The 1tfilehook package*

Frank Mittelbach, Phelype Oleinik, KWTEX Project Team
January 9, 2021

Contents

1 Introduction
1.1 Provided hooks
1.2 General hooks for file reading 0oL
1.3 Hooks for package and class files L.
1.4 Hooks for \include files
1.5 High-level interfaces for BTEX
1.6 Internal interfaces for IXTRX oL L.
1.7 A sample package for structuring the log output

2 The Implementation

2.1 Document and package-level commands
2.2 expl3helpers
2.3 Declaring the file-related hooks Lo
2.4 Patching I TEX’s \InputIfFileExists command
2.5 Declaring a file substitution oL
2.6 Selecting a file (\set@curr@file)
2.7 Replacing a file and detecting loops oL

2.7.1 The Tortoise and Hare algorithm
2.8 Preventing a package from loading
2.9 High-level interfaces for BWTEX
2.10 Internal commands needed elsewhere

3 A sample package for structuring the log output

4 Package emulations
4.1 Package atveryend emulation Lo o oL

Index

*This package has version v1.0e dated 2021/01/07, © INTEX Project.

CU UL UL W N NN

1 Introduction

1.1 Provided hooks

The code offers a number of hooks into which packages (or the user) can add code to
support different use cases. Many hooks are offered as pairs (i.e., the second hook is
reversed. Also important to know is that these pairs are properly nested with respect to
other pairs of hooks.

There are hooks that are executed for all files of a certain type (if they contain code),
e.g., for all “include files” or all “packages”, and there are also hooks that are specific to
a single file, e.g., do something after the package foo.sty has been loaded.

1.2 General hooks for file reading

There are four hooks that are called for each file that is read using document-level com-
mands such as \input, \include, \usepackage, etc. They are not called for files read
using internal low-level methods, such as \@input or \openin.

file/before These are:

file/before/...

file/after/... file/before, file/before/(file-name) These hooks are executed in that order just
file/after before the file is loaded for reading. The code of the first hook is used with every

file, while the second is executed only for the file with matching (file-name) allowing
you to specify code that only applies to one file.

file/after/(file-name), file/after These hooks are after the file with name (file-name)
has been fully consumed. The order is swapped (the specific one comes first) so that
the before and after hooks nest properly, which is important if any of them in-
volve grouping (e.g., contain environments, for example). Furthermore both hooks
are reversed hooks to support correct nesting of different packages adding code to
both /before and /after hooks.

So the overall sequence of hook processing for any file read through the user interface
commands of BTEX is:

\UseHook{(file/before)}
\UseHook{(file/before/(file name))}
(file contents)
\UseHook{(file/after/(file name))}
\UseHook{(file/after)}

The file hooks only refer to the file by its name and extension, so the (file name)
should be the file name as it is on the filesystem with extension (if any) and without
paths. Different from \input and similar commands, the .tex extension is not assumed
in hook (file name), so .tex files must be specified with their extension to be recognized.
Files within subfolders should also be addressed by their name and extension only.

Extensionless files also work, and should then be given without extension. Note
however that TEX prioritizes .tex files, so if two files foo and foo.tex exist in the
search path, only the latter will be seen.

When a file is input, the (file name) is available in \CurrentFile, which is then
used when accessing the file/before/(file name) and file/after/(file name).

\CurrentFile The name of the file about to be read (or just finished) is available to the hooks through
\CurrentFile (there is no expl3 name for it for now). The file is always provided with
its extension, i.e., how it appears on your hard drive, but without any specified path
to it. For example, \input{sample} and \input{app/sample.tex} would both have
\CurrentFile being sample.tex.

\CurrentFilePath The path to the current file (complement to \CurrentFile) is available in \CurrentFilePath
if needed. The paths returned in \CurrentFilePath are only user paths, given through
\input@path (or expl3’s equivalent \1_file_search_path_seq) or by directly typing in
the path in the \input command or equivalent. Files located by kpsewhich get the path
added internally by the TEX implementation, so at the macro level it looks as if the file
were in the current folder, so the path in \CurrentFilePath is empty in these cases
(package and class files, mostly).

\CurrentFileUsed In normal circumstances these are identical to \CurrentFile and \CurrentFilePath.

\CurrentFilePathUsed They will differ when a file substitution has occurred for \CurrentFile. In that case,
\CurrentFileUsed and \CurrentFilePathUsed will hold the actual file name and path
loaded by ETEX, while \CurrentFile and \CurrentFilePath will hold the names that
were asked for. Unless doing very specific work on the file being read, \CurrentFile and
\CurrentFilePath should be enough.

1.3 Hooks for package and class files

Commands to load package and class files (e.g., \usepackage, \RequirePackage,
\LoadPackageWithOptions, etc.) offer the hooks from section 1.2 when they are used to
load a package or class file, e.g., file/after/array.sty would be called after the array
package got loaded. But as packages and classes form as special group of files, there are
some additional hooks available that only apply when a package or class is loaded.

package/before These are:

package/after

package/before/... package/before, package/after These hooks are called for each package being loaded.
package/after/...

class/before package/before/(name), package/after/(name) These hooks are additionally called if
class/after the package name is (name) (without extension).

class/before/... .

class/after/. .. class/before, class/after These hooks are called for each class being loaded.

class/before/(name), class/after/(name) These hooks are additionally called if the
class name is (name) (without extension).

All /after hooks are implemented as reversed hooks.
The overall sequence of execution for \usepackage and friends is therefore:

\UseHook{(package/before)}
\UseHook{(package/before/{package name))}

\UseHook{(file/before)}

include/before

include/before/. ..

include/end
include/end/. ..
include/after

include/after/...

\UseHook{(file/before/(package name).sty)}
(package contents)

\UseHook{(file/after/{package name).sty)}

\UseHook{(file/after)}

code from \AtEnd0fPackage if used inside the package

\UseHook{(package/after/{package name))}
\UseHook{(package/after)}

and similar for class file loading, except that package/ is replaced by class/ and
\AtEnd0fPackage by \AtEnd0fClass.

If a package or class is not loaded (or it was loaded before the hooks were set) none
of the hooks are executed!

1.4 Hooks for \include files

To manage \include files, TEX issues a \clearpage before and after loading such a
file. Depending on the use case one may want to execute code before or after these
\clearpages especially for the one that is issued at the end.

Executing code before the final \clearpage, means that the code is processed while
the last page of the included material is still under construction. Executing code after
it means that all floats from inside the include file are placed (which might have added
further pages) and the final page has finished.

Because of these different scenarios we offer hooks in three places.! None of the hooks
are executed when an \include file is bypassed because of an \includeonly declaration.
They are, however, all executed if IXTEX makes an attempt to load the \include file
(even if it doesn’t exist and all that happens is “No file (filename).tex”).

These are:

include/before, include/before/(name) These hooks are executed (in that order) af-
ter the initial \clearpage and after .aux file is changed to use (name).aux, but
before the (name).tex file is loaded. In other words they are executed at the very
beginning of the first page of the \include file.

include/end/(name), include/end These hooks are executed (in that order) after
ETEX has stopped reading from the \include file, but before it has issued a
\clearpage to output any deferred floats.

include/after/(name), include/after These hooks are executed (in that order) after
KTEX has issued the \clearpage but before is has switched back writing to the
main .aux file. Thus technically we are still inside the \include and if the hooks
generate any further typeset material including anything that writes to the .aux
file, then it would be considered part of the included material and bypassed if it is
not loaded because of some \includeonly statement.?

IIf you want to execute code before the first \clearpage there is no need to use a hook—you can
write it directly in front of the \include.

2For that reason another \clearpage is executed after these hooks which normally does nothing, but
starts a new page if further material got added this way.

1.5 High-level interfaces for BTEX

We do not provide any additional wrappers around the hooks (like filehook or scrlfile
do) because we believe that for package writers the high-level commands from the hook
management, e.g., \AddToHook, etc. are sufficient and in fact easier to work with, given
that the hooks have consistent naming conventions.

1.6 Internal interfaces for BTEX

\declare@file@substitution \declare@file@substitution {(file)} {(replacement-file)}
\undeclare@file@substitution \undeclare@file@substitution {(file)}

\disable@package@load
\reenable@package®@load

If (file) is requested for loading replace it with (replacement-file). \CurrentFile remains
pointing to (file) but \CurrentFileUsed will show the file actually loaded.

The main use case for this declaration is to provide a corrected version of a package
that can’t be changed (due to its license) but no longer functions because of BTEX kernel
changes, for example, or to provide a version that makes use of new kernel functionality
while the original package remains available for use with older releases.

The \undeclare@file@substitution declaration undoes a substitution made ear-
lier.

Please do not misuse this functionality and replace a file with another un-
less if really needed and only if the new version is implementing the same
functionality as the original one!

\disable@package@load {(package)} {(alternate-code)}
\reenable@package@load {(package)}

If (package) is requested do not load it but instead run (alternate-code) which could issue
a warning, error or any other code.

The main use case is for classes that want to restrict the set of supported packages
or contain code that make the use of some packages impossible. So rather than waiting
until the document breaks they can set up informative messages why certain packages
are not available.

The function is only implemented for packages not for arbitrary files.

1.7 A sample package for structuring the log output

As an application we provide the package structuredlog that adds lines to the .log when
a file is opened and closed for reading keeping track of nesting level es well. For example,
for the current document it adds the lines

(LEVEL 1 START) tilmr.fd

(LEVEL 1 STOP) tllmr.fd

(LEVEL 1 START) supp-pdf.mkii
(LEVEL 1 STOP) supp-pdf.mkii

(LEVEL 1 START) nameref.sty

(LEVEL 2 START) refcount.sty

= (LEVEL 2 STOP) refcount.sty

== (LEVEL 2 START) gettitlestring.sty

\CurrentFile
\CurrentFilePath
\CurrentFileUsed

\CurrentFilePathUsed

== (LEVEL 2 STOP) gettitlestring.sty

= (LEVEL 1 STOP) nameref.sty
= (LEVEL 1 START) 1ltfilehook-doc.out
= (LEVEL 1 STOP) ltfilehook-doc.out
= (LEVEL 1 START) 1ltfilehook-doc.out
= (LEVEL 1 STOP) 1ltfilehook-doc.out
= (LEVEL 1 START) ltfilehook-doc.hd
= (LEVEL 1 STOP) 1tfilehook-doc.hd
= (LEVEL 1 START) 1ltfilehook.dtx
== (LEVEL 2 START) otllmr.fd
== (LEVEL 2 STOP) otllmr.fd
== (LEVEL 2 START) omllmm.fd
== (LEVEL 2 STOP) omllmm.fd
== (LEVEL 2 START) omslmsy.fd
== (LEVEL 2 STOP) omslmsy.fd
== (LEVEL 2 START) omxlmex.fd
== (LEVEL 2 STOP) omxlmex.fd
== (LEVEL 2 START) umsa.fd
== (LEVEL 2 STOP) umsa.fd
== (LEVEL 2 START) umsb.fd
== (LEVEL 2 STOP) umsb.fd
== (LEVEL 2 START) tsilmr.fd
== (LEVEL 2 STOP) tsilmr.fd
== (LEVEL 2 START) tllmss.fd
2

== (LEVEL STOP) t1lmss.fd
(LEVEL 1 STOP) ltfilehook.dtx

Thus if you inspect an issue in the .log it is easy to figure out in which file it occurred,
simply by searching back for LEVEL and if it is a STOP then remove 1 from the level value
and search further for LEVEL with that value which should then be the START level of the
file you are in.

2 The Implementation

1 (*2ekernel)
. (0@=filehook)

2.1 Document and package-level commands

User-level macros that hold the current file name and file path. These are used internally
as well because the code takes care to protect against a possible redefinition of these
macros in the loaded file (it’s necessary anyway to make hooks work with nested \input).
The versions \...Used hold the actual file name and path that is loaded by KTEX,
whereas the other two hold the name as requested. They will differ in case there’s a file
substitution.

s (/2ekernel)

4 (*2ekernel | latexrelease)

5 (latexrelease) \IncludeInRelease{2020/10/01}%

s (latexrelease) {\CurrentFile}{Hook management file})

7 \ExplSyntaxOn

__filehook file parse full name:nN
__filehook_full_name:nn

__filehook if no extension:nTF

__filehook_drop_extension:N

s \tl_new:N \CurrentFile

o \tl_new:N \CurrentFilePath

10 \tl_new:N \CurrentFileUsed

11 \tl_new:N \CurrentFilePathUsed
12 \ExplSyntaxOff

s (/2ekernel | latexrelease)

1 (latexrelease)\EndIncludeInRelease

15 (latexrelease)\IncludeInRelease{0000/00/00}%

16 (latexrelease) {\CurrentFile}{Hook management filel}
17 (latexrelease)

15 (latexrelease)\let \CurrentFile \@undefined

1o (latexrelease)\let \CurrentFilePath \@undefined

20 (latexrelease)\let \CurrentFileUsed \Qundefined

21 (latexrelease)\let \CurrentFilePathUsed \@undefined

2 (latexrelease)

23 (latexrelease)\EndIncludeInRelease

2 (*2ekernel)

(End definition for \CurrentFile and others. These functions are documented on page 3.)

2.2 expl3 helpers

(/2ekernel)

o (*2ekernel | latexrelease)

7 (latexrelease) \IncludeInRelease{2020/10/01})

s (latexrelease) {__filehook_file_parse_full_name:nN}{File helpers})
29 \ExplSyntaxOn

)
2

N

N}

N

A utility macro to trigger expl3’s file-parsing and lookup, and return a normalized repre-
sentation of the file name. If the queried file doesn’t exist, no normalization takes place.
The output of __filehook_file_parse_full_name:nN is passed on to the #2—a 3-
argument macro that takes the (path), (base), and (ext) parts of the file name.

0 \cs_new:Npn __filehook_file_parse_full_name:nN #1

31 {

3 \exp_args:Nf \file_parse_full_name_apply:nN
33 {

34 \exp_args:Nf __filehook_full_name:nn
35 { \file_full_name:n {#1} } {#1}

36 T

37 }

35 \cs_new:Npn __filehook_full_name:nn #1 #2

0

40 \tl_if_empty:nTF {#1}

a { \tl_trim_spaces:n {#2} }

42 { \tl_trim_spaces:n {#1} }

43 }

(End definition for __filehook_file_parse_full_name:nN and __filehook_full_name:nn.)

Some actions depend on whether the file extension was explicitly given, and sometimes
the extension has to be removed. The macros below use __filehook_file_parse_-
full_name:nN to split up the file name and either check if (ext) (#3) is empty, or discard
it.

2 \cs_new:Npn __filehook_if_no_extension:nTF #1

s {

46 \exp_args:Ne \tl_if_empty:nTF

a7 { \file_parse_full_name_apply:nN {#1} \use_iii:nnn }
s}

20 \cs_new_protected:Npn __filehook_drop_extension:N #1

0

51 \tl_gset:Nx #1

52 {

53 \exp_args:NV __filehook_file_parse_full_name:nN #1
54 __filehook_drop_extension_aux:nnn

55 }

56 F

57 \cs_new:Npn __filehook_drop_extension_aux:nnn #1 #2 #3
58 { \tl_if_empty:nF {#1} { #1 / } #2 }

(End definition for __filehook_if_no_extension:nTF and __filehook_drop_extension:N.)

\g__filehook_input_file_seq Yet another stack, to keep track of \CurrentFile and \CurrentFilePath with nested
\1__filehook_internal_t1 \inputs. At the beginning of \InputIfFileExists, the current value of \CurrentFilePath
__filehook_file_push: and \CurrentFile is pushed to \g__filehook_input_file_seq, and at the end, it is
__filehook_file pop: popped and the value reassigned. Some other places don’t use \InputIfFileExists di-
__filehook file pop assign:mmn rectly (\include) or need \CurrentFile earlier (\@onefilewithoptions), so these are
manually used elsewhere as well.
5o \tl_new:N \1__filehook_internal_tl
e \seq_new:N \g__filehook_input_file_seq
61 \cs_new_protected:Npn __filehook_file_push:

62 {

63 \seq_gpush:Nx \g__filehook_input_file_seq

64 {

65 { \CurrentFilePathUsed } { \CurrentFileUsed }

66 { \CurrentFilePath } { \CurrentFile }

67 }

68 ¥

60 \cs_new_protected:Npn __filehook_file_pop:

70 {

71 \seq_gpop:NNTF \g__filehook_input_file_seq \1__filehook_internal_tl
72 { \exp_after:wN __filehook_file_pop_assign:nnnn \1__filehook_internal_tl }
73 {

74 \msg_error:nnn { hooks } { should-not-happen }

75 { Tried~to~pop~from~an~empty~file~name~stack. }

76 }

77 }

75 \cs_new_protected:Npn __filehook_file_pop_assign:nnnn #1 #2 #3 #4
79 {

80 \tl_set:Nn \CurrentFilePathUsed {#1}

81 \tl_set:Nn \CurrentFileUsed {#2}

82 \tl_set:Nn \CurrentFilePath {#3}

83 \tl_set:Nn \CurrentFile {#4}

84 }

&5 \ExplSyntaxOff

(End definition for \g__filehook_input_file_seq and others.)

so {/2ekernel | latexrelease)
s7 (latexrelease)\EndIncludeInRelease

When rolling forward the following expl3 functions may not be defined. If we roll
back the code does nothing.
s (latexrelease)\IncludeInRelease{2020/10/01}%
latexrelease {\file_parse_full_name_apply:nN}{Roll forward helpl}/
latexrelease

@

89

90

o1 (latexrelease) \ExplSyntaxOn

o> (latexrelease)\cs_if_exist:NF\file_parse_full_name_apply:nN

o3 (latexrelease){

or (latexrelease)\cs_new:Npn \file_parse_full_name_apply:nN #1

o5 (latexrelease) {

o (latexrelease \exp_args:Ne __file_parse_full_name_auxi:nN
o7 {latexrelease { __kernel_file_name_sanitize:n {#1} }

o (latexrelease) ¥

o (latexrelease)\cs_new:Npn __file_parse_full_name_auxi:nN #1

0 (latexrelease) {

101 (latexrelease __file_parse_full_name_area:nw { } #1
102 (latexrelease / \s__file_stop

103 (latexrelease) 3}

14 (latexrelease)\cs_new:Npn __file_parse_full_name_area:nw #1 #2 / #3 \s__file_stop

105 (latexrelease) {

106 (latexrelease \tl_if_empty:nTF {#3}

107 (latexrelease { __file_parse_full_name_base:nw { } #2 . \s__file_stop {#1} }
108 (latexrelease { __file_parse_full_name_area:nw { #1 / #2 } #3 \s__file_stop }
100 (latexrelease) 3}

110 (latexrelease)\cs_new:Npn __file_parse_full_name_base:nw #1 #2 . #3 \s__file_stop

11 {latexrelease) {

112 (latexrelease \tl_if_empty:nTF {#3}

1s (latexrelease \tl_if_empty:nTF {#1}

115 (latexrelease {

116 (latexrelease \tl_if_empty:nTF {#2}

117 {latexrelease { __file_parse_full_name_tidy:nnnN { } { } }

118 {latexrelease { __file_parse_full_name_tidy:nnnN { .#2 } { } }
119 (latexrelease }

120 {latexrelease { __file_parse_full_name_tidy:nnnN {#1} { .#2 } }

121 (latexrelease }

122 (latexrelease { __file_parse_full_name_base:nw { #1 . #2 } #3 \s__file_stop }
123 (latexrelease) }

latexrelease)\cs_new:Npn __file_parse_full_name_tidy:nnnN #1 #2 #3 #4

125 (latexrelease) {

126 (latexrelease \exp_args:Nee #4

127 (latexrelease {

128 (latexrelease \str_if_eq:nnF {#3} { / } { \use_none:n }
129 (latexrelease #3 \prg_do_nothing:

150 (latexrelease }

131 (latexrelease { \use_none:n #1 \prg_do_nothing: }
132 (latexrelease {#2}

133 (latexrelease)

132 (latexrelease)}

135 (latexrelease)\ExplSyntax0ff

latexrelease
latexrelease)\EndIncludeInRelease
*2ekernel)

136

137

()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
13 (latexrelease) {
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
(lat)
()
()
()}
(N
()
()
(

\InputIfFileExists
\@input@fileQexists@uithChooks
\unqu@tefilef@und

139 <@@=>

2.3 Declaring the file-related hooks

All hooks starting with file/ include/, class/ or package/ are generic and will be
allocated if code is added to them. Thus there is no need to explicitly declare any hook

in the code below.
Furthermore, those named .../after or .../end are automatically declared as
reversed hooks if filled with code, so this is also automatically taken care of.

2.4 Patching BTEX’s \InputIfFileExists command

Most of what we have to do is adding \UseHook into several IATEX 2¢ core commands,
because of some circular dependencies in the kernel we do this only now and not in
1tfiles.

\InputIfFileExists loads any file if it is available so we have to add the hooks
file/before and file/after in the right places. If the file doesn’t exist no hooks
should be executed.

1o (/2ekernel)
11 (latexrelease)\IncludeInRelease{2020/10/01}7
12 (latexrelease) {\InputIfFileExists}{Hook management (files)}%

13 (*2ekernel | latexrelease)

22 \let\InputIfFileExists\Qundefined

145 \DeclareRobustCommand \InputIfFileExists[2]{%
146 \IfFileExists{#1}/

147 {%

148 \@expl@@@filehook@file@push@@

149 \@filehook@set@CurrentFile

We pre-expand \@filef@und so that in case another file is loaded in the true branch of
\InputIfFileExists, these don’t change their value meanwhile. This isn’t a worry with
\CurrentFile. .. because they are kept in a stack.

150 \expandafter\@swaptwoargs\expandafter

151 {\expandafter\@input@file@exists@with@hooks
152 \expandafter{\@filef@und}}/

153 {#2}Y%

154 \@expl@@Afilehook@file@pop@@

155 }%

156

157 \def\@input@file@exists@with@hooks#1{Y

If the file exists then \CurrentFile holds its name. But we can’t rely on that still being
true after the file has been processed. Thus for using the name in the file hooks we need
to preserve the name and then restore it for the file/after/... hook.

The hook always refers to the file requested by the user. The hook is always loaded
for \CurrentFile which usually is the same as \CurrentFileUsed. In the case of a file
replacement, the \CurrentFileUsed holds the actual file loaded. In any case the file
names are normalized so that the hooks work on the real file name, rather than what the
user typed in.

expl3’s \file_full_name:n normalizes the file name (to factor out differences in the
.tex extension), and then does a file lookup to take into account a possible path from

10

\1_file_search_path_seq and \input@path. However only the file name and extension
are returned so that file hooks can refer to the file by their name only. The path to the
file is returned in \CurrentFilePath.

55 \edef\reserved@a{¥

159 \@expl@0Qfilehook@file@poplassign@@nnnn
160 {\CurrentFilePathUsed}/,

161 {\CurrentFileUsed}%

162 {\CurrentFilePath}},

163 {\CurrentFilel}}%

16+ \expandafter\@swaptwoargs\expandafter{\reserved@alj,

Before adding to the file list we need to make all (letter) characters catcode 11,
because several packages use constructions like

\filename@parse{<filename>}
\ifx\filename@ext\@clsextension

\fi

and that doesn’t work if \filename@ext is \detokenized. Making \@clsextension a
string doesn’t help much because some packages define their own \<prefix>@someextension
with normal catcodes. This is not entirely correct because packages loaded (somehow)
with catcode 12 alphabetic tokens (say, as the result of a \string or \detokenize com-
mand, or from a TEX string like \ jobname) will have these character tokens incorrectly
turned into letter tokens. This however is rare, so we’ll go for the all-letters approach
(grepping the packages in TEX Live didn’t bring up any obvious candidate for breaking
with this catcode change).

165 {\edef\reserved@a{\unqul@tefilefQund#1\@nill}y,
166 \@addtofilelist{\string@makeletter\reserved@alj,
167 \UseHook{file/before},

The current file name is available in \CurrentFile so we use that in the specific hook.

168 \UseHook{file/before/\CurrentFilel}},
169 \@@input #1% <- trailing space comes from \@filef@und
170 Y

And here, \CurrentFile is restored (by \@expl@0@filehook@file@popQassign@Onnnn)
SO we can use it once more.

171 \UseHook{file/after/\CurrentFilel}},
172 \UseHook{file/after}}

5 \def\unqu@tefilef@und"#1" \@nil{#1}
s+ (latexrelease) \EndIncludeInRelease

5 (/2ekernel | latexrelease)

1

1

N

Now define \InputIfFileExists to input #1 if it seems to exist. Immediately prior
to the input, #2 is executed. If the file #1 does not exist, execute ‘#3’.

176 (latexrelease)\IncludeInRelease{2019/10/01}/

177 {latexrelease) {\InputIfFileExists}{Hook management (files)}}

e (latexrelease)

179 (latexrelease)\DeclareRobustCommand \InputIfFileExists[2]{%

so (latexrelease) \IfFileExists{#1}%
)
)
)

151 (latexrelease {h
152 (latexrelease) \expandafter\@swaptwoargs\expandafter
153 (latexrelease {\efilefOund}{#2\@addtofilelist{#1}\@@input}}}

11

latexrelease)\let\@input@file@exists@with@hooks\Qundefined
latexrelease)\let\unqu@tefilef@und\@undefined
latexrelease)\EndIncludeInRelease

184
185

186

157 (latexrelease)\IncludeInRelease{0000/00/00}%
latexrelease {\InputIfFileExists}{Hook management (files)}J

()
()
{)
—_—
o (latexrelease)\long\def \InputIfFileExists#1#2{%
()
()
()
()
()

188

1

latexrelease) \IfFileExists{#1}},

latexrelease {#2\@addtofilelist{#1}\@@input \@filef@und}}
latexrelease)\let\@input@file@exists@with@hooks\Q@undefined
latexrelease)\let\unqu@tefilef@und\@undefined

latexrelease) \EndIncludeInRelease

105 (*2ekernel)

190

191

92

193

(End definition for \InputIfFileExists, \@input@file@exists@with@hooks, and \unqu@tefilef@und
These functions are documented on page 77.)

2.5 Declaring a file substitution

106 (@@=filehook)

197 (/2ekernel)

105 (*2ekernel | latexrelease)

190 (latexrelease) \IncludeInRelease{2020/10/01})

200 (latexrelease) {__filehook_subst_add:nn}{Declaring file substitution})
200 \ExplSyntaxOn

©

__filehook_subst_add:nn __filehook_subst_add:nn declares a file substitution by doing a (global) definition
__filehook_subst_remove:n of the form \def\@file-subst@(file){(replacement)}. The file names are properly
_ filehook subst file normalize:ln sanitised, and normalized with the same treatment done for the file hooks. That is, a
__filehook subst _empty nane chk:Nli file replacement is declared by using the file name (and extension, if any) only, and the
file path should not be given. If a file name is empty it is replaced by .tex (the empty

csname is used to check that).

202 \cs_new_protected:Npn __filehook_subst_add:nn #1 #2

203 {

204 \group_begin:

205 \cs_set:cpx { } { \exp_not:o { \cs:w\cs_end: } }

206 \int_set:Nn \tex_escapechar:D { -1 }

207 \cs_gset:cpx

208 {

209 @file-subst@

210 __filehook_subst_file_normalize:Nn \use_ii_iii:nnn {#1}
211 3

212 { __filehook_subst_file_normalize:Nn __filehook_file_name_compose:nnn {#2} }
213 \group_end:

214 }

215 \cs_new_protected:Npn __filehook_subst_remove:n #1

a6 {

217 \group_begin:

218 \cs_set:cpx { } { \exp_not:o { \cs:w\cs_end: } }

219 \int_set:Nn \tex_escapechar:D { -1 }

220 \cs_undefine:c

221 {

222 @file-subst@

223 __filehook_subst_file_normalize:Nn \use_ii_iii:nnn {#1}

12

\use_ii_iii:nnn

\declare@file@substitution
\undeclare@file@substitution

224 }

225 \group_end:

226 }

27 \cs_new:Npn __filehook_subst_file_normalize:Nn #1 #2

228 {

229 \exp_after:wN __filehook_subst_empty_name_chk:NN

230 \cs:w \exp_after:wN \cs_end:

231 \cs:w __filehook_file_parse_full_name:nN {#2} #1 \cs_end:
232 }

233 \cs_new:Npn __filehook_subst_empty_name_chk:NN #1 #2
23 { \if _meaning:w #1 #2 .tex \else: \token_to_str:N #2 \fi: }

(End definition for __filehook_subst_add:nn and others.)

A variant of \use_. .. to discard the first of three arguments.
Todo: this should move to expl3

235 \cs_gset:Npn \use_ii_iii:nnn #1 #2 #3 {#2 #3}

(End definition for \use_ii_iii:nnn.)

236 \ExplSyntax0ff

257 {/2ekernel | latexrelease)

238 (latexrelease)\EndIncludeInRelease
239 (*2ekernel)

For two internals we provide BTEX 2 names so that we can use them elsewhere in the
kernel (and so that they can be used in packages if really needed, e.g., scrlfile).

240 (/2ekerne|)

2 (*2ekernel | latexrelease)

2> (latexrelease) \IncludeInRelease{2020/10/01}},

215 (latexrelease) {\declare@file@substitution}{File substitution}}
2 \ExplSyntaxOn

s \cs_new_eq:NN \declare@file@substitution __filehook_subst_add:nn
26 \cs_new_eq:NN \undeclare@file@substitution __filehook_subst_remove:n
27 \ExplSyntax0ff

s {/2ekernel | latexrelease)

210 (latexrelease)\EndIncludeInRelease

We are not fully rolling back the file substitutions in case a rollback encounters a
package that contains them, but is itself not setup for rollback. So we just bypass them
and hope for the best.

250 (latexrelease)\IncludeInRelease{0000/00/00}%
(latexrelease {\declare@file@substitution}{File substitution}¥%
(latexrelease
253 (latexrelease
(latexrelease
(latexrelease
(latexrelease)\EndIncludeInRelease

257 (*2ekernel)

\let \declare@file@substitution \@gobbletwo
\let \undeclare@file@substitution \@gobble

)
)
)
)
)
)

(End definition for \declare@file@substitution and \undeclare@file@substitution. These functions
are documented on page 5.)

258 (Q0=)
250 \ExplSyntax0ff

13

\set@curr@file
\@curr@file
\@curr@file@reqd

2.6 Selecting a file (\set@curr@file)

Now we hook into \set@curr@file to resolve a possible file substitution, and add
\@expl@OCfilehook@set@curr@file@@nNN at the end, after \@curr@file is set.

A file name is built using \expandafter\string\csname(filename)\endcsname to
avoid expanding utf8 active characters. The \csname expands the normalization machin-
ery and the routine to resolve a file substitution, returning a control sequence with the
same name as the file.

It happens that when (filename) is empty, the generated control sequence is
\csname\endcsname, and doing \string on that results in the file csnameendcsname. tex.
To guard against that we \ifx-compare the generated control sequence with the empty
csname. To do so, \csname\endcsname has to be defined, otherwise it would be equal to
\relax and we would have false positives. Here we define \csname\endcsname to expand
to itself to avoid it matching the definition of some other control sequence.

260 (/2ekernel)

261 (*2ekernel | latexrelease)

22 (latexrelease) \IncludeInRelease{2020/10/01}

265 (latexrelease) {\set@curr@file}{Setting current file name}}
262 \def\set@curr@file#1{/,

25 \begingroup

266 \escapechar\m@ne
267 \expandafter\def\csname\expandafter\endcsname
268 \expandafter{\csname\endcsname}y,

Two file names are set here: \@curr@file@reqd which is the file requested by the user,
and \@curr@file which should be the same, except when we have a file substitution,
in which case it holds the actual loaded file. \@curr@file is resolved first, to check
if a substitution happens. If it doesn’t, \@expl@@@filehook@if@file@replaced@ATF
short-cuts and just copies \@curr@file, otherwise the full normalization procedure is
executed.

At this stage the file name is parsed and normalized, but if the input doesn’t
have an extension, the default .tex is not added to \@curr@file because for appli-
cations other than \input (graphics, for example) the default extension may not be
.tex. First check if the input has an extension, then if the input had no extension, call
\Q@expl@OCfilehook@drop@extension@@N. In case of a file substitution, \@curr@file
will have an extension.

269 \Q@expl@@@filehook@if@no@extension@OnTF{#1}/,

270 {\@tempswatrue}{\@tempswafalsel},

271 \@kernel@make@file@csname\Qcurr@file

212 \@expl@@Afilehook@resolve@file@subst@@w {#1}%

273 \Q@expl@Q@0filehook@if@file@replaced@QTF

274 {\@kernel@make@file@csname\@curr@file@reqd

275 \@expl@@@filehook@normalize@file@name@Ou{#1}%

276 \if@tempswa \Q@expl@@@filehook@drop@extension@@N\Q@curr@file@reqd \fil}%
217 {\if@tempswa \Qexpl@OQfilehook@dropQextension@dN\Qcurr@file \fi
278 \global\let\Qcurr@file@reqd\@curr@file}y,

279 \@expl@@0filehook@clear@replacement@flag@

20 \endgroup}
/2ekernel | latexrelease)
latexrelease) \EndIncludeInRelease

latexrelease)\IncludeInRelease{2019/10/01}Y
latexrelease) {\set@curr@file}{Setting current file name}%

o~ o~~~

S}
@
R

14

\@filehook@set@CurrentFile
\@kernel@make@file@csname
\@set@curr@file@aux

(latexrelease)\def\set@curr@file#1{/,
(latexrelease) \begingroup
(latexrelease) \escapechar\m@ne
(latexrelease) \xdef\Q@curr@file{’,
(latexrelease) \expandafter\expandafter\expandafter\unquote@name
(latexrelease) \expandafter\expandafter\expandafter{
(latexrelease) \expandafter\string
202 (latexrelease) \csname\@firstofone#1\@empty\endcsname}}’,
()
()
()
()
()
()
()

285

286

)

87

288

89

N}

290

5

©

1

203 (latexrelease) \endgroup
atexrelease

atexrelease

294

295

}
\EndIncludeInRelease
\

atexrelease)\IncludeInRelease{0000/00/00}%

atexrelease {\set@curr@file}{Setting current file namel}%
latexrelease)\let\set@curr@file\@undefined
latexrelease)\EndIncludeInRelease

s00 (*2ekernel)

I
I
296 I
297 I
298

299

(End definition for \set@curr@file, \@curr@file, and \@curr@file@reqd. These functions are docu-
mented on page 77.)

Todo: This should get internalized using @expl@ names

(/2ekernel)
(*2ekernel | latexrelease)
303 (latexrelease) \IncludeInRelease{2020/10/01}},
(latexrelease) {\@kernel@make@file@csname}{Make file csnamel}),

301

302

505 \def\@kernel@make@f ile@csname#1#2#3{J,
a6 \xdef#1l{\expandafter\@set@curr@fileQaux
307 \csname\expandafter#2\@firstofone#3\@nil\endcsnamel}}

This auxiliary compares \(filename) with \csname\endcsname to check if the empty
.tex file was requested.

308 \def\@set@curr@fileQaux#1{/

50 \expandafter\ifx\csname\endcsname#1%

310 .tex\else\string#1\fi}

Then we call \@expl@0@filehook@set@curr@file@@nNN once for \Q@curr@file to
set \CurrentFile (Path)Used and once for \@curr@file@reqd to set \CurrentFile (Path).
Here too the slower route is only used if a substitution happened, but here \@expl@@@filehook@if@file®
can’t be used because the flag is reset at the \endgroup above, so we check if \@curr@file
and \@curr@file@reqd differ. This macro is issued separate from \set@curr@file be-
cause it changes \CurrentFile, and side-effects would quickly get out of control.

s1 \def\@filehook@set@CurrentFile{/
s \@expl@@@filehook@set@curr@file@@nNN{\Qcurr@filel}y,

313 \CurrentFileUsed\CurrentFilePathUsed

sie \ifx\Q@curr@file@reqd\Qcurr@file

315 \let\CurrentFile\CurrentFileUsed

316 \let\CurrentFilePath\CurrentFilePathUsed

317 \else

318 \@expl@0Q@filehook@set@curr@file@@nNN{\Q@curr@file@reqdl}’,
319 \CurrentFile\CurrentFilePath

320 \fi}

221 (/2ekernel | latexrelease)
32> (latexrelease)\EndIncludeInRelease
523 (*2ekernel)

15

(End definition for \@filehook@set@CurrentFile, \@kernel@make@file@csname, and \@set@curr@fileaux.
These functions are documented on page 77.)

\@0_set_curr_file:nNN When inputting a file, \set@curr@file does a file lookup (in \input@path and
\@@_set_curr file assignmnl \1_file_search_path_seq) and returns the actual file name ({base) plus (ext)) in
\CurrentFileUsed, and in case there’s a file substitution, the requested file in
\CurrentFile (otherwise both are the same). Only the base and extension are returned,
regardless of the input (both path/to/file.tex and file.tex end up as file.tex in

\CurrentFile). The path is returned in \CurrentFilePath, in case it’s needed.

24 (/2ekernel)

s (*2ekernel | latexrelease)

o (latexrelease)\IncludeInRelease{2020/10/01}%

;27 (latexrelease) {0@_set_curr_file:nNN}{Set curr filel})
325 \ExplSyntaxOn

329 (@©=filehook)

30 \cs_new_protected:Npn __filehook_set_curr_file:nNN #1

331 {

332 \exp_args:Nf __filehook_file_parse_full_name:nN {#1}
333 __filehook_set_curr_file_assign:nnnNN

334 }

135 \cs_new_protected:Npn __filehook_set_curr_file_assign:nnnNN #1 #2 #3 #4 #5
336 {

337 \str_set:Nn #5 {#1}

338 \str_set:Nn #4 {#2#3}

339 T

\ExplSyntax0ff

(/2ekernel | latexrelease)

s2 (latexrelease)\EndIncludeInRelease

(*2ekernel)

S

3

b}

3

@
S

S

Q

®
&

(End definition for \@@_set_curr_file:nNN and \@@_set_curr_file_assign:nnnNN. These functions are
documented on page 77.)

2.7 Replacing a file and detecting loops

\ filehook resolve file subst:w Start by sanitizing the file with __filehook_file_parse_full_name:nN then do __-
_ filehook nornalize file nane:v filehook_file_subst_begin:nnn{(path)}{{name)}{{ext)}.

+ (/2ekernel)

5 (*2ekernel | latexrelease)

16 (latexrelease) \IncludeInRelease{2020/10/01}}

317 (latexrelease) {__filehook_resolve_file_subst:w}{Replace files detect loops}/
s2¢ \ExplSyntax0On

30 \cs_new:Npn __filehook_resolve_file_subst:w #1 \@nil

ss0 { __filehook_file_parse_full_name:nN {#1} __filehook_file_subst_begin:nnn }
551 \cs_new:Npn __filehook_normalize_file_name:w #1 \@nil

s2 { __filehook_file_parse_full_name:nN {#1} __filehook_file_name_compose:nnn }
353 \cs_new:Npn __filehook_file_name_compose:nnn #1 #2 #3

ssa - { \tl_if_empty:nF {#1} { #1 / } #2#3 }

_ filehook file name compose:nmn

3

r

Since the file replacement is done expandably in a \csname, use a flag to remember if

flag, filehook file replaced a substitution happened. We use this in \set@curr@file to short-circuit some of it in
_filehook if file replaced:TF case no substitution happened (by far the most common case, so it’s worth optimizing).

_ filehook clear replacenent flag: The flag raised during the file substitution algorithm must be explicitly cleared after the

16

__filehook file subst begin:nnn

__filehook file subst tortoise hare:nn
__filehook file subst loop:NN
__filehook file subst loop:cc

__filehook_if_file_replaced:TF conditional is no longer needed, otherwise further
uses of __filehook_if_file_replaced:TF will wrongly return true.

355 \flag_new:n { __filehook_file_replaced }

356 \cs_new:Npn __filehook_if_file_replaced:TF #1 #2

357 { \flag_if_raised:nTF { __filehook_file_replaced } {#1} {#2} }

353 \cs_new_protected:Npn __filehook_clear_replacement_flag:

ss0 { \flag_clear:n { __filehook_file_replaced } }

First off, start by checking if the current file ((name)+ (ext)) has a declared substitution.
If not, then just put that as the name (including a possible (path) in this case): this
is the default case with no substitutions, so it’s the first to be checked. The auxiliary
__filehook_file_subst_tortoise_hare:nn sees that there’s no replacement for #2#3
and does nothing else.

30 \cs_new:Npn __filehook_file_subst_begin:nnn #1 #2 #3

361 {
362 __filehook_file_subst_tortoise_hare:nn { #2#3 } { #2#3 }

363 { __filehook_file_name_compose:nnn {#1} {#2} {#3} }
364 }

565 \ExplSyntax0ff

6 (/2ekernel | latexrelease)

s (latexrelease)\EndIncludeInRelease

s6s (*2ekernel)

2.7.1 The Tortoise and Hare algorithm

If there is a substitution ((frue) in the first \cs_if_exist:cTF below), then first check
if there is no substitution down the line: this should be the second most common case,
of one file replaced by another. In that case just leave the substitution there and the
job is done. If any substitution happens, then the \flag __filehook_file_replaced
is raised (conditionally, because checking if a flag is raised is much faster than raising it
over and over again).

If, however there are more substitutions, then we need to check for a possible loop in
the substitutions, which would otherwise put TEX in an infinite loop if just an exhaustive
expansion was used.

To detect a loop, the Tortoise and Hare algorithm is used. The name of the al-
gorithm is an analogy to Aesop’s fable, in which the Hare outruns a Tortoise. The
two pointers here are the csnames which contains each file replacement, both of which
start at the position zero, which is the file requested. In the inner part of the macro
below, __filehook_file_subst_loop:cc is called with \@file-subst@(file) and
\@file-subst@\@file-subst@(file); that is, the substitution of (file) and the sub-
stitution of that substitution: the Tortoise walks one step while the Hare walks two.

Within __filehook_file_subst_loop:NN the two substitutions are compared, and
if they lead to the same file it means that there is a loop in the substitutions. If there’s
no loop, __filehook_file_subst_tortoise_hare:nn is called again with the Tortoise
at position 1 and the hare at 2. Again, the substitutions are checked ahead of the Hare
pointer to check that it won’t run too far; in case there is no loop in the declarations,
eventually one of the \cs_if_exist:cTF below will go (false) and the algorithm will end;
otherwise it will run until the Hare reaches the same spot as the tortoise and a loop is
detected.

sc0 (/2ekernel)
50 (*2ekernel | latexrelease)

17

51 (latexrelease) \IncludeInRelease{2020/10/01}

;72 (latexrelease) {__filehook_file_subst_tortoise_hare:nn}{Tortoise and Hare}),
373 \ExplSyntaxOn

s+ \cs_new:Npn __filehook_file_subst_tortoise_hare:nn #1 #2 #3

375 {

376 \cs_if_exist:cTF { @file-subst@ #2 }

377 {

378 \flag_if_raised:nF { __filehook_file_replaced }
379 { \flag_raise:n { __filehook_file_replaced } }
380 \cs_if_exist:cTF { @file-subst@ \use:c { @file-subst@ #2 } }
381 {

382 __filehook_file_subst_loop:cc

383 { @file-subst@ #1 }

384 { @file-subst@ \use:c { @file-subst@ #2 } }
385 }

386 { \use:c { @file-subst@ #2 } }

387 }

388 { #3 }

389 }

This is just an auxiliary to check if a loop was found, and continue the algorithm other-
wise. If a loop is found, the .tex file is used as fallback and __filehook_file_subst_-
cycle_error:cN is called to report the error.

300 \cs_new:Npn __filehook_file_subst_loop:NN #1 #2

391 {

392 \token_if_eq_meaning:NNTF #1 #2

393 {

394 .tex

395 __filehook_file_subst_cycle_error:cN { @file-subst@ #1 } #1
396 }

397 { __filehook_file_subst_tortoise_hare:nn {#1} {#2} {#2} }

398 }

300 \cs_generate_variant:Nn __filehook_file_subst_loop:NN { cc }

Showing this type of error expandably is tricky, as we have a very limited amount of

_filehook file subst cycle error:li characters to show and a potentially large list. As a work around, several errors are
\ filehook file subst cycle error:ch printed, each showing one step of the loop, until all the error messages combined show

the loop.

200 \cs_new:Npn __filehook_file_subst_cycle_error:NN #1 #2

401 {

402 __kernel_msg_expandable_error:nnff { kernel } { file-cycle }

403 {#1} { \use:c { @file-subst@ #1 } }

404 \token_if_eq_meaning:NNF #1 #2

405 { __filehook_file_subst_cycle_error:cN { @file-subst@ #1 } #2 }

406 }

207 \cs_generate_variant:Nn __filehook_file_subst_cycle_error:NN { c }

And the error message:

205 __kernel_msg_new:nnn { kernel } { file-cycle }
200 { File~loop!~#1l~replaced~by~#2... }

(End definition for __filehook_resolve_file_subst:w and others.)

210 \ExplSyntax0ff
a1 (/2ekernel | latexrelease)

18

\disable@package@load
\reenable@package@load
\@disable@packageload@do

s12 (latexrelease)\EndIncludeInRelease
a3 (*2ekernel)

414 <@@=>

2.8 Preventing a package from loading

We support the use case of preventing a package from loading but not any other type of
files (e.g., classes).

\disable@package@load defines \@pkg-disable@(package) to expand to some code #2
instead of loading the package.

s (/2ekernel)

a6 (*2ekernel | latexrelease)

s7 (latexrelease) \IncludeInRelease{2020/10/01}},

215 (latexrelease) {\disable@package@load}{Disable packages}y,
419 \def\disable@package@load#1#2{Y

o \global\@namedef{@pkg-disable@#1.\Opkgextension}{#2}}

4

4

21 \def\@disable@packageload@do#1#2{/,
22 \@ifundefined{@pkg-disable0#1}{#2}7
423 {\@nameuse{@pkg-disable@#1}}}

\reenable@package@load undefines \@pkg-disable@(package) to reallow loading
a package.
22 \def\reenable@package@load#1{/

s \global\expandafter\let
26 \csname Qpkg-disable@#1.\@pkgextension \endcsname \Qundefined}

]

4

/2ekernel | latexrelease)

latexrelease) \EndIncludeInRelease
latexrelease)\IncludeInRelease{0000/00/003}%
{\disable@package@load}{Disable packages}/,

427

IS
s}

(

(

429 (>

10 (latexrelease)

1 (latexrelease)

2 (latexrelease)\let\disable@package@load \@undefined
(latexrelease)\let\@disable@packageload@do\Qundefined
(latexrelease)\let\reenable@package@load \Qundefined

35 (latexrelease)\EndIncludeInRelease

136 (*2ekernel)

433

434

(End definition for \disable@package@load, \reenable@package@load, and \@disable@packageload@do.
These functions are documented on page 5.)

2.9 High-level interfaces for BTEX

None so far and the general feeling for now is that the hooks are enough. Packages like
filehook, etc., may use them to set up their interfaces (samples are given below) but for
the now the kernel will not provide any.

19

2.10 Internal commands needed elsewhere

Here we set up a few horrible (but consistent) KTEX 22 names to allow for internal
commands to be used outside this module (and in parts that still use BTEX 2¢ syntax.
We have to unset the @@ since we want double “at” sign in place of double underscores.

(ee=)

138 (/2ekernel)
(
(

437

30 (*2ekernel | latexrelease)
latexrelease) \IncludeInRelease{2020/10/01}
w1 (latexrelease) {\@expl00Q@filehook@if@noCextension@enTF}{2e tmp interfaces}y,

42 \ExplSyntax0On

40

23 \cs_new_eq:NN \@expl@@Qfilehook@if@no@extension@@nTF
444 __filehook_if_no_extension:nTF

15 \cs_new_eq:NN \@expl@@@filehook@set@curr@file@@nNN
446 __filehook_set_curr_file:nNN

27 \cs_new_eq:NN \@expl@@Qfilehook@resolve@file@subst@@w
448 __filehook_resolve_file_subst:w

20 \cs_new_eq:NN \@expl@@@filehook@normalize@file@name@Qw
450 __filehook_normalize_file_name:w

251 \cs_new_eq:NN \@expl@@Afilehook@if@file@replaced@@TF
452 __filehook_if_file_replaced:TF

253 \cs_new_eq:NN \@expl@@@filehook@clear@replacement@flagd@
454 __filehook_clear_replacement_flag:

255 \cs_new_eq:NN \@expl@Q@filehook@drop@extension@@N
456 __filehook_drop_extension:N

257 \cs_new_eq:NN \@expl@@@filehook@file@push@@
458 __filehook_file_push:

250 \cs_new_eq:NN \Q@expl@@0filehook@file@pop@@
460 __filehook_file_pop:

261 \cs_new_eq:NN \Q@expl@@0filehook@file@popassign@@nnnn
462 __filehook_file_pop_assign:nnnn

263 \ExplSyntax0ff

This one specifically has to be undefined because it is left over in the input stream
from \InputIfFileExists and executed when latexrelease is loaded. It cannot be \let
to \@undefined otherwise it would error as well, so it is \let to \relax to be silently
ignored when loading \latexrelease.
st (/2ekernel | latexrelease)

(latexrelease)\EndIncludeInRelease

(latexrelease)

(latexrelease)\IncludeInRelease{0000/00/003}%

s (latexrelease) {\@expl@0@filehook@if@nolextension@@nTF}{2e tmp interfaces}y
(latexrelease)\1let\@expl@@Qfilehook@file@pop@@\relax
(latexrelease)\EndIncludeInRelease

(*2ekernel)

This ends the kernel code in this file.
a2 (/2ekernel)

20

\g__filehook nesting level int

__filehook log file record:n

3 A sample package for structuring the log output

a3 (*structuredlog)
474 <@@=f ileh00k>

475 \ProvidesExplPackage

476 {structuredlog}{\ltfilehookdate}{\1ltfilehookversion}

477 {Structuring the TeX transcript file}

Stores the current package nesting level.

27s \int_new:N \g__filehook_nesting_level_int

Initialise the counter with the number of files in the \@currnamestack (the number of
items divided by 3) minus one, because this package is skipped when printing to the log.
279 \int_gset:Nn \g__filehook_nesting_level_int

w0 { (\tl_count:N \Qcurrnamestack) / 3 - 1 }

(End definition for \g__filehook_nesting_level_int.)

This macro is responsible for increasing and decreasing the file nesting level, as well as
printing to the log. The argument is either STOPTART or STOP and the action it takes on
the nesting integer depends on that.

251 \cs_new_protected:Npn __filehook_log_file_record:n #1

o

483 \str_if_eq:nnT {#1} {START} { \int_gincr:N \g__filehook_nesting_level_int }
484 \iow_term:x

485 {

486 \prg_replicate:nn { \g__filehook_nesting_level_int } { = } ~

487 (LEVEL ~ \int_use:N \g__filehook_nesting_level_int \c_space_tl #1) ~
488 \CurrentFileUsed

If there was a file replacement, show that as well:

489 \str_if_eq:NNF \CurrentFileUsed \CurrentFile

490 { ~ (\CurrentFile \c_space_tl requested) }

401 \iow_newline:

492 }

493 \str_if_eq:nnT {#1} {STOP} { \int_gdecr:N \g__filehook_nesting_level_int }
494 }

Now just hook the macro above in the generic file/before...
205 \AddToHook{file/before}{ __filehook_log_file_record:n { START } }
...and file/after hooks. We don’t want to install the file/after hook immediately,
because that would mean it is the first time executed when the package finishes. We
therefore put the declaration inside \AddToHookNext so that it gets only installed when
we have left this package.

106 \AddToHookNext{file/after}
207 { \AddToHook{file/after}{ __filehook_log_file_record:n { STOP } } }

(End definition for __filehook_log_file_record:n.)

498 <@@=>
100 {/structuredlog)

21

\BeforeClearDocument

4 Package emulations

4.1 Package atveryend emulation

With the new hook management and the hooks in \enddocument all of atveryend is
taken care of. We can make an emulation only here after the substitution functionality
is available:

o (*2ekernel)

500 \declare@file@substitution{atveryend.sty}{atveryend-1ltx.sty}
502 (/2ekerne|)

Here is the package file we point to:

5

s03 {*atveryend-Itx)

500 \ProvidesPackage{atveryend-1tx}

5 [2020/08/19 v1.0a

506 Emulation of the original atvery package™~Jwith kernel methods]

o
=3

2

Here are new definitions for its interfaces now pointing to the hooks in \enddocument

so7 \newcommand\AfterLastShipout {\AddToHook{enddocument/afterlastpage}}
s0s \newcommand\AtVeryEndDocument {\AddToHook{enddocument/afteraux}}

Next one is a bit of a fake, but the result should normally be as expected. If not, one
needs to add a rule to sort the code chunks in enddocument/info.

500 \newcommand\AtEndAfterFileList{\AddToHook{enddocument/infol}}
510 \newcommand\AtVeryVeryEnd {\AddToHook{enddocument/end}}

This one is the only one we don’t implement or rather don’t have a dedicated hook in
the code.
1 \ExplSyntax0On

512 \newcommand\BeforeClearDocument [1]
513 { \AtEndDocument{#1}

5

514 \atveryend@DEPRECATED{BeforeClearDocument \tl_to_str:n{#1}}
515 }

516 \cs_new:Npn\atveryendODEPRECATED #1

517 {\iow_term:x{======~DEPRECATED~USAGE~#1~==========}}

515 \ExplSyntax0ff

(End definition for \BeforeClearDocument. This function is documented on page ?7.)

s19 (/atveryend-Itx)

22

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
©0 commands:
\@@_set_curr_file:nNN 324
\@@_set_curr_file_assign:nnnNN . 324
\(filename) 15
A
\AddToHook . /, 495, 497, 507, 508, 509, 510
\AddToHookNext 21, 496
\AfterLastShipout 507
\AtEndAfterFileList 509
\AtEndDocument 513
\AtEndOfClassoo..... 3
\AtEndOfPackage 3
\AtVeryEndDocument 508
\AtVeryVeryEnd 510
B
\BeforeClearDocument 511
\begingroup 265, 286
C
class/after 3
class/after/... 3
class/before 3
class/before/... 3
\clearpage 3, 4

cs commands:

\CS:W . 205, 218, 230, 231
\cs_end: 205, 218, 230, 231
\cs_generate_variant:Nn 399, 407
\cs_gset:Npn 235
\cs_gset:Npx 207

\cs_if_exist:NTF . 16, 17,92, 376, 380
\cs_new:Npn 30, 38, 44, 57
94, 99, 104, 110, 124, 227, 233, 349,
351, 353, 356, 360, 374, 390, 400, 516
\cs_new_eq:NN .. 245, 246, 443, 445,
447, 449, 451, 453, 455, 457, 459, 461
\cs_new_protected:Npn 49,
61, 69, 78, 202, 215, 330, 335, 358, 481
\cs_set:Npx 205, 218
\cs_undefine:N 220

\csname 13, 16, 267, 268, 292, 307, 309, 426
\csname\endcsname 13, 15
\CurrentFile 2

2,2 2 3,4, 7 10, 11, 11, 15, 15,
66, 83, 163, 168, 171, 315, 319, 489, 490

23

\CurrentFilePath 2,
2,3, 7, 10, 15, 66, 82, 162, 316, 319

\CurrentFilePathUsed
......... 2, 3, 65, 80, 160, 313, 316

\CurrentFileUsed 2,3, 4,

10,15,65,81,161,313,315,458,489

D

\DeclareRobustCommand

145, 179

\def 157, 173, 189, 264,
267, 285, 305, 308, 311, 419, 421, 424
\detokenize 10
E
Nedef 158, 165
\else 310, 317
else commands:

\else: 234
\endcsname 13, 15, 267, 268, 292, 307, 309, 426
\enddocument 21, 21
\endgroup 15, 280, 293
\EndIncludeInRelease

14, 23, 87, 137, 174, 186,
194, 238, 249, 256, 282, 295, 299,
322, 342, 367, 412, 428, 435, 465, 470

\escapechar 266, 287

exp commands:
\exp_after:wN 72, 229, 230
\exp_args:Ne 46, 96
\exp_args:Nee 126
\exp_args:Nf 32, 34, 332
\exp_args:NV 53
\exp_not:n 205, 218

\expandafter
13, 150, 151, 152, 164, 182, 267
268, 289, 290, 291, 306, 307, 309, 425

\ExplSyntaxOff 12, 85, 135
236, 247, 259, 340, 365, 410, 463, 518
\ExplSyntaxOn 7

29, 91, 201, 244, 328, 348, 373, 442, 511

F
\Nfi .. 276, 277, 310, 320
fi commands:
Nfic o 234
file commands:
\file_full_name:n 10, 35

\file_parse_full_name_apply:nN ..
32, 47, 89, 92, 94

\1_file_search_path_seq ... 2, 10, 15

file internal commands:

__file_parse_full_name_area:nw .
101, 104, 108
__file_parse_full_name_auxi:nN

96, 99
__file_parse_full_name_base:nw .
107, 110, 122
__file_parse_full_name_tidy:nnnN
117, 118, 120, 124

file/after 1
file/after/... 1
file/before 1
file/before/... 1
filehook internal commands:
__filehook_clear_replacement_-
flag: 355, 454

__filehook_drop_extension:N 44, 456
__filehook_drop_extension_-

aux :nnn 5

__filehook_file_name_compose:nnn
212, 344, 363
__filehook_file_parse_full_-

name :nN 7,

7, 16, 28, 30, 53, 231, 332, 350, 352
59, 460
__filehook_file_pop_assign:nnnn
59, 462
__filehook_file_push: 59, 458
__filehook_file_subst_begin:nnn
16, 350, 360
__filehook_file_subst_cycle_-

error:NN 17, 395, 400
__filehook_file_subst_loop:NN ..

17, 369
__filehook_file_subst_tortoise_-

__filehook_file_pop:

hare:nn 16, 17, 362, 369
__filehook_full_name:nn 30
__filehook_if_file_replaced:TF

.................. 16, 355, 452
__filehook_if_no_extension:nTF

...................... 44, 444
\g__filehook_input_file_seq 7, 59
\1__filehook_internal t1 59
__filehook_log_file_record:n .. 481

\g__filehook_nesting_level_int ..
478, 483, 486, 487, 493
__filehook_normalize_file -

name:w

............... 344, 450
__filehook_resolve_file_subst:w
344, 448
__filehook_set_curr_file:nNN ...
330, 446

24

__filehook_set_curr_file_ -
assign:nnnNN
__filehook_subst_add:nn
11, 200, 202, 245
__filehook_subst_empty_name_-

chk:NN 202

__filehook_subst_file_normalize:Nn

........................ 202

__filehook_subst_remove:n 202, 246
flag internal commands:

\flag,__filehook_file_replaced .. 17

flag, _filehook_file_replaced .. 355
flag commands:

\flag_clear:n 359

\flag_if_raised:nTF 357, 378

\flag new:n 355

\flag _raise:n 379

G
\global 278, 420, 425
group commands:

\group_begin: 204, 217

\group_end: 213, 225

I
if commands:

\if _meaning:w 234
\IfFileExists 146, 180, 190
\ifx L 13, 309, 314
\include 1, 3, 4, 7
include/after 4
include/after/... 4
include/before 4
include/before/... 4
include/end, 4
include/end/... 4

\IncludeInRelease 5, 15, 27, 88, 141, 176,
187, 199, 242, 250, 262, 283, 296,
303, 326, 346, 371, 417, 429, 440, 467

\includeonly 3, 4
\input 1, 2,2, 6,7, 14
\InputIfFileExists ... 7,9, 9, 10, 20, 140
int commands:
\int_gdecr:N 493
\int_gincr:N 483
\int_gset:Nn 479
\int_new:N 478
\int_set:Nn 206, 219
\int_use:N 487
iow commands:
\iow_newline: 491
\iow_term:n 484, 517
J
\jobname 10

K
kernel internal commands:
__kernel_file_name_sanitize:n .. 97
__kernel_msg_expandable_-

error:nnnn 402
__kernel_msg new:nnn 408
L
\latexrelease 20
\let 18, 19, 20, 20, 21, 144,

184, 185, 192, 193, 253, 254, 278,
298, 315, 316, 425, 432, 433, 434, 469

\LoadPackageWithOptions 2
\longiiiii 189
\1tfilehookdate 476
\1tfilehookversion 476
M
msg commands:
\msg_error:nnn 74
N
\newcommand 507, 508, 509, 510, 512
(0)
\openin, 1
P
package/after 3
package/after/... 3
package/before 3
package/before/... 3
prg commands:
\prg_do_nothing: 129, 131
\prg_replicate:nn 486
\ProvidesExplPackage 475
\ProvidesPackage 504
Q

quark internal commands:
\s__file_stop

102, 104, 107, 108, 110, 122

R
\relaxcciiiii... 13, 20, 469
\RequirePackage 2
S
seq commands:
\seq_gpop:NNTF 71
\seq_gpush:Nn 63

\seq_new:N 60
str commands:

\str_if_eq:NNTF

\str_if_eq:nnTF

............. 489

25

\string

\str_set:Nn 337, 338
.............. 10, 13, 291, 310
T
TEX and BTEX 2¢ commands:
\@@input 169, 183, 191
\@addtofilelist 166, 183, 191
\@clsextension 10

\@currefile 13, 13, 1/, 15, 260, 312, 314

\@curr@file@reqd . 13, 15, 260, 314, 318
\@currnamestack 20, 480
\@disable@packageload@do 415
\@empty 292

\@expl@@@filehook@clear@replacement@flag@

.................... 279, 453
\@expl@@@filehook@dropextension@AN
............... 14, 276, 277, 455
\Q@expl@@@filehook@file@pop@@ .
.................. 154, 459, 469
\@expl@@@filehook@file@pop@assign@@nnnn
.................. 11, 159, 461
\@expl@@@filehook@file@push@@ . . .
.................... 148, 457
\Q@expl@@@filehook@if@file@replaced@QTF
................ 14, 15, 273, 451
\Q@expl@@@filehook@if@no@extension@OnTF
.............. 269, 441, 443, 468
\@expl@@@filehook@normalize@file@name@Qw
.................... 275, 449
\@expl@@@filehook@resolve@file@subst@0w
..................... 272, 447
\@expl@@@filehook@set@curr@file@@nNN
18, 15, 312, 318, 445

\@file-subst@(file) 11
\@filef@und 10,152, 169, 183, 191
\@filehook@set@CurrentFile . 149, 301
\@firstofone 292, 307
\@gobble 254
\@gobbletwo 253
\@ifundefined 422
\@input, 1

\@input@file@exists@with@hooks . 140
\@kernel@make@file@csname

.................. 271, 274, 301
\@namedef 420
\@nameuse 423
\@nil 165, 173, 307, 349, 351
\@onefilewithoptions 7
\@pkgextension 420, 426
\@set@curr@fileGaux 301
\@swaptwoargs 150, 164, 182
\@tempswafalse 270
\@tempswatrue 270

\@undefined

18, 19, 20, 20, 21, 144, 184,
185, 192, 193, 298, 426, 432, 433, 434

\atveryend@DEPRECATED 514, 516

\declare@file@substitution /, 240, 501

\disable@package@load . b, 18, 415
\filename@ext 10
\if@tempswa 276, 277
\input@path 2, 10, 15
\m@ne 266, 287
\reenable@package@load 5, 18, 415
\reserved®@a 158, 164, 165, 166
\set@curr@file . 13, 13, 15, 15, 16, 260
\string@makeletter 166
\undeclare@file@substitution 4, 240
\unqu@tefilef@und 140
\unquote@name 289
tex commands:
\tex_escapechar:D 206, 219
tl commands:
\c_space_tl 487, 490
\tl_count:N 480

26

\tl_gset:Nn
\tl_if_empty:nTF
. 40, 46, 58, 106, 112, 114, 116, 354

\tl new:N 8,9, 10, 11, 59
\tl_set:Nn 80, 81, 82, 83
\tl_to_str:n 514
\tl_trim_spaces:n 41, 42

token commands:

\token_if_eq_meaning:NNTF .. 392, 404
\token_to_str:N 234
U
use commands:
\use:N 380, 384, 386, 403
\use_ii_iii:nnn 210, 223, 235
\use_iii:nnn 47
\use_none:n 128, 131
\UseHook 2, 8, 9,167, 168, 171, 172
\usepackage 1,2, 8
X
\xdef 288, 306

	Contents
	1 Introduction
	1.1 Provided hooks
	1.2 General hooks for file reading
	1.3 Hooks for package and class files
	1.4 Hooks for \include files
	1.5 High-level interfaces for LaTeX
	1.6 Internal interfaces for LaTeX
	1.7 A sample package for structuring the log output

	2 The Implementation
	2.1 Document and package-level commands
	2.2 expl3 helpers
	2.3 Declaring the file-related hooks
	2.4 Patching LaTeX's \InputIfFileExists command
	2.5 Declaring a file substitution
	2.6 Selecting a file (\set@curr@file)
	2.7 Replacing a file and detecting loops
	2.7.1 The Tortoise and Hare algorithm

	2.8 Preventing a package from loading
	2.9 High-level interfaces for LaTeX
	2.10 Internal commands needed elsewhere

	3 A sample package for structuring the log output
	4 Package emulations
	4.1 Package atveryend emulation

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	X

