 12569 12577

12583 12589 12601 12611 12613 12619 12637

12641 12647 12653 12659 12671 12689 12697

12703 12713 12721 12739 12743 12757 12763

12781 These are the first 50 primes after 12345.

16.7. Factorizing again
Here is an f-expandable macro which computes the factors of an integer. It uses the xint macros
only.
\catcode`\@ 11
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\let\factorize\relax

\newcommand\Factorize [1]

{\romannumeral0\expandafter\factorize\expandafter{\romannumeral-`0#1}}%

\newcommand\factorize [1]{\xintiiifOne{#1}{ 1}{\factors@a #1.{#1};}}%

\def\factors@a #1.{\xintiiifOdd{#1}

{\factors@c 3.#1.}%

{\expandafter\factors@b \expandafter1\expandafter.\romannumeral0\xinthalf{#1}.}}%

\def\factors@b #1.#2.{\xintiiifOne{#2}

{\factors@end {2, #1}}%

{\xintiiifOdd{#2}{\factors@c 3.#2.{2, #1}}%

{\expandafter\factors@b \the\numexpr #1+\@ne\expandafter.%

\romannumeral0\xinthalf{#2}.}}%

}%

\def\factors@c #1.#2.{%

\expandafter\factors@d\romannumeral0\xintiidivision {#2}{#1}{#1}{#2}%

}%

\def\factors@d #1#2#3#4{\xintiiifNotZero{#2}

{\xintiiifGt{#3}{#1}

{\factors@end {#4, 1}}% ultimate quotient is a prime with power 1

{\expandafter\factors@c\the\numexpr #3+\tw@.#4.}}%

{\factors@e 1.#3.#1.}%

}%

\def\factors@e #1.#2.#3.{\xintiiifOne{#3}

{\factors@end {#2, #1}}%

{\expandafter\factors@f\romannumeral0\xintiidivision {#3}{#2}{#1}{#2}{#3}}%

}%

\def\factors@f #1#2#3#4#5{\xintiiifNotZero{#2}

{\expandafter\factors@c\the\numexpr #4+\tw@.#5.{#4, #3}}%

{\expandafter\factors@e\the\numexpr #3+\@ne.#4.#1.}%

}%

\def\factors@end #1;{\xintlistwithsep{, }{\xintRevWithBraces {#1}}}%

\catcode`@ 12

The macro will be acceptably efficient only with numbers having somewhat small prime factors.
\Factorize{16246355912554185673266068721806243461403654781833}

16246355912554185673266068721806243461403654781833, 13, 5, 17, 8, 29, 5, 37, 6, 41, 4, 59, 6

It puts a little stress on the input save stack in order not be bothered with previously gathered

things.73

Its output is a comma separated list with the number first, then its prime factors with multi-
plicity. Let's produce something prettier:
\catcode`_ 11

\def\ShowFactors #1{\expandafter\ShowFactors_a\romannumeral-`0\Factorize{#1},\relax,\relax,}

\def\ShowFactors_a #1,{#1=\ShowFactors_b}

\def\ShowFactors_b #1,#2,{\if\relax#1\else#1^{#2}\expandafter\ShowFactors_b\fi}

\catcode`_ 8

$$\ShowFactors{16246355912554185673266068721806243461403654781833}$$

16246355912554185673266068721806243461403654781833 = 135178295376414596

If we only considered small integers, we could write pure \numexpr methods which would be very

much faster (especially if we had a table of small primes prepared first) but still ridiculously

slow compared to any non expandable implementation, not to mention use of programming languages

directly accessing the CPU registers...

73 2015/11/18 I have not revisited this code for a long time, and perhaps I could improve it now with some new techniques.
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16.8. The Quick Sort algorithm illustrated
First a completely expandable macro which sorts a comma separated list of numbers.74

The \QSx macro expands its list argument, which may thus be a macro; its comma separated items

must expand to integers or decimal numbers or fractions or scientific notation as acceptable to

xintfrac, but if an item is itself some (expandable) macro, this macro will be expanded each time

the item is considered in a comparison test! This is actually good if the macro expands in one step

to the digits, and there are many many digits, but bad if the macro needs to do many computations.

Thus \QSx should be used with either explicit numbers or with items being macros expanding in one

step to the numbers (particularly if these numbers are very big).

If the interest is only in TEX integers, then one should replace the \xintifCmp macro with a

suitable conditional, possibly helped by tools such as \ifnumgreater, \ifnumequal and \ifnumles⤸
s from etoolbox (LATEX only; I didn't see a direct equivalent to \xintifCmp.) Or, if we are dealing

with decimal numbers with at most four+four digits, then one should use suitable \ifdim tests.

Naturally this will boost consequently the speed, from having skipped all the overhead in parsing

fractions and scientific numbers as are acceptable by xintfrac macros, and subsequent treatment.
% THE QUICK SORT ALGORITHM EXPANDABLY

% \usepackage{xintfrac} in the preamble (latex)

\makeatletter

% use extra safe delimiters

\catcode`! 3 \catcode`? 3

\def\QSx {\romannumeral0\qsx }%

% first we check if empty list (else \qsx@finish will not find a comma)

\def\qsx #1{\expandafter\qsx@a\romannumeral-`0#1,!,?}%

\def\qsx@a #1{\ifx,#1\expandafter\qsx@abort\else

\expandafter\qsx@start\fi #1}%

\def\qsx@abort #1?{ }%

\def\qsx@start {\expandafter\qsx@finish\romannumeral0\qsx@b,}%

\def\qsx@finish ,#1{ #1}%

%

% we check if empty of single and if not pick up the first as Pivot:

\def\qsx@b ,#1#2,#3{\ifx?#3\xintdothis\qsx@empty\fi

\ifx!#3\xintdothis\qsx@single\fi

\xintorthat\qsx@separate {#1#2}{}{}{#1#2}#3}%

\def\qsx@empty #1#2#3#4#5{ }%

\def\qsx@single #1#2#3#4#5?{, #4}%

\def\qsx@separate #1#2#3#4#5#6,%

{%

\ifx!#5\expandafter\qsx@separate@done\fi

\xintifCmp {#5#6}{#4}%

\qsx@separate@appendtosmaller

\qsx@separate@appendtoequal

\qsx@separate@appendtogreater {#5#6}{#1}{#2}{#3}{#4}%

}%

%

\def\qsx@separate@appendtoequal #1#2{\qsx@separate {#2,#1}}%

\def\qsx@separate@appendtogreater #1#2#3{\qsx@separate {#2}{#3,#1}}%

\def\qsx@separate@appendtosmaller #1#2#3#4{\qsx@separate {#2}{#3}{#4,#1}}%

%

\def\qsx@separate@done\xintifCmp #1%

74 The code in earlier versions of this manual handled inputs composed of braced items. I have switched to comma separated
inputs on the occasion of (link removed) The version here is like code 3 on (link removed) (which is about 3x faster than the
earlier code it replaced in this manual) with a modification to make it more efficient if the data has many repeated values. A faster
routine (for sorting hundreds of values) is provided as code 6 at the link mentioned in the footnote, it is based on Merge Sort,
but limited to inputs which one can handle as TEX dimensions.This code 6 could be extended to handle more general numbers,
as acceptable by xintfrac. I have also written a non expandable version, which is even faster, but this matters really only when
handling hundreds or rather thousands of values.
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\qsx@separate@appendtosmaller

\qsx@separate@appendtoequal

\qsx@separate@appendtogreater #2#3#4#5#6#7?%

{%

\expandafter\qsx@f\expandafter {\romannumeral0\qsx@b #4,!,?}{\qsx@b #5,!,?}{#3}%

}%

%

\def\qsx@f #1#2#3{#2, #3#1}%

%

\catcode`! 12 \catcode`? 12

\makeatother

% EXAMPLE

\begingroup

\edef\z {\QSx {1.0, 0.5, 0.3, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

1.3, 1.1, 0.7, 1.6, 0.6, 0.9, 0.8, 0.2, 0.1, 1.9}}

\meaning\z

\def\a {3.123456789123456789}\def\b {3.123456789123456788}

\def\c {3.123456789123456790}\def\d {3.123456789123456787}

\oodef\z {\QSx { \a, \b, \c, \d}}%

% The space before \a to let it not be expanded during the conversion from CSV

% values to List. The \oodef expands exactly twice (via a bunch of \expandafter's)

\meaning\z

\endgroup

macro:->0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,

1.9, 2.0

macro:->\d , \b , \a , \c (the spaces after \d, etc... come from the use of the \meaning primi-

tive.)

The choice of pivot as first element is bad if the list is already almost sorted. Let's add a

variant which will pick up the pivot index randomly. The previous routine worked also internally

with comma separated lists, but for a change this one will use internally lists of braced items

(the initial conversion via \xintCSVtoList handles all potential spurious space problems).
% QuickSort expandably on comma separated values with random choice of pivots

% ====> Requires availability of \pdfuniformdeviate <====

% \usepackage{xintfrac, xinttools} in preamble

\makeatletter

\def\QSx {\romannumeral0\qsx }% This is a f-expandable macro.

% This converts from comma separated values on input and back on output.

% **** NOTE: these steps (and the other ones too, actually) are costly if input

% has thousands of items.

\def\qsx #1{\xintlistwithsep{, }%

{\expandafter\qsx@sort@a\expandafter{\romannumeral0\xintcsvtolist{#1}}}}%

%

% we check if empty or single or double and if not pick up the first as Pivot:

\def\qsx@sort@a #1%

{\expandafter\qsx@sort@b\expandafter{\romannumeral0\xintlength{#1}}{#1}}%

\def\qsx@sort@b #1{\ifcase #1

\expandafter\qsx@sort@empty

\or\expandafter\qsx@sort@single

\or\expandafter\qsx@sort@double

\else\expandafter\qsx@sort@c\fi {#1}}%

\def\qsx@sort@empty #1#2{ }%

\def\qsx@sort@single #1#2{#2}%

\catcode`_ 11

\def\qsx@sort@double #1#2{\xintifGt #2{\xint_exchangetwo_keepbraces}{}#2}%

201



TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac, xinttools, xintexpr, Examples

\catcode`_ 8

\def\qsx@sort@c #1#2{%

\expandafter\qsx@sort@sep@a\expandafter

{\romannumeral0\xintnthelt{\pdfuniformdeviate #1+\@ne}{#2}}#2?}%

\def\qsx@sort@sep@a #1{\qsx@sort@sep@loop {}{}{}{#1}}%

\def\qsx@sort@sep@loop #1#2#3#4#5%

{%

\ifx?#5\expandafter\qsx@sort@sep@done\fi

\xintifCmp {#5}{#4}%

\qsx@sort@sep@appendtosmaller

\qsx@sort@sep@appendtoequal

\qsx@sort@sep@appendtogreater {#5}{#1}{#2}{#3}{#4}%

}%

%

\def\qsx@sort@sep@appendtoequal #1#2{\qsx@sort@sep@loop {#2{#1}}}%

\def\qsx@sort@sep@appendtogreater #1#2#3{\qsx@sort@sep@loop {#2}{#3{#1}}}%

\def\qsx@sort@sep@appendtosmaller #1#2#3#4{\qsx@sort@sep@loop {#2}{#3}{#4{#1}}}%

%

\def\qsx@sort@sep@done\xintifCmp #1%

\qsx@sort@sep@appendtosmaller

\qsx@sort@sep@appendtoequal

\qsx@sort@sep@appendtogreater #2#3#4#5#6%

{%

\expandafter\qsx@sort@recurse\expandafter

{\romannumeral0\qsx@sort@a {#4}}{\qsx@sort@a {#5}}{#3}%

}%

%

\def\qsx@sort@recurse #1#2#3{#2#3#1}%

%

\makeatother

% EXAMPLES

\begingroup

\edef\z {\QSx {1.0, 0.5, 0.3, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

1.3, 1.1, 0.7, 1.6, 0.6, 0.9, 0.8, 0.2, 0.1, 1.9}}

\meaning\z

\def\a {3.123456789123456789}\def\b {3.123456789123456788}

\def\c {3.123456789123456790}\def\d {3.123456789123456787}

\oodef\z {\QSx { \a, \b, \c, \d}}%

% The space before \a to let it not be expanded during the conversion from CSV

% values to List. The \oodef expands exactly twice (via a bunch of \expandafter's)

\meaning\z

\def\somenumbers{%

3997.6421, 8809.9358, 1805.4976, 5673.6478, 3179.1328, 1425.4503, 4417.7691,

2166.9040, 9279.7159, 3797.6992, 8057.1926, 2971.9166, 9372.2699, 9128.4052,

1228.0931, 3859.5459, 8561.7670, 2949.6929, 3512.1873, 1698.3952, 5282.9359,

1055.2154, 8760.8428, 7543.6015, 4934.4302, 7526.2729, 6246.0052, 9512.4667,

7423.1124, 5601.8436, 4433.5361, 9970.4849, 1519.3302, 7944.4953, 4910.7662,

3679.1515, 8167.6824, 2644.4325, 8239.4799, 4595.1908, 1560.2458, 6098.9677,

3116.3850, 9130.5298, 3236.2895, 3177.6830, 5373.1193, 5118.4922, 2743.8513,

8008.5975, 4189.2614, 1883.2764, 9090.9641, 2625.5400, 2899.3257, 9157.1094,

8048.4216, 3875.6233, 5684.3375, 8399.4277, 4528.5308, 6926.7729, 6941.6278,

9745.4137, 1875.1205, 2755.0443, 9161.1524, 9491.1593, 8857.3519, 4290.0451,

2382.4218, 3678.2963, 5647.0379, 1528.7301, 2627.8957, 9007.9860, 1988.5417,

2405.1911, 5065.8063, 5856.2141, 8989.8105, 9349.7840, 9970.3013, 8105.4062,
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3041.7779, 5058.0480, 8165.0721, 9637.7196, 1795.0894, 7275.3838, 5997.0429,

7562.6481, 8084.0163, 3481.6319, 8078.8512, 2983.7624, 3925.4026, 4931.5812,

1323.1517, 6253.0945}%

\oodef\z {\QSx \somenumbers}% produced as a comma+space separated list

% black magic as workaround to the shrinkability of spaces in last line...

\hsize 87\fontcharwd\font`0

\lccode`~=32

\lowercase{\def~}{\discretionary{}{}{\kern\fontcharwd\font`0}}\catcode32 13

\noindent\phantom{000}\scantokens\expandafter{\meaning\z}\par

\endgroup

macro:->0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,

1.9, 2.0

macro:->\d , \b , \a , \c

macro:->1055.2154, 1228.0931, 1323.1517, 1425.4503, 1519.3302, 1528.7301, 1560.2458,

1698.3952, 1795.0894, 1805.4976, 1875.1205, 1883.2764, 1988.5417, 2166.9040, 2382.4218,

2405.1911, 2625.5400, 2627.8957, 2644.4325, 2743.8513, 2755.0443, 2899.3257, 2949.6929,

2971.9166, 2983.7624, 3041.7779, 3116.3850, 3177.6830, 3179.1328, 3236.2895, 3481.6319,

3512.1873, 3678.2963, 3679.1515, 3797.6992, 3859.5459, 3875.6233, 3925.4026, 3997.6421,

4189.2614, 4290.0451, 4417.7691, 4433.5361, 4528.5308, 4595.1908, 4910.7662, 4931.5812,

4934.4302, 5058.0480, 5065.8063, 5118.4922, 5282.9359, 5373.1193, 5601.8436, 5647.0379,

5673.6478, 5684.3375, 5856.2141, 5997.0429, 6098.9677, 6246.0052, 6253.0945, 6926.7729,

6941.6278, 7275.3838, 7423.1124, 7526.2729, 7543.6015, 7562.6481, 7944.4953, 8008.5975,

8048.4216, 8057.1926, 8078.8512, 8084.0163, 8105.4062, 8165.0721, 8167.6824, 8239.4799,

8399.4277, 8561.7670, 8760.8428, 8809.9358, 8857.3519, 8989.8105, 9007.9860, 9090.9641,

9128.4052, 9130.5298, 9157.1094, 9161.1524, 9279.7159, 9349.7840, 9372.2699, 9491.1593,

9512.4667, 9637.7196, 9745.4137, 9970.3013, 9970.4849

All the previous examples were with numbers which could have been handled via \ifdim tests rather

than the \xintifCmp macro from xintfrac; using \ifdim tests would naturally be faster. Even faster

routine is code 6 at (link removed) which uses \pdfescapestring and a Merge Sort algorithm.
We then turn to a graphical illustration of the algorithm.75 For simplicity the pivot is always

chosen as the first list item. Then we also give a variant which picks up the last item as pivot.
% in LaTeX preamble:

% \usepackage{xintfrac, xinttools}

% \usepackage{color}

% or, when using Plain TeX:

% \input xintfrac.sty \input xinttools.sty

% \input color.tex

%

% Color definitions

\definecolor{LEFT}{RGB}{216,195,88}

\definecolor{RIGHT}{RGB}{208,231,153}

\definecolor{INERT}{RGB}{199,200,194}

\definecolor{INERTpiv}{RGB}{237,237,237}

\definecolor{PIVOT}{RGB}{109,8,57}

% Start of macro defintions

\makeatletter

% \catcode`? 3 % a bit too paranoid. Normal ? will do.

%

% argument will never be empty

\def\QS@cmp@a #1{\QS@cmp@b #1??}%

75 I have rewritten (2015/11/21) the routine to do only once (and not thrice) the needed calls to \xintifCmp, up to the price of
one additional \edef, although due to the context execution time on our side is not an issue and moreover is anyhow overwhelmed
by the TikZ’s activities. Simultaneously I have updated the code. The variant with the choice of pivot on the right has more
overhead: the reason is simply that we do not convert the data into an array, but maintain a list of tokens with self-reorganizing
delimiters.
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\def\QS@cmp@b #1{\noexpand\QS@sep@A\@ne{#1}\QS@cmp@d {#1}}%

\def\QS@cmp@d #1#2{\ifx ?#2\expandafter\QS@cmp@done\fi

\xintifCmp {#1}{#2}\tw@\@ne\z@{#2}\QS@cmp@d {#1}}%

\def\QS@cmp@done #1?{?}%

%

\def\QS@sep@A #1?{\QSLr\QS@sep@L #1\thr@@?#1\thr@@?#1\thr@@?}%

\def\QS@sep@L #1#2{\ifcase #1{#2}\or\or\else\expandafter\QS@sep@I@start\fi \QS@sep@L}%

\def\QS@sep@I@start\QS@sep@L {\noexpand\empty?\QSIr\QS@sep@I}%

\def\QS@sep@I #1#2{\ifcase#1\or{#2}\or\else\expandafter\QS@sep@R@start\fi\QS@sep@I}%

\def\QS@sep@R@start\QS@sep@I {\noexpand\empty?\QSRr\QS@sep@R}%

\def\QS@sep@R #1#2{\ifcase#1\or\or{#2}\else\expandafter\QS@sep@done\fi\QS@sep@R}%

\def\QS@sep@done\QS@sep@R {\noexpand\empty?}%

%

\def\QS@loop {%

\xintloop

% pivot phase

\def\QS@pivotcount{0}%

\let\QSLr\DecoLEFTwithPivot \let\QSIr \DecoINERT

\let\QSRr\DecoRIGHTwithPivot \let\QSIrr\DecoINERT

\centerline{\QS@list}%

% sorting phase

\ifnum\QS@pivotcount>\z@

\def\QSLr {\QS@cmp@a}\def\QSRr {\QS@cmp@a}%

\def\QSIr {\QSIrr}\let\QSIrr\relax

\edef\QS@list{\QS@list}% compare

\let\QSLr\relax\let\QSRr\relax\let\QSIr\relax

\edef\QS@list{\QS@list}% separate

\def\QSLr ##1##2?{\ifx\empty##1\else\noexpand \QSLr {{##1}##2}\fi}%

\def\QSIr ##1##2?{\ifx\empty##1\else\noexpand \QSIr {{##1}##2}\fi}%

\def\QSRr ##1##2?{\ifx\empty##1\else\noexpand \QSRr {{##1}##2}\fi}%

\edef\QS@list{\QS@list}% gather

\let\QSLr\DecoLEFT \let\QSRr\DecoRIGHT

\let\QSIr\DecoINERTwithPivot \let\QSIrr\DecoINERT

\centerline{\QS@list}%

\repeat }%

%

% \xintFor* loops handle gracefully empty lists.

\def\DecoLEFT #1{\xintFor* ##1 in {#1} \do {\colorbox{LEFT}{##1}}}%

\def\DecoINERT #1{\xintFor* ##1 in {#1} \do {\colorbox{INERT}{##1}}}%

\def\DecoRIGHT #1{\xintFor* ##1 in {#1} \do {\colorbox{RIGHT}{##1}}}%

\def\DecoPivot #1{\begingroup\color{PIVOT}\advance\fboxsep-\fboxrule\fbox{#1}\endgroup}%

%

\def\DecoLEFTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%

\xintFor* ##1 in {#1} \do

{\xintifForFirst {\DecoPivot {##1}}{\colorbox{LEFT}{##1}}}}%

\def\DecoINERTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%

\xintFor* ##1 in {#1} \do

{\xintifForFirst {\colorbox{INERTpiv}{##1}}{\colorbox{INERT}{##1}}}}%

\def\DecoRIGHTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%

\xintFor* ##1 in {#1} \do

{\xintifForFirst {\DecoPivot {##1}}{\colorbox{RIGHT}{##1}}}}%

%

\def\QuickSort #1{% warning: not compatible with empty #1.

% initialize, doing conversion from comma separated values to a list of braced items

\edef\QS@list{\noexpand\QSRr{\xintCSVtoList{#1}}}% many \edef's are to follow anyhow

% earlier I did a first drawing of the list, here with the color of RIGHT elements,

% but the color should have been for example white, anyway I drop this first line
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%\let\QSRr\DecoRIGHT

%\par\centerline{\QS@list}%

%

% loop as many times as needed

\QS@loop }%

%

% \catcode`? 12 % in case we had used a funny ? as delimiter.

\makeatother

%% End of macro definitions.

%% Start of Example

\begingroup\offinterlineskip

\small

% \QuickSort {1.0, 0.5, 0.3, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

% 1.3, 1.1, 0.7, 1.6, 0.6, 0.9, 0.8, 0.2, 0.1, 1.9}

% \medskip

% with repeated values

\QuickSort {1.0, 0.5, 0.3, 0.8, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

1.3, 1.1, 0.7, 0.3, 1.6, 0.6, 0.3, 0.8, 0.2, 0.8, 0.7, 1.2}

\endgroup
1.0 0.5 0.3 0.8 1.5 1.8 2.0 1.7 0.4 1.2 1.4 1.3 1.1 0.7 0.3 1.6 0.6 0.3 0.8 0.2 0.8 0.7 1.2

0.5 0.3 0.8 0.4 0.7 0.3 0.6 0.3 0.8 0.2 0.8 0.7 1.0 1.5 1.8 2.0 1.7 1.2 1.4 1.3 1.1 1.6 1.2

0.5 0.3 0.8 0.4 0.7 0.3 0.6 0.3 0.8 0.2 0.8 0.7 1.0 1.5 1.8 2.0 1.7 1.2 1.4 1.3 1.1 1.6 1.2

0.3 0.4 0.3 0.3 0.2 0.5 0.8 0.7 0.6 0.8 0.8 0.7 1.0 1.2 1.4 1.3 1.1 1.2 1.5 1.8 2.0 1.7 1.6

0.3 0.4 0.3 0.3 0.2 0.5 0.8 0.7 0.6 0.8 0.8 0.7 1.0 1.2 1.4 1.3 1.1 1.2 1.5 1.8 2.0 1.7 1.6

0.2 0.3 0.3 0.3 0.4 0.5 0.7 0.6 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.4 1.3 1.5 1.7 1.6 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.7 0.6 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.4 1.3 1.5 1.7 1.6 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

Here is the variant which always picks the pivot as the rightmost element.
\makeatletter

%

\def\QS@cmp@a #1{\noexpand\QS@sep@A\expandafter\QS@cmp@d\expandafter

{\romannumeral0\xintnthelt{-1}{#1}}#1??}%

%

\def\DecoLEFTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%

\xintFor* ##1 in {#1} \do

{\xintifForLast {\DecoPivot {##1}}{\colorbox{LEFT}{##1}}}}

\def\DecoINERTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%

\xintFor* ##1 in {#1} \do

{\xintifForLast {\colorbox{INERTpiv}{##1}}{\colorbox{INERT}{##1}}}}

\def\DecoRIGHTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%

\xintFor* ##1 in {#1} \do

{\xintifForLast {\DecoPivot {##1}}{\colorbox{RIGHT}{##1}}}}

\def\QuickSort #1{%

% initialize, doing conversion from comma separated values to a list of braced items

\edef\QS@list{\noexpand\QSLr {\xintCSVtoList{#1}}}% many \edef's are to follow anyhow

%

% loop as many times as needed

\QS@loop }%

\makeatother

\begingroup\offinterlineskip

\small

% \QuickSort {1.0, 0.5, 0.3, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

% 1.3, 1.1, 0.7, 1.6, 0.6, 0.9, 0.8, 0.2, 0.1, 1.9}

% \medskip
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% with repeated values

\QuickSort {1.0, 0.5, 0.3, 0.8, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

1.3, 1.1, 0.7, 0.3, 1.6, 0.6, 0.3, 0.8, 0.2, 0.8, 0.7, 1.2}

\endgroup
1.0 0.5 0.3 0.8 1.5 1.8 2.0 1.7 0.4 1.2 1.4 1.3 1.1 0.7 0.3 1.6 0.6 0.3 0.8 0.2 0.8 0.7 1.2

1.0 0.5 0.3 0.8 0.4 1.1 0.7 0.3 0.6 0.3 0.8 0.2 0.8 0.7 1.2 1.2 1.5 1.8 2.0 1.7 1.4 1.3 1.6

1.0 0.5 0.3 0.8 0.4 1.1 0.7 0.3 0.6 0.3 0.8 0.2 0.8 0.7 1.2 1.2 1.5 1.8 2.0 1.7 1.4 1.3 1.6

0.5 0.3 0.4 0.3 0.6 0.3 0.2 0.7 0.7 1.0 0.8 1.1 0.8 0.8 1.2 1.2 1.5 1.4 1.3 1.6 1.8 2.0 1.7

0.5 0.3 0.4 0.3 0.6 0.3 0.2 0.7 0.7 1.0 0.8 1.1 0.8 0.8 1.2 1.2 1.5 1.4 1.3 1.6 1.8 2.0 1.7

0.2 0.5 0.3 0.4 0.3 0.6 0.3 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.5 1.4 1.6 1.7 1.8 2.0

0.2 0.5 0.3 0.4 0.3 0.6 0.3 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.5 1.4 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.5 0.4 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.5 0.4 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.5 0.4 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.5 0.4 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

The choice of the first or last item as pivot is not a good one as nearly ordered lists will take

quadratic time. But for explaining the algorithm via a graphical interpretation, it is not that

bad. If one wanted to pick up the pivot randomly, the routine would have to be substantially rewrit-

ten: in particular the \Deco..withPivot macros need to know where the pivot is, and currently this

is implemented by using either \xintifForFirst or \xintifForLast.
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This documentation has been compiled without the source code, which is available in the separate file:

sourcexint.pdf,

which will open in a PDF viewer via texdoc sourcexint.pdf.

To produce a single file including both the user documentation and the source code:

• run etex on xint.dtx to generate xint.tex among other files,

• edit xint.tex to set the \NoSourceCode toggle within it to 0,

• run make clean and then make xint.pdf.

This will need latexmk; if not available you will need in replacement of the last step to execute manually

latex on xint.tex (thrice) then dvipdfmx.
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