The 1thooks package®

Frank Mittelbach'
January 9, 2021

Contents
1 Introduction 2
2 Package writer interface 2
2.1 BTEX2c interfaces o . . oL o 2
2.1.1 Declaring hooks and using them in code 2
2.1.2 Updating code for hooks L. 4
2.1.3 Hook names and default labels 5
2.1.4 The top-level label oL 7
2.1.5 Defining relations between hook code. 8
2.1.6 Querying hooks L L 9
2.1.7 Displaying hook code L. 10
2.1.8 Debugging hook codeo L. 11
2.2 L3 programming layer (expl3) interfaces 11
2.3 On the order of hook code execution 14
2.4 The use of “reversed” hooks 15
2.5 Difference between “normal” and “one-time” hooks 16
2.6 Private ITEX kernel hooks oL oL 17
2.7 Legacy BTEX 2¢ interfaces L 18
2.8 I¥TEX2¢ commands and environments augmented by hooks 18
2.8.1 Generic hooks for all environments 19
2.8.2 Hooks provided by \begin{document} 20
2.8.3 Hooks provided by \end{document} 20
2.8.4 Hooks provided \shipout operations 22
2.8.5 Hooks provided by file loading operations 22
2.8.6 Hooks provided in NFSS commands 22

*This package has version v1.0h dated 2021/01/07, © ITEX Project.
fCode improvements for speed and other goodies by Phelype Oleinik

3 The Implementation 23

3.1 Loading further extensions 23
3.2 Debugging 23
3.3 Borrowing from internals of other kernel modules 23
3.4 Declarationso 23
3.5 Providing new hooks L o 26
3.6 Parsingalabel 29
3.7 Setting rules for hooks code L. 37
3.8 Specifying code for next invocationo 51
3.9 Usingthehook 52
3.10 Querying a hook Lo 54
301 MESSAZES . v v v e e e e e e e e e e e e e e e e 55
3.12 BTEX 2¢ package interface commands 57
3.13 Internal commands needed elsewhere. o0 61
Index 62

1 Introduction

Hooks are points in the code of commands or environments where it is possible to add
processing code into existing commands. This can be done by different packages that do
not know about each other and to allow for hopefully safe processing it is necessary to
sort different chunks of code added by different packages into a suitable processing order.

This is done by the packages adding chunks of code (via \AddToHook) and labeling
their code with some label by default using the package name as a label.

At \begin{document} all code for a hook is then sorted according to some rules
(given by \DeclareHookRule) for fast execution without processing overhead. If the hook
code is modified afterwards (or the rules are changed), a new version for fast processing
is generated.

Some hooks are used already in the preamble of the document. If that happens then
the hook is prepared for execution (and sorted) already at that point.

2 Package writer interface

The hook management system is offered as a set of CamelCase commands for traditional
ITEX 2¢ packages (and for use in the document preamble if needed) as well as expl3
commands for modern packages, that use the L3 programming layer of ITEX. Behind
the scenes, a single set of data structures is accessed so that packages from both worlds
can coexist and access hooks in other packages.

\NewHook

\NewReversedHook

\NewMirroredHookPair

\UseHook

\UseOneTimeHook

2.1 PETEX 2¢ interfaces
2.1.1 Declaring hooks and using them in code

With two exceptions, hooks have to be declared before they can be used. The exceptions
are hooks in environments (i.e., executed at \begin and \end) and hooks run when
loading files, e.g. before and after a package is loaded, etc. Their hook names depend on
the environment or the file name and so declaring them beforehand is difficult.

\NewHook {({hook)}

Creates a new (hook). If this is a hook provided as part of a package it is suggested
that the (hook) name is always structured as follows: (package-name)/{hook-name). If
necessary you can further subdivide the name by adding more / parts. If a hook name
is already taken, an error is raised and the hook is not created.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\NewReversedHook {(hook)}

Like \NewHook declares a new (hook). the difference is that the code chunks for this hook
are in reverse order by default (those added last are executed first). Any rules for the
hook are applied after the default ordering. See sections 2.3 and 2.4 for further details.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\NewMirroredHookPair {(hook-1)} {(hook-2)}

A shorthand for \NewHook{(hook-1)}\NewReversedHook{(hook-2)}.
The (hooks) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\UseHook {(hook)}

Execute the hook code inside a command or environment.

Before \begin{document} the fast execution code for a hook is not set up, so in
order to use a hook there it is explicitly initialized first. As that involves assignments
using a hook at those times is not 100% the same as using it after \begin{document}.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\UseOneTimeHook {(hook)}

Some hooks are only used (and can be only used) in one place, for example, those in
\begin{document} or \end{document}. Once we have passed that point adding to the
hook through a defined \(addto-cmd) command (e.g., \AddToHook or \AtBeginDocument,
etc.) would have no effect (as would the use of such a command inside the hook code it-
self). It is therefore customary to redefine \(addto-cmd) to simply process its argument,
i.e., essentially make it behave like \@firstofone.

\UseOneTimeHook does that: it records that the hook has been consumed and any
further attempt to add to it will result in executing the code to be added immediately.

FMi: Maybe add an error version as well?

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\AddToHook

\RemoveFromHook

2.1.2 Updating code for hooks

\AddToHook {(hook)}[{label)]{(code)}

Adds (code) to the (hook) labeled by (label). When the optional argument (label) is
not provided, the (default label) is used (see section 2.1.3). If \AddToHook is used in a
package/class, the (default label) is the package/class name, otherwise it is top-level
(the top-level label is treated differently: see section 2.1.4).

If there already exists code under the (label) then the new (code) is appended to the
existing one (even if this is a reversed hook). If you want to replace existing code under
the (label), first apply \RemoveFromHook.

The hook doesn’t have to exist for code to be added to it. However, if it is not
declared, then obviously the added (code) will never be executed. This allows for hooks
to work regardless of package loading order and enables packages to add to hooks from
other packages without worrying whether they are actually used in the current document.
See section 2.1.6.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\RemoveFromHook {(hook)}[(label)]

Removes any code labeled by (label) from the (hook). When the optional argument (label)
is not provided, the (default label) is used (see section 2.1.3).

If the code for that (label) wasn’t yet added to the (hook), an order is set so that
when some code attempts to add that label, the removal order takes action and the code
is not added.

If the optional argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about!

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

In contrast to the voids relationship between two labels in a \DeclareHookRule this
is a destructive operation as the labeled code is removed from the hook data structure,
whereas the relationship setting can be undone by providing a different relationship later.

A useful application for this declaration inside the document body is when one wants
to temporarily add code to hooks and later remove it again, e.g.,

\AddToHook{env/quote/before}{\small}
\begin{quote}

A quote set in a smaller typeface
\end{quote}

\RemoveFromHook{env/quote/before}
. now back to normal for further quotes

Note that you can’t cancel the setting with
\AddToHook{env/quote/before}{}

because that only “adds” a further empty chunk of code to the hook. Adding
\normalsize would work but that means the hook then contained \small\normalsize
which means to font size changes for no good reason.

\AddToHookNext

The above is only needed if one wants to typeset several quotes in a smaller typeface.
If the hook is only needed once then \AddToHookNext is simpler, because it resets itself
after one use.

\AddToHookNext {(hook)}{(code)}

Adds (code) to the next invocation of the (hook). The code is executed after the normal
hook code has finished and it is executed only once, i.e. it is deleted after it was used.
Using the declaration is a global operation, i.e., the code is not lost, even if the
declaration is used inside a group and the next invocation happens after the group. If
the declaration is used several times before the hook is executed then all code is executed
in the order in which it was declared."
It is possible to nest declarations using the same hook (or different hooks), e.g.,

\AddToHookNext{(hook)}{(code-1)\AddToHookNext{(hook)}{({code-2)}}

will execute (code-1) next time the (hook) is used and at that point puts (code-2) into
the (hook) so that it gets executed on following time the hook is run.

A hook doesn’t have to exist for code to be added to it. This allows for hooks to
work regardless of package loading order. See section 2.1.6.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

2.1.3 Hook names and default labels

It is best practice to use \AddToHook in packages or classes without specifying a (label)
because then the package or class name is automatically used, which is helpful if rules
are needed, and avoids mistyping the (label).

Using an explicit (label) is only necessary in very specific situations, e.g., if you want
to add several chunks of code into a single hook and have them placed in different parts
of the hook (by providing some rules).

The other case is when you develop a larger package with several sub-packages. In
that case you may want to use the same (label) throughout the sub-packages in order to
avoid that the labels change if you internally reorganize your code.

Except for \UseHook, \UseOneTimeHook, \IfHookEmptyTF, and \IfHookExistsTF
(and their expl3 interfaces \hook_use:n, \hook_use_once:n, \hook_if_empty:nTF, and
\hook_if_exist:nTF), all (hook) and (label) arguments are processed in the same way:
first, spaces are trimmed around the argument, then it is fully expanded until only charac-
ter tokens remain. If the full expansion of the (hook) or (label) contains a non-expandable
non-character token, a low-level TEX error is raised (namely, the (hook) is expanded us-
ing TEX’s \csname. .. \endcsname, as such, Unicode characters are allowed in (hook) and
(label) arguments). The arguments of \UseHook, \UseOneTimeHook, \IfHookEmptyTF,
and \IfHookExistsTF are processed much in the same way except that spaces are not
trimmed around the argument, for better performance.

It is not enforced, but highly recommended that the hooks defined by a package, and
the (labels) used to add code to other hooks contain the package name to easily identify
the source of the code chunk and to prevent clashes. This should be the standard practice,
so this hook management code provides a shortcut to refer to the current package in the
name of a (hook) and in a (label). If the (hook) name or the (label) consist just of a single
dot (.), or starts with a dot followed by a slash (./) then the dot denotes the (default

IThere is no mechanism to reorder such code chunks (or delete them).

label) (usually the current package or class name—see \SetDefaultHookLabel). A “.”
or “./” anywhere else in a (hook) or in (label) is treated literally and is not replaced.

For example, inside the package mypackage.sty, the default label is mypackage, so
the instructions:

\NewHook {./hook}

\AddToHook {./hook}[.]{code} % Same as \AddToHook{./hook}{code}
\AddToHook {./hook}[./subl{code}
\DeclareHookRule{begindocument}{.}{before}{babel}

\AddToHook {file/after/foo.tex}{code}

are equivalent to:

\NewHook {mypackage/hook}

\AddToHook {mypackage/hook}[mypackage]{code}

\AddToHook {mypackage/hook} [mypackage/sub]{code}
\DeclareHookRule{begindocument}{mypackage}{before}{babel}
\AddToHook {file/after/foo.tex}{code} % unchanged

The (default label) is automatically set equal to the name of the current package
or class at the time the package is loaded. If the hook command is used outside of
a package, or the current file wasn’t loaded with \usepackage or \documentclass,
then the top-level is used as the (default label). This may have exceptions—see
\PushDefaultHookLabel.

This syntax is available in all (label) arguments and most (hook) arguments, both in
the XTEX 2¢ interface, and the IXTEX3 interface described in section 2.2.

Note, however, that the replacement of . by the (default label) takes place when the
hook command is executed, so actions that are somehow executed after the package ends
will have the wrong (default label) if the dot-syntax is used. For that reason, this syntax is
not available in \UseHook (and \hook_use:n) because the hook is most of the time used
outside of the package file in which it was defined. This syntax is also not available in the
hook conditionals \IfHookEmptyTF (and \hook_if_empty:nTF) and \IfHookExistsTF
(and \hook_if_exist:nTF) because these conditionals are used in some performance-
critical parts of the hook management code, and because they are usually used to refer
to other package’s hooks, so the dot-syntax doesn’t make much sense.

In some cases, for example in large packages, one may want to separate it in logical
parts, but still use the main package name as (label), then the (default label) can be set
using \SetDefaultHookLabel or \PushDefaultHookLabel..\PopDefaultHookLabel.

\PushDefaultHookLabel
\PopDefaultHookLabel

\SetDefaultHookLabel

\PushDefaultHookLabel {({default label)}
(code)
\PopDefaultHookLabel

\PushDefaultHookLabel sets the current (default label) to be used in (label) arguments,
or when replacing a leading “.” (see above). \PopDefaultHookLabel reverts the (default
label) to its previous value.

Inside a package or class, the (default label) is equal to the package or class name,
unless explicitly changed. Everywhere else, the (default label) is top-level (see sec-
tion 2.1.4) unless explicitly changed.

The effect of \PushDefaultHookLabel holds until the next \PopDefaultHookLabel.
\usepackage (and \RequirePackage and \documentclass) internally use

\PushDefaultHookLabel{(package name)}
(package code)
\PopDefaultHookLabel

to set the (default label) for the package or class file. Inside the (package code) the
(default label) can also be changed with \SetDefaultHookLabel. \input and other file
input-related commands from the I#TEX kernel do not use \PushDefaultHookLabel, so
code within files loaded by these commands does not get a dedicated (label)! (that is,
the (default label) is the current active one when the file was loaded.)

Packages that provide their own package-like interfaces (TikZ’s \usetikzlibrary,
for example) can use \PushDefaultHookLabel and \PopDefaultHookLabel to set dedi-
cated labels and emulate \usepackage-like hook behaviour within those contexts.

The top-level label is treated differently, and is reserved to the user document, so
it is not allowed to change the (default label) to top-level.

\SetDefaultHookLabel {(default label)}

Similarly to \PushDefaultHookLabel, sets the current (default label) to be used in
(label) arguments, or when replacing a leading “.”. The effect holds until the label
is changed again or until the next \PopDefaultHookLabel. The difference between
\PushDefaultHookLabel and \SetDefaultHookLabel is that the latter does not save
the current (default label).

This command is useful when a large package is composed of several smaller pack-
ages, but all should have the same (label), so \SetDefaultHookLabel can be used at the
beginning of each package file to set the correct label.

\SetDefaultHookLabel is not allowed in the main document, where the (default
label) is top-level and there is no \PopDefaultHookLabel to end its effect. It is also
not allowed to change the (default label) to top-level.

2.1.4 The top-level label

The top-level label, assigned to code added from the main document, is different from
other labels. Code added to hooks (usually \AtBeginDocument) in the preamble is almost
always to change something defined by a package, so it should go at the very end of the
hook.

Therefore, code added in the top-level is always executed at the end of the hook,
regardless of where it was declared. If the hook is reversed (see \NewReversedHook), the
top-level chunk is executed at the very beginning instead.

\DeclareHookRule

Rules regarding top-level have no effect: if a user wants to have a specific set of
rules for a code chunk, they should use a different label to said code chunk, and provide
a rule for that label instead.

The top-level label is exclusive for the user, so trying to add code with that label
from a package results in an error.

2.1.5 Defining relations between hook code

The default assumption is that code added to hooks by different packages are independent
and the order in which they are executed is irrelevant. While this is true in many cases
it is obviously false in others.

Before the hook management system was introduced packages had to take elaborate
precaution to determine of some other package got loaded as well (before or after) and
find some ways to alter its behavior accordingly. In addition is was often the user’s
responsibility to load packages in the right order so that code added to hooks got added
in the right order and some cases even altering the loading order wouldn’t resolve the
conflicts.

With the new hook management system it is now possible to define rules (i.e., re-
lationships) between code chunks added by different packages and explicitly describe in
which order they should be processed.

\DeclareHookRule {(hook)}{(labell)}{(relation)}{(label2)}

Defines a relation between (labell) and (label2) for a given (hook). If (hook) is 77 this
defines a default relation for all hooks that use the two labels, i.e., that have chunks of
code labeled with (labell) and (label2). Rules specific to a given hook take precedence
over default rules that use 7?7 as the (hook).

Currently, the supported relations are the following:

before or < Code for (labell) comes before code for (label2).

after or > Code for (labell) comes after code for (label2).

incompatible-warning Only code for either (labell) or (label2) can appear for that hook (a way to say

that two packages—or parts of them—are incompatible). A warning is raised if
both labels appear in the same hook.

incompatible-error Like incompatible-error but instead of a warning a KXTEX error is raised, and

the code for both labels are dropped from that hook until the conflict is resolved.

voids Code for (labell) overwrites code for (label2). More precisely, code for (label2) is

dropped for that hook. This can be used, for example if one package is a superset
in functionality of another one and therefore wants to undo code in some hook and
replace it with its own version.

unrelated The order of code for (labell) and (label2) is irrelevant. This rule is there to undo

an incorrect rule specified earlier.

There can only be a single relation between two labels for a given hook, i.e., a later
\DeclareHookrule overwrites any previous declaration.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\ClearHookRule

\DeclareDefaultHookRule

\IfHookEmptyTF *

\ClearHookRule{(hook)}{(labell)}{(label2)}

Syntactic sugar for saying that (label!) and (label2) are unrelated for the given (hook).

\DeclareDefaultHookRule{(labell)}{(relation)}{(label2)}

This sets up a relation between (labell) and (label2) for all hooks unless overwritten by
a specific rule for a hook. Useful for cases where one package has a specific relation to
some other package, e.g., is incompatible or always needs a special ordering before or
after. (Technically it is just a shorthand for using \DeclareHookRule with ?? as the
hook name.)

Declaring default rules is only supported in the document preamble.?

The (label) can be specified using the dot-syntax to denote the current package name.
See section 2.1.3.

2.1.6 Querying hooks

Simpler data types, like token lists, have three possible states; they can:
e exist and be empty;
e exist and be non-empty; and
e not exist (in which case emptiness doesn’t apply);

Hooks are a bit more complicated: they have four possible states. A hook may exist or
not, and either way it may or may not be empty. This means that even a hook that
doesn’t exist may be non-empty.

This seemingly strange state may happen when, for example, package A defines hook
A/foo, and package B adds some code to that hook. However, a document may load
package B before package A, or may not load package A at all. In both cases some code
is added to hook A/foo without that hook being defined yet, thus that hook is said to be
non-empty, whereas it doesn’t exist. Therefore, querying the existence of a hook doesn’t
imply its emptiness, neither does the other way around.

A hook is said to be empty when no code was added to it, either to its permanent
code pool, or to its “next” token list. The hook doesn’t need to be declared to have code
added to its code pool. A hook is said to exist when it was declared with \NewHook or
some variant thereof. Generic file and env hooks are automatically declared when code
is added to them.

\IfHookEmptyTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either (true code) or (false code) depending on the
result.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

2Trying to do so, e.g., via \DeclareHookRule with ?? has bad side-effects and is not supported (though
not explicitly caught for performance reasons).

\IfHookExistsTF =

\ShowHook
\LogHook

\IfHookExistsTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) exists (if it was created with either \NewHook, \NewReversedHook, or
\NewMirroredHookPair), and branches to either (true code) or (false code) depending
on the result.

The existence of a hook usually doesn’t mean much from the viewpoint of code that
tries to add/remove code from that hook, since package loading order may vary, thus
the creation of hooks is asynchronous to adding and removing code from it, so this test
should be used sparingly.

Generic hooks are declared at the time code is added to them, so the result of
\hook_if_exist:n will change once code is added to said hook (unless the hook was
previously declared).

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

FMi: Would be helpful if we provide some use cases

2.1.7 Displaying hook code

If one has to adjust the code execution in a hook using a hook rule it is helpful to get some
information about the code associated with a hook, its current order and the existing
rules.

\ShowHook {(hook)}

Displays information about the (hook) such as
o the code chunks (and their labels) added to it,
e any rules set up to order them,
e the computed order in which the chunks are executed,

e any code executed on the next invocation only.

\LogHook prints the information to the .log file, and \ShowHook prints them to the
terminal /command window and starts TEX’s prompt (only in \errorstopmode) to wait
for user action.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

Suppose a hook example-hook whose output of \ShowHook{example-hook} is:

-> The hook ’example-hook’:
> Code chunks:
> foo -> [code from package ’foo’]
bar -> [from package ’bar’]
baz -> [package ’baz’ is here]
Document-level (top-level) code (executed last):
-> [code from ’top-level’]
Extra code for next invocation:
—-> [one-time code]
Rules:
foolbaz with relation >

V V V V V V VYV

10

13

14

\DebugHooksOn
\DebugHooks0ff

> baz|bar with default relation <
> Execution order (after applying rules):
> baz, foo, bar.

In the listing above, lines 3 to 5 show the three code chunks added to the hook and
their respective labels in the format

(label) -> (code)

Line 7 shows the code chunk added by the user in the main document (labeled
top-level) in the format

Document-level (top-level) code (executed (first/last)):
-> (top-level code)

This code will be either the first or last code executed by the hook (last if the hook is
normal, first if it is reversed). This chunk is not affected by rules and does not take
part in sorting.

Line 9 shows the code chunk for the next execution of the hook in the format

-> (next-code)

This code will be used and disappear at the next \UseHook{example-hook}, in contrast
to the chunks mentioned earlier, which can only be removed from that hook by doing
\RemoveFromHook{(label)} [example-hook].

Lines 11 and 12 show the rules declared that affect this hook in the format

(label-1) | (label-2) with (default?) relation (relation)

which means that the (relation) applies to (label-1) and (label-2), in that order, as detailed
in \DeclareHookRule. If the relation is default it means that that rule applies to
(label-1) and (label-2) in all hooks, (unless overridden by a non-default relation).

Finally, line 14 lists the labels in the hook after sorting; that is, in the order they
will be executed when the hook is used.

2.1.8 Debugging hook code

\DebugHooksOn

Turn the debugging of hook code on or off. This displays changes made to the hook data
structures. The output is rather coarse and not really intended for normal use.

2.2 L3 programming layer (expl3) interfaces

This is a quick summary of the ITEX3 programming interfaces for use with packages
written in expl3. In contrast to the KTEX 2: interfaces they always use mandatory
arguments only, e.g., you always have to specify the (label) for a code chunk. We therefore
suggest to use the declarations discussed in the previous section even in expl3 packages,
but the choice is yours.

11

\hook_new:n
\hook_new_reversed:n
\hook_new_pair:nn

\hook_use:n

\hook_use_once:n

\hook_gput_code:nnn

\hook_gput_next_code:nn

\hook_new:n {(hook)}
\hook_new_reversed:n {(hook)}
\hook_new_pair:nn {(hook-1)} {(hook-2)}
Creates a new (hook) with normal or reverse ordering of code chunks. \hook_new_-
pair:nn creates a pair of such hooks with {(hook-2)} being a reversed hook. If a hook
name is already taken, an error is raised and the hook is not created.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\hook_use:n {(hook)}

Executes the {(hook)} code followed (if set up) by the code for next invocation only, then
empties that next invocation code.
The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_use_once:n {(hook)}

Changes the {(hook)} status so that from now on any addition to the hook code is
executed immediately. Then execute any {(hook)} code already set up.
The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_gput_code:nnn {(hook)} {(label)} {(code)}

Adds a chunk of (code) to the (hook) labeled (label). If the label already exists the (code)
is appended to the already existing code.

If code is added to an external (hook) (of the kernel or another package) then the
convention is to use the package name as the (label) not some internal module name or
some other arbitrary string.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\hook_gput_next_code:nn {(hook)} {(code)}

Adds a chunk of (code) for use only in the next invocation of the (hook). Once used it is
gone.

This is simpler than \hook_gput_code:nnn, the code is simply appended to the
hook in the order of declaration at the very end, i.e., after all standard code for the hook
got executed.

Thus if one needs to undo what the standard does one has to do that as part of
(code).

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

12

\hook_gremove_code:nn

\hook_gset_rule:nnnn

*

\hook_if_empty_p:n
\hook_if_empty:nTF *

*

\hook_if_exist_p:n
\hook_if_exist:nTF *

\hook_gremove_code:nn {(hook)} {(label)}

Removes any code for (hook) labeled (label).

If the code for that (label) wasn’t yet added to the (hook), an order is set so that
when some code attempts to add that label, the removal order takes action and the code
is not added.

If the second argument is *, then all code chunks are removed. This is rather
dangerous as it drops code from other packages one may not know about, so think twice
before using that!

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3.

\hook_gset_rule:nnnn {(hook)} {(labell)} {(relation)} {(label2)}

Relate (labell) with (label2) when used in (hook). See \DeclareHookRule for the allowed
(relation)s. If (hook) is 7?7 a default rule is specified.

The (hook) and (label) can be specified using the dot-syntax to denote the current
package name. See section 2.1.3. The dot-syntax is parsed in both (label) arguments,
but it usually makes sense to be used in only one of them.

\hook_if_empty:nTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) is empty (i.e., no code was added to it using either \AddToHook or
\AddToHookNext), and branches to either (true code) or (false code) depending on the
result.

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

\hook_if_exist:nTF {(hook)} {(true code)} {(false code)}

Tests if the (hook) exists (if it was created with either \NewHook, \NewReversedHook, or
\NewMirroredHookPair), and branches to either (true code) or (false code) depending
on the result.

The existence of a hook usually doesn’t mean much from the viewpoint of code that
tries to add/remove code from that hook, since package loading order may vary, thus
the creation of hooks is asynchronous to adding and removing code from it, so this test
should be used sparingly.

Generic hooks are declared at the time code is added to them, so the result of
\hook_if_exist:n will change once code is added to said hook (unless the hook was
previously declared).

The (hook) cannot be specified using the dot-syntax. A leading . is treated literally.

13

\hook_show:n \hook_show:n {(hook)}
\hook_log:n

Displays information about the (hook) such as
o the code chunks (and their labels) added to it,
e any rules set up to order them,
e the computed order in which the chunks are executed,

e any code executed on the next invocation only.

\hook_log:n prints the information to the .log file, and \hook_show:n prints them
to the terminal/command window and starts TEX’s prompt (only if \errorstopmode) to
wait for user action.

The (hook) can be specified using the dot-syntax to denote the current package
name. See section 2.1.3.

\hook_debug_on: \hook_debug_on:
\hook_debug_off:

Turns the debugging of hook code on or off. This displays changes to the hook data.

2.3 On the order of hook code execution

Chunks of code for a (hook) under different labels are supposed to be independent if there
are no special rules set up that define a relation between the chunks. This means that
you can’t make assumptions about the order of execution!

Suppose you have the following declarations:

\NewHook{myhook}

\AddToHook{myhook} [packageA] {\typeout{A}}
\AddToHook{myhook} [packageB] {\typeout{B}}
\AddToHook{myhook} [packageC]{\typeout{C}}

then executing the hook with \UseHook will produce the typeout A B C in that order.
In other words, the execution order is computed to be packageA, packageB, packageC
which you can verify with \ShowHook{myhook}:

-> The hook ’myhook’:
Code chunks:
packageA -> \typeout {A}
packageB -> \typeout {B}
packageC -> \typeout {C}
Document-level (top-level) code (executed last):

Rules:
Execution order:

>

>

>

>

>

>

> Extra code for next invocation:
>

>

>

>

> packageA, packageB, packageC.

The reason is that the code chunks are internally saved in a property list and the initial
order of such a property list is the order in which key-value pairs got added. However,
that is only true if nothing other than adding happens!

14

Suppose, or example, you want to replace the code chunk for packageA, e.g.,

\RemoveFromHook{myhook} [packageA]
\AddToHook{myhook} [packageA] {\typeout{A altl}}

then your order becomes packageB, packageC, packageA because the label got removed
from the property list and then re-added (at its end).

While that may not be too surprising, the execution order is also sometimes altered
if you add a redundant rule, e.g. if you specify

\DeclareHookRule{myhook}{packageA}{before}{packageB}
instead of the previous lines we get

-> The hook ’myhook’:
Code chunks:
packageA -> \typeout {A}
packageB -> \typeout {B}
packageC -> \typeout {C}
Document-level (top-level) code (executed last):

>

>

>

>

>

> -
> Extra code for next invocation:

> —_—

> Rules:

> packageB|packageA with relation >

> Execution order (after applying rules):

> packageA, packageC, packageB.

As you can see the code chunks are still in the same order, but in the execution order for
the labels packageB and packageC have swapped places. The reason is that, with the
rule there are two orders that satisfy it, and the algorithm for sorting happened to pick
a different one compared to the case without rules (where it doesn’t run at all as there
is nothing to resolve). Incidentally, if we had instead specified the redundant rule

\DeclareHookRule{myhook}{packageB}{before}{packageC}

the execution order would not have changed.
In summary: it is not possible to rely on the order of execution unless there are rules
that partially or fully define the order (in which you can rely on them being fulfilled).

2.4 The use of “reversed” hooks

You may have wondered why you can declare a “reversed” hook with \NewReversedHook
and what that does exactly.

In short: the execution order of a reversed hook (without any rules!) is exactly
reversed to the order you would have gotten for a hook declared with \NewHook.

This is helpful if you have a pair of hooks where you expect to see code added that
involves grouping, e.g., starting an environment in the first and closing that environment
in the second hook. To give a somewhat contrived example®, suppose there is a package
adding the following:

3there are simpler ways to achieve the same effect.

15

\AddToHook{env/quote/beforel} [package-1]{\begin{itshape}}
\AddToHook{env/quote/after} [package-1]{\end{itshapel}}

As a result, all quotes will be in italics. Now suppose further that another package-too
makes the quotes also in blue and therefore adds:

\usepackage{color}
\AddToHook{env/quote/before} [package-too] {\begin{color}{blue}}
\AddToHook{env/quote/after} [package-too]{\end{color}}

Now if the env/quote/after hook would be a normal hook we would get the same
execution order in both hooks, namely:

package-1, package-too
(or vice versa) and as a result, would get:

\begin{itshape}\begin{color}{blue} ...
\end{itshapel}\end{color}

and an error message that \begin{color} ended by \end{itshape}. With env/quote/after
declared as a reversed hook the execution order is reversed and so all environments are
closed in the correct sequence and \ShowHook would give us the following output:

-> The hook ’env/quote/after’:
Code chunks:
package-1 -> \end {itshape}
package-too -> \end {color}
Document-level (top-level) code (executed first):

Rules:
Execution order (after reversal):

>

>

>

>

>

> Extra code for next invocation:
>

>

>

>

> package-too, package-1.

The reversal of the execution order happens before applying any rules, so if you
alter the order you will probably have to alter it in both hooks, not just in one, but that
depends on the use case.

2.5 Difference between “normal” and “one-time” hooks

When executing a hook a developer has the choice of using either \UseHook or
\UseOneTimeHook (or their expl3 equivalents \hook_use:n and \hook_use_once:n).
This choice affects how \AddToHook is handled after the hook has been executed for
the first time.

With normal hooks adding code via \AddToHook means that the code chunk is added
to the hook data structure and then used each time \UseHook is called.

With one-time hooks it this is handled slightly differently: After \UseOneTimeHook
has been called, any further attempts to add code to the hook via \AddToHook will simply
execute the (code) immediately.

This has some consequences one needs to be aware of:

16

o If {code) is added to a normal hook after the hook was executed and it is never
executed again for one or the other reason, then this new (code) will never be
executed.

o In contrast if that happens with a one-time hook the (code) is executed immediately.
In particular this means that construct such as

\AddToHook{myhook}
{ (code-1) \AddToHook{myhook}{{code-2)} (code-3) }

works for one-time hooks? (all three code chunks are executed one after another), but
it makes little sense with a normal hook, because with a normal hook the first time
\UseHook{myhook?} is executed it would

o execute (code-1),

o then execute \AddToHook{myhook}{code-2} which adds the code chunk (code-2)
to the hook for use on the next invocation,

o and finally execute (code-3).

The second time \UseHook is called it would execute the above and in addition (code-2)
as that was added as a code chunk to the hook in the meantime. So each time the
hook is used another copy of (code-2) is added and so that code chunk is executed
(# of invocations) — 1 times.

2.6 Private B'TEX kernel hooks

There are a few places where it is absolutely essential for I4TEX to function correctly that
code is executed in a precisely defined order. Even that could have been implemented
with the hook management (by adding various rules to ensure the appropriate ordering
with respect to other code added by packages). However, this makes every document un-
necessary slow, because there has to be sorting even through the result is predetermined.
Furthermore it forces package writers to unnecessarily add such rules if they add further
code to the hook (or break BTEX).

For that reason such code is not using the hook management, but instead private
kernel commands directly before or after a public hook with the following naming con-
vention: \@kernel@before@(hookname) or \@kernel@after@(hookname). For example,
in \enddocument you find

\UseHook{enddocument}/,
\@kernel@after@enddocument

which means first the user/package-accessible enddocument hook is executed and then
the internal kernel hook. As their name indicates these kernel commands should not be
altered by third-party packages, so please refrain from that in the interest of stability
and instead use the public hook next to it.”

4This is sometimes used with \AtBeginDocument which is why it is supported.

5As with everything in TEX there is not enforcement of this rule, and by looking at the code it is
easy to find out how the kernel adds to them. The main reason of this section is therefore to say “please
don’t do that, this is unconfigurable code!”

17

2.7 Legacy ETEX 2¢ interfaces

TEX 2¢ offered a small number of hooks together with commands to add to them. They
are listed here and are retained for backwards compatibility.

With the new hook management several additional hooks have been added to ETEX
and more will follow. See the next section for what is already available.

\AtBeginDocument \AtBeginDocument [{label)] {(code)}

If used without the optional argument (label), it works essentially like before, i.e., it is
adding (code) to the hook begindocument (which is executed inside \begin{document}).
However, all code added this way is labeled with the label top-level (see section 2.1.4)
if done outside of a package or class or with the package/class name if called inside such
a file (see section 2.1.3).

This way one can add further code to the hook using \AddToHook or \AtBeginDocument
using a different label and explicitly order the code chunks as necessary, e.g., run some
code before or after another package’s code. When using the optional argument the call
is equivalent to running \AddToHook {begindocument} [(label)] {(code)}.

\AtBeginDocument is a wrapper around the begindocument hook (see section 2.8.2),
which is a one-time hook. As such, after the begindocument hook is executed at
\begin{document} any attempt to add (code) to this hook with \AtBeginDocument or
with \AddToHook will cause that (code) to execute immediately instead. See section 2.5
for more on one-time hooks.

For important packages with known order requirement we may over time add rules
to the kernel (or to those packages) so that they work regardless of the loading-order in
the document.

\AtEndDocument \AtEndDocument [(label)] {{code)}

Like \AtBeginDocument but for the enddocument hook.

\AtBeginDvi \AtBeginDvi [(Iabel)] {(code)}

This hook is discussed in conjunction with the shipout hooks.

The few hooks that existed previously in ITEX 2¢ used internally commands such
as \@begindocumenthook and packages sometimes augmented them directly rather than
working through \AtBeginDocument. For that reason there is currently support for this,
that is, if the system detects that such an internal legacy hook command contains code
it adds it to the new hook system under the label legacy so that it doesn’t get lost.

However, over time the remaining cases of direct usage need updating because in one
of the future release of KTEX we will turn this legacy support off, as it does unnecessary
slow down the processing.

2.8 FKETEX 2 commands and environments augmented by hooks

intro to be written

18

\BeforeBeginEnvironment

\AtBeginEnvironment

\AtEndEnvironment

\AfterEndEnvironment

2.8.1 Generic hooks for all environments
Every environment (env) has now four associated hooks coming with it:

env/(env)/before This hook is executed as part of \begin as the very first action,
in particular prior to starting the environment group. Its scope is therefore not
restricted by the environment.

env/(env)/begin This hook is executed as part of \begin directly in front of the code
specific to the environment start (e.g., the second argument of \newenvironment).
Its scope is the environment body.

env/(env)/end This hook is executed as part of \end directly in front of the code specific
to the end of the environment (e.g., the third argument of \newenvironment).

env/(env)/after This hook is executed as part of \end after the code specific to the
environment end and after the environment group has ended. Its scope is therefore
not restricted by the environment.

The hook is implemented as a reversed hook so if two packages add code to
env/(env)/before and to env/(env)/after they can add surrounding environ-
ments and the order of closing them happens in the right sequence.

Generic environment hooks are never one-time hooks even with environments that are
supposed to appear only once in a document.® In contrast to other hooks there is also
no need to declare them using \NewHook.

The hooks are only executed if \begin{(env)} and \end{(env)} is used. If the
environment code is executed via low-level calls to \(env) and \end(env) (e.g., to avoid
the environment grouping) they are not available. If you want them available in code
using this method, you would need to add them yourself, i.e., write something like

\UseHook{env/quote/before}\quote

\endquote\UseHook{env/quote/after}

to add the outer hooks, etc.

\BeforeBeginEnvironment [(label)] {(code)}

This declaration adds to the env/{env)/before hook using the (label). If (label) is not
given, the (default label) is used (see section 2.1.3).

\AtBeginEnvironment [(label)] {(code)}

Like \BeforeBeginEnvironment but adds to the env/(env)/begin hook.

\AtEndEnvironment [(label)] {(code)}

Like \BeforeBeginEnvironment but adds to the env/({env)/end hook.

\AfterEndEnvironment [(label)] {(code)}

Like \BeforeBeginEnvironment but adds to the env/(env)/after hook.

6Thus if one adds code to such hooks after the environment has been processed, it will only be
executed if the environment appears again and if that doesn’t happen the code will never get executed.

19

2.8.2 Hooks provided by \begin{document}

Until 2020 \begin{document} offered exactly one hook that one could add to using
\AtBeginDocument. Experiences over the years have shown that this single hook in one
place was not enough and as part of adding the general hook management system a
number of additional hooks have been added at this point. The places for these hooks
have been chosen to provide the same support as offered by external packages, such as
etoolbox and others that augmented \document to gain better control.

Supported are now the following hooks (all of them one-time hooks):

begindocument/before This hook is executed at the very start of \document, one can
think of it as a hook for code at the end of the preamble section and this is how it
is used by etoolbox’s \AtEndPreamble.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

begindocument This hook is added to when using \AtBeginDocument and it is executed
after the .aux file as be read in and most initialization are done, so they can be
altered and inspected by the hook code. It is followed by a small number of further
initializations that shouldn’t be altered and are therefore coming later.

The hook should not be used to add material for typesetting as we are still in
XTEX’s initialization phase and not in the document body. If such material needs
to be added to the document body use the next hook instead.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

begindocument/end This hook is executed at the end of the \document code in other
words at the beginning of the document body. The only command that follows it
is \ignorespaces.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

The generic hooks executed by \begin also exist, i.e., env/document/before and
env/document/begin, but with this special environment it is better use the dedicated
one-time hooks above.

2.8.3 Hooks provided by \end{document}

ETEX 2¢ always provided \AtEndDocument to add code to the execution of \end{document}
just in front of the code that is normally executed there. While this was a big improve-
ment over the situation in KTEX 2.09 it was not flexible enough for a number of use cases
and so packages, such as etoolbox, atveryend and others patched \enddocument to add
additional points where code could be hooked into.

Patching using packages is always problematical as leads to conflicts (code avail-
ability, ordering of patches, incompatible patches, etc.). For this reason a number of
additional hooks have been added to the \enddocument code to allow packages to add
code in various places in a controlled way without the need for overwriting or patching
the core code.

Supported are now the following hooks (all of them one-time hooks):

20

enddocument The hook associated with \AtEndDocument. It is immediately called at the
beginning of \enddocument.

When this hook is executed there may be still unprocessed material (e.g., floats
on the deferlist) and the hook may add further material to be typeset. After it,
\clearpage is called to ensure that all such material gets typeset. If there is nothing
waiting the \clearpage has no effect.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/afterlastpage As the name indicates this hook should not receive code
that generates material for further pages. It is the right place to do some final
housekeeping and possibly write out some information to the .aux file (which is
still open at this point to receive data). It is also the correct place to set up any
testing code to be run when the .aux file is re-read in the next step.

After this hook has been executed the .aux file is closed for writing and then read
back in to do some tests (e.g., looking for missing references or duplicated labels,
ete.).

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/afteraux At this point, the .aux file has been reprocessed and so this is
a possible place for final checks and display of information to the user. However,
for the latter you might prefer the next hook, so that your information is displayed
after the (possibly longish) list of files if that got requested via \listfiles.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/info This hook is meant to receive code that write final information mes-
sages to the terminal. It follows immediately after the previous hook (so both could
have been combined, but then packages adding further code would always need to
also supply an explicit rule to specify where it should go.

This hook already contains some code added by the kernel (under the labels
kernel/filelist and kernel/warnings), namely the list of files when \listfiles
has been used and the warnings for duplicate labels, missing references, font sub-
stitutions etc.

This is a one-time hook, so after it is executed, all further attempts to add code to
it will execute such code immediately (see section 2.5).

enddocument/end Finally, this hook is executed just in front of the final call to \@@end.

This is a one-time hook, so after it is executed, all further attempts to add code
to it will execute such code immediately (see section 2.5).is it even possible to add
code after this one?

There is also the hook shipout/lastpage. This hook is executed as part of the last
\shipout in the document to allow package to add final \special’s to that page. Where
this hook is executed in relation to those from the above list can vary from document to
document. Furthermore to determine correctly which of the \shipouts is the last one,
¥TEX needs to be run several times, so initially it might get executed on the wrong page.
See section 2.8.4 for where to find the details.

21

It is in also possible to use the generic env/document/end hook which is executed
by \end, i.e., just in front of the first hook above. Note however that the other generic
\end environment hook, i.e., env/document/after will never get executed, because by
that time IXTEX has finished the document processing.

2.8.4 Hooks provided \shipout operations

There are several hooks and mechanisms added to IATEX’s process of generating pages.
These are documented in 1tshipout-doc.pdf or with code in 1tshipout-code.pdf.

2.8.5 Hooks provided by file loading operations

There are several hooks added to ITEX’s process of loading file via its high-level
interfaces such as \input, \include, \usepackage, etc. These are documented in
1tfilehook-doc.pdf or with code in 1tfilehook-code.pdf.

2.8.6 Hooks provided in NFSS commands

In languages that need to support for more than one script in parallel (and thus several
sets of fonts), e.g., Latin and Japanese fonts, NFSS font commands, such as \sffamily,
need to switch both the Latin family to “Sans Serif” and in addition alter a second set
of fonts.

To support this several NFSS have hooks in which such support can be added.

rmfamily After \rmfamily has done its initial checks and prepared a any font series
update this hook is executed and only afterwards \selectfont.

sffamily Like the rmfamily hook but for the \sffamily command.
ttfamily Like the rmfamily hook but for the \ttfamily command.

normalfont The \normalfont command resets font encoding family series and shape to
their document defaults. It then executes this hook and finally calls \selectfont.

expand@font@defaults The internal \expand@font@defaults command expands and
saves the current defaults for the meta families (rm/sf/tt) and the meta series
(bf/md). If the NF'SS machinery has been augmented, e.g., for Chinese or Japanese
fonts, then further defaults may need to be set at this point. This can be done in
this hook which is executed at the end of this macro.

bfseries/defaults, bfseries If the \bfdefault was explicitly changed by the user its
new value is used to set the bf series defaults for the meta families (rm/sf/tt) when
\bfseries is called. In the bfseries/defaults hook further adjustments can be
made in this case. This hook is only executed if such a change is detected. In
contrast the bfseries hook is always executed just before \selectfont is called
to change to the new series.

mdseries/defaults, mdseries These two hooks are like the previous ones but used in
\mdseries command.

22

3 The Implementation

3.1 Loading further extensions
1 (@@=hook)

At the moment the whole module rolls back in one go, but if we make any modifi-
cations in later releases this will then need splitting.
> (*2ekernel | latexrelease)
s (latexrelease) \IncludeInRelease{2020/10/01}7
4 (latexrelease) {\NewHook}{The hook management}},

s \ExplSyntaxOn
3.2 Debugging

\g__hook_debug_bool Holds the current debugging state.
6 \bool_new:N \g__hook_debug_bool

(End definition for \g__hook_debug_bool.)

\hook_debug_on: Turns debugging on and off by redefining __hook_debug:n.

\hook_debug_off: 7 \cs_new_eq:NN __hook_debug:n \use_none:n
__hook_debug:n s \cs_new_protected:Npn \hook_debug_on:
__hook_debug_gset: 9 {

10 \bool_gset_true:N \g__hook_debug_bool

1 __hook_debug_gset:

©» o}

13 \cs_new_protected:Npn \hook_debug_off:

14 {

15 \bool_gset_false:N \g__hook_debug_bool

16 __hook_debug_gset:

17 }

15 \cs_new_protected:Npn __hook_debug_gset:

19 {

20 \cs_gset_protected:Npx __hook_debug:n #i#1

21 { \bool_if:NT \g__hook_debug_bool {##1} }

22 3

(End definition for \hook_debug_on: and others. These functions are documented on page 14.)

3.3 Borrowing from internals of other kernel modules

__hook_str_compare:nn Private copy of __str_if_eq:nn

23 \cs_new_eq:NN __hook_str_compare:nn __str_if_eq:nn

(End definition for __hook_str_compare:nn.)

3.4 Declarations

\1__hook_tmpa_bool Scratch boolean used throughout the package.
21 \bool_new:N \1__hook_tmpa_bool

(End definition for \1__hook_tmpa_bool.)

23

\1__hook_return_tl
\1__hook_tmpa_tl
\1__hook_tmpb_t1l

\g__hook_all_seq

\g__hook_removal_list_prop

\1__hook_cur_hook_t1l

\1__hook_work_prop

\g_ hook execute immediately prop

\g__hook_used_prop

\g__hook_hook_curr_name_t1
\g__hook_name_stack_seq

__hook_tmp:w

\tl_gremove_once:Nx
\tl_show:x
\tl_log:x

Scratch variables used throughout the package.

25 \tl_new:N \1__hook_return_tl
26 \tl_new:N \1__hook_tmpa_tl
>7 \tl_new:N \1__hook_tmpb_tl

(End definition for \1__hook_return_t1, \1__hook_tmpa_tl, and \1__hook_tmpb_t1.)

In a few places we need a list of all hook names ever defined so we keep track if them in
this sequence.

25 \seq_new:N \g__hook_all_seq

(End definition for \g__hook_all_seq.)

A token list to hold delayed removals.
20 \tl_new:N \g__hook_removal_list_tl

(End definition for \g__hook_removal_list_prop.)

Stores the name of the hook currently being sorted.
30 \tl_new:N \1__hook_cur_hook_tl

(End definition for \1__hook_cur_hook_t1.)

A property list holding a copy of the \g__hook_(hook)_code_prop of the hook being
sorted to work on, so that changes don’t act destructively on the hook data structure.

31 \prop_new:N \1__hook_work_prop

(End definition for \1__hook_work_prop.)

List of hooks that from no on should not longer receive code.

3> \prop_new:N \g__hook_execute_immediately_prop

(End definition for \g__hook_execute_immediately_prop.)

All hooks that receive code (for use in debugging display).
33 \prop_new:N \g__hook_used_prop

(End definition for \g__hook_used_prop.)

Default label used for hook commands, and a stack to keep track of packages within
packages.

32 \tl_new:N \g__hook_hook_curr_name_tl
35 \seq_new:N \g__hook_name_stack_seq

(End definition for \g__hook_hook_curr_name_t1 and \g__hook_name_stack_seq.)

Temporary macro for generic usage.
56 \cs_new_eq:NN __hook_tmp:w ?

(End definition for __hook_tmp:w.)
Some variants of expl3 functions.

FMi: should be moved to expl3

24

\s__hook_mark

__hook_t1l_set:
__hook_t1l_set:
__hook_tl_set:
__hook_t1l_set:

__hook_tl_gset:
__hook_tl_gset:
__hook_tl_gset:
__hook_tl_gset:
__hook_tl_gset:
__hook_tl_gset:

__hook_tl_gput_right:
__hook_t1l_gput_right:
__hook_t1l_gput_right:

__hook_t1l_gput_left:
__hook_t1l_gput_left:

Nn
Nx
cn
cx

Nn
No
Nx
cn
co
cx

Nn
No
cn

Nn
No

;7 \cs_generate_variant:Nn \tl_gremove_once:Nn { Nx }
35 \cs_generate_variant:Nn \tl_show:n { x }
39 \cs_generate_variant:Nn \tl_log:n { x }

(End definition for \t1_gremove_once:Nx, \t1_show:x, and \t1l_log:x. These functions are documented
on page 77.)

Scan mark used for delimited arguments.

20 \scan_new:N \s__hook_mark

(End definition for \s__hook_mark.)

Private copies of a few expl3 functions. |3debug will only add debugging to the public
names, not to these copies, so we don’t have to use \debug_suspend: and \debug_-
resume: everywhere.
Functions like __hook_t1_set:Nn have to be redefined, rather than copied because

in expl3 they use __kernel_t1l_(g)set:Nx, which is also patched by I3debug.

21 \cs_new_protected:Npn __hook_tl_set:Nn #1#2

a2 { \cs_set_nopar:Npx #1 { __kernel_exp_not:w {#2} } }

+s \cs_new_protected:Npn __hook_tl_set:Nx #1#2

2 { \cs_set_nopar:Npx #1 {#2} }

s \cs_generate_variant:Nn __hook_tl_set:Nn { c }

s \cs_generate_variant:Nn __hook_tl_set:Nx { c }

(End definition for __hook_t1_set:Nn.)

Same as above.

«7 \cs_new_protected:Npn __hook_tl_gset:Nn #1#2

s { \cs_gset_nopar:Npx #1 { __kernel_exp_not:w {#2} } }

2 \cs_new_protected:Npn __hook_tl_gset:No #1#2

so { \cs_gset_nopar:Npx #1 { __kernel_exp_not:w \exp_after:wN {#2} } }
51 \cs_new_protected:Npn __hook_tl_gset:Nx #1#2

s> { \cs_gset_nopar:Npx #1 {#2} }

53 \cs_generate_variant:Nn __hook_tl_gset:Nn { ¢ }

s \cs_generate_variant:Nn __hook_tl_gset:No { ¢ }

55 \cs_generate_variant:Nn __hook_tl_gset:Nx { c }

(End definition for __hook_t1_gset:Nn.)

Same as above.

s6 \cs_new_protected:Npn __hook_tl_gput_right:Nn #1#2
s7 { __hook_tl_gset:Nx #1 { __kernel_exp_not:w \exp_after:wN { #1 #2 } } }
s \cs_generate_variant:Nn __hook_tl_gput_right:Nn { No, cn }

(End definition for __hook_tl_gput_right:Nn.)

Same as above.
s0 \cs_new_protected:Npn __hook_tl_gput_left:Nn #1#2

60 {

61 __hook_tl_gset:Nx #1

62 { __kernel_exp_not:w {#2} __kernel_exp_not:w \exp_after:wN {#1} }
63 }

e \cs_generate_variant:Nn __hook_tl_gput_left:Nn { No }

(End definition for __hook_t1_gput_left:Nn.)

25

__hook_t1l_gset_eq:NN

__hook_t1l_gclear:N
__hook_tl_gclear: [¢

\g__hook_..._code_prop
__hook~...
__hook_next~...

Same as above.

o5 \cs_new_eq:NN __hook_tl_gset_eq:NN \tl_gset_eq:NN
(End definition for __hook_tl_gset_eq:NN.)

Same as above.
6 \cs_new_protected:Npn __hook_tl_gclear:N #1
67 { __hook_t1l_gset_eq:NN #1 \c_empty_tl }
e \cs_generate_variant:Nn __hook_tl_gclear:N { c }

(End definition for __hook_tl_gclear:N.)

3.5 Providing new hooks

Hooks have a (name) and for each hook we have to provide a number of data structures.
These are

\g__hook_(name)_code_prop A property list holding the code for the hook in separate
chunks. The keys are by default the package names that add code to the hook, but
it is possible for packages to define other keys.

\g__hook_(name)_rule_(labell)|(label2)_t1 A token list holding the relation be-
tween (labell) and (label2) in the (name). The (labels) are lexically (reverse) sorted
to ensure that two labels always point to the same token list. For global rules, the
(name) is 77.

__hook (name) The code that is actually executed when the hook is called in the doc-
ument is stored in this token list. It is constructed from the code chunks applying
the information. This token list is named like that so that in case of an error inside
the hook, the reported token list in the error is shorter, and to make it simpler to
normalize hook names in __hook_make_name:n.

\g__hook_(name)_reversed_t1l Some hooks are “reversed”. This token list stores a - for
such hook so that it can be identified. The - character is used because (reversed)1l
is +1 for normal hooks and —1 for reversed ones.

__hook_toplevel (name) This token list stores the code inserted in the hook from
the user’s document, in the top-level label. This label is special, and doesn’t
participate in sorting. Instead, all code is appended to it and executed after (or
before, if the hook is reversed) the normal hook code, but before the next code
chunk.

__hook_next (name) Finally there is extra code (normally empty) that is used on the
next invocation of the hook (and then deleted). This can be used to define some
special behavior for a single occasion from within the document. This token list
follows the same naming scheme than the main __hook (name) token list. It is
called __hook_next (name) rather than __hook next_(name) because otherwise
a hook whose name is next_(name) would clash with the next code-token list of
the hook called (name).

(End definition for \g__hook_..._code_prop, __hook~..., and __hook_next~....)

26

\hook_new:n The \hook_new:n declaration declare a new hook and expects the hook (name) as its

__hook_declare:n

argument, e.g., begindocument.

e \cs_new_protected:Npn \hook_new:n #1

70 { __hook_normalize_hook_args:Nn __hook_new:n {#1} }

71 \cs_new_protected:Npn __hook_new:n #1

EE ¢
We check for one of the internal data structures and if it already exists we complain.

7 \hook_if_exist:nTF {#1}

74 { \msg_error:nnn { hooks } { exists } {#1} }
Otherwise we add the hook name to the list of all hooks and allocate the necessary data
structures for the new hook.

7 {

76 \seq_gput_right:Nn \g__hook_all_seq {#1}
This is only used by the actual code of the current hook, so declare it normally:

7 \tl_new:c { __hook~#1 }
Now ensure that the base data structure for the hook exists:

78 __hook_declare:n {#1}
The \g__hook_(hook)_labels_clist holds the sorted list of labels (once it got sorted).
This is used only for debugging.

79 \clist_new:c {g__hook_#1_labels_clist}
Some hooks should reverse the default order of code chunks. To signal this we have a
token list which is empty for normal hooks and contains a - for reversed hooks.

80 \tl_new:c { g__hook_#1_reversed_tl }
The above is all in L3 convention, but we also provide an interface to legacy IXTEX 2¢
hooks of the form \@...hook, e.g., \@begindocumenthook. there have been a few of
them and they have been added to using \g@addto@macro. If there exists such a macro
matching the name of the new hook, i.e., \@(hook-name)hook and it is not empty then
we add its contents as a code chunk under the label legacy.

Warning: this support will vanish in future releases!

81 __hook_include_legacy_code_chunk:n {#1}
82 T

(End definition for \hook_new:n. This function is documented on page 12.)

This function declares the basic data structures for a hook without actually declaring the
hook itself. This is needed to allow adding to undeclared hooks. Here it is unnecessary
to check whether all variables exist, since all three are declared at the same time (either
all of them exist, or none).

s \cs_new_protected:Npn __hook_declare:n #1

s {

86 __hook_if_exist:nF {#1}

87 {

88 \prop_new:c { g__hook_#1_code_prop }
89 \tl_new:c { __hook_toplevel~#1 }

9% \tl_new:c { __hook_next~#1 }

01 }

92 3

27

\

\

\hook_new_reversed:n

__hook_new_reversed:n

\hook_new_pair:nn

_hook_include_legacy _code_chunk:n

(End definition for __hook_declare:n.)

Declare a new hook. The default ordering of code chunks is reversed, signaled by setting
the token list to a minus sign.

o3 \cs_new_protected:Npn \hook_new_reversed:n #1

o« { __hook_normalize_hook_args:Nn __hook_new_reversed:n {#1} }

o5 \cs_new_protected:Npn __hook_new_reversed:n #1

96 {

o7 __hook_new:n {#1}
If the hook already exists the above will generate an error message, so the next line should
be executed (but it is — too bad).

08 \tl_gset:cn { g__hook_#1_reversed_tl } { - }

99 }

(End definition for \hook_new_reversed:n and __hook_new_reversed:n. This function is documented
on page 12.)
A shorthand for declaring a normal and a (matching) reversed hook in one go.

100 \cs_new_protected:Npn \hook_new_pair:nn #1#2

100 { \hook_new:n {#1} \hook_new_reversed:n {#2} }

(End definition for \hook_new_pair:nn. This function is documented on page 12.)

The KTEX legacy concept for hooks uses with hooks the following naming scheme in the
code: \@. . .hook.

If this macro is not empty we add it under the label legacy to the current hook and
then empty it globally. This way packages or classes directly manipulating commands
such as \@begindocumenthook still get their hook data added.

Warning: this support will vanish in future releases!

102 \cs_new_protected:Npn __hook_include_legacy_code_chunk:n #1

103 {
If the macro doesn’t exist (which is the usual case) then nothing needs to be done.
104 \tl_if_exist:cT { @#1lhook }

Of course if the legacy hook exists but is empty, there is no need to add anything under
legacy the legacy label.

105 {

106 \tl_if_empty:cF { @#1lhook }

107 {

108 \exp_args:Nnnv __hook_hook_gput_code_do:nnn {#1}
109 { legacy } { @#1ihook }

Once added to the hook, we need to clear it otherwise it might get added again later if
the hook data gets updated.

110 __hook_t1l_gclear:c { @#1lhook }

111 }

112 }

113 }

(End definition for __hook_include_legacy_code_chunk:n.)

28

3.6 Parsing a label

__hook parse_label default:n This macro checks if a label was given (not \c_novalue_t1), and if so, tries to parse the
label looking for a leading . to replace by __hook_currname_or_default:.

114 \cs_new:Npn __hook_parse_label_default:n #1

115 {

116 \tl_if_novalue:nTF {#1}

117 { __hook_currname_or_default: }

118 { \tl_trim_spaces_apply:nN {#1} __hook_parse_dot_label:n }
119 ¥

(End definition for __hook_parse_label_default:n.)

__hook_parse_dot_label:n Start by checking if the label is empty, which raises an error, and uses the fallback value.
__hook_parse_dot_label:w If not, split the label at a ./, if any, and check if no tokens are before the ./, or if the
_ hook parse dot label cleanup:w only character is a .. If these requirements are fulfilled, the leading . is replaced with

\hook parse dot label aux:w __hook_currname_or_default:. Otherwise the label is returned unchanged.
120 \cs_new:Npn __hook_parse_dot_label:n #1
121 {
122 \tl_if_empty:nTF {#1}
123 {
124 \msg_expandable_error:nn { hooks } { empty-label }
125 __hook_currname_or_default:
126 }
127 {
128 \str_if_eq:nnTF {#1} { . }
129 { __hook_currname_or_default: }
130 { __hook_parse_dot_label:w #1 ./ \s__hook_mark }
131 }
132 }
133 \cs_new:Npn __hook_parse_dot_label:w #1 ./ #2 \s__hook_mark
134 {
135 \tl_if_empty:nTF {#1}
136 { __hook_parse_dot_label_aux:w #2 \s__hook_mark }
137 {
138 \tl_if_empty:nTF {#2}
139 { __hook_make_name:n {#1} }
140 { __hook_parse_dot_label_cleanup:w #1 ./ #2 \s__hook_mark }
141 }
142 3

13 \cs_new:Npn __hook_parse_dot_label_cleanup:w #1 ./ \s__hook_mark {#1}
12 \cs_new:Npn __hook_parse_dot_label_aux:w #1 ./ \s__hook_mark
145 { __hook_currname_or_default: / __hook_make_name:n {#1} }

(End definition for __hook_parse_dot_label:n and others.)

__hook_currname_or_default: Uses \g__hook_hook_curr_name_tl if it is set, otherwise tries \@currname. If neither is
set, raises an error and uses the fallback value label-missing.

us \cs_new:Npn __hook_currname_or_default:

147 {

148 \tl_if_empty:NTF \g__hook_hook_curr_name_tl
149 {

150 \tl_if_empty:NTF \@currname

151 {

29

__hook_make_name:n

__hook_make_name:w

__hook normalize hook args:Nn

__hook_normalize hook args:Nnn

__hook normalize hook rule args:Nnnnn

__hook normalize hook arg

o
S

_aux:ln

152 \msg_expandable_error:nnn { hooks } { should-not-happen }

153 { Empty~default~label. }

154 __hook_make_name:n { label-missing }
155 }

156 { \@currname }

157 }

158 { \g__hook_hook_curr_name_t1l }

159 }

(End definition for __hook_currname_or_default:.)

Provides a standard sanitization of a hook’s name. It uses \cs:w to build a control
sequence out of the hook name, then uses \cs_to_str:N to get the string representation
of that, without the escape character. \cs:w-based expansion is used instead of e-based
because Unicode characters don’t behave well inside \expanded. The macro adds the
__hook~ prefix to the hook name to reuse the hook’s code token list to build the csname
and avoid leaving “public” control sequences defined (as \relax) in TeX’s memory.

160 \cs_new:Npn __hook_make_name:n #1

161 {

162 \exp_after:wN \exp_after:wN \exp_after:wN __hook_make_name:w
163 \exp_after:wN \token_to_str:N \cs:w __hook~ #1 \cs_end:

164 }

165 \exp_last_unbraced:NNNNo
166 \cs_new:Npn __hook_make_name:w #1 \tl_to_str:n { __hook~ } { }

(End definition for __hook_make_name:n and __hook_make_name:w.)

Standard route for normalising hook and label arguments. The main macro does the
entire operation within a group so that csnames made by __hook_make_name:n are
wiped off before continuing. This means that this function cannot be used for \hook_-
use:n!

167 \cs_new_protected:Npn __hook_normalize_hook_args_aux:Nn #1 #2

168 {

169 \group_begin:

170 \use:e

171 {

172 \group_end:

173 \exp_not:N #1 #2
174 }

175 }

176 \cs_new_protected:Npn __hook_normalize_hook_args:Nn #1 #2

177 {

178 __hook_normalize_hook_args_aux:Nn #1

179 { { __hook_parse_label_default:n {#2} } }

180 }

151 \cs_new_protected:Npn __hook_normalize_hook_args:Nnn #1 #2 #3
182 {

183 __hook_normalize_hook_args_aux:Nn #1

184 {

185 { __hook_parse_label_default:n {#2} }
186 { __hook_parse_label_default:n {#3} }
187 }

188 }

150 \cs_new_protected:Npn __hook_normalize_hook_rule_args:Nnnnn #1 #2 #3 #4 #5

30

\hook_gput_code:nnn
__hook_gput_code:nnn
__hook_gput_code:nxv

__hook_hook_gput_code_do:nnn

190 {

191 __hook_normalize_hook_args_aux:Nn #1

192 {

103 { __hook_parse_label_default:n {#2} }
104 { __hook_parse_label_default:n {#3} }
195 { \tl_trim_spaces:n {#4} }

196 { __hook_parse_label_default:n {#5} }
197 }

198 }

(End definition for __hook_normalize_hook_args:Nn and others.)

With \hook_gput_code:nnn{(hook)}{(label)}{(code)} a chunk of {code) is added to an
existing (hook) labeled with (label).

190 \cs_new_protected:Npn \hook_gput_code:nnn #1 #2

20 { __hook_normalize_hook_args:Nnn __hook_gput_code:nnn {#1} {#2} }

201 \cs_new_protected:Npn __hook_gput_code:nnn #1 #2 #3

202 {
First check if the hook was used as a one-time hook:

203 \prop_if_in:NnTF \g__hook_execute_immediately_prop {#1}

204 {#3}

205 {
Then check if the current (hook)/(label) pair was marked for removal, in which case __-
hook_unmark_removal:nn is used to remove that mark (once). This may happen when
a package removes code from another package which was not yet loaded: the removal
order is stored, and at this stage it is executed by not adding to the hook.

206 __hook_if_marked_removal:nnTF {#1} {#2}

207 { __hook_unmark_removal:nn {#1} {#2} }
208 {

If no removal is queued, we are free to add. Start by checking if the hook exists.
209 \hook_if_exist:nTF {#1}

If so we simply add (or append) the new code to the property list holding different chunks
for the hook. At \begin{document} this is then sorted into a token list for fast execution.

10 {
11 __hook_hook_gput_code_do:nnn {#1} {#2} {#3}

NN

However, if there is an update within the document we need to alter this execution code
which is done by __hook_update_hook_code:n. In the preamble this does nothing.
212 __hook_update_hook_code:n {#1}
213 }
If the hook does not exist, however, before giving up try to declare it as a generic
hook, if its name matches one of the valid patterns.
214 { __hook_try_declaring_generic_hook:nnn {#1} {#2} {#3} }
215 T
216 }
217 }
215 \cs_generate_variant:Nn __hook_gput_code:nnn { nxv }
This macro will unconditionally add a chunk of code to the given hook.

210 \cs_new_protected:Npn __hook_hook_gput_code_do:nnn #1 #2 #3
220 {

31

However, first some debugging info if debugging is enabled:

221 __hook_debug:n{\iow_term:x{***x~ Add~ to~

22 \hook_if_exist:nF {#1} { undeclared~ }
223 hook~ #1~ (#2)

24 \on@line\space <-~ \tl_to_str:n{#3}} }

Then try to get the code chunk labeled #2 from the hook. If there’s code already there,
then append #3 to that, otherwise just put #3. If the current label is top-level, the
code is added to a dedicated token list __hook_toplevel (hook) that goes at the end
of the hook (or at the beginning, for a reversed hook), just before __hook_next (hook).

225 \str_if_eq:nnTF {#2} { top-level }

226 {

227 \str_if_eq:eeTF { top-level } { __hook_currname_or_default: }

228 {
If the hook’s basic structure does not exist, we need to declare it with __hook_-
declare:n.

229 __hook_declare:n {#1}

230 __hook_t1l_gput_right:cn { __hook_toplevel~#1 } {#3}

231 }

232 { \msg_error:nnn { hooks } { misused-top-level } {#1} }

233 }

234 {

235 \prop_get:cnNTF { g__hook_#1_code_prop } {#2} \1__hook_return_tl

237 \prop_gput:cno { g__hook_#1_code_prop } {#2}

238 { \1__hook_return_tl #3 }

239 }

240 { \prop_gput:cnn { g__hook_#1_code_prop } {#2} {#3} }
241 }

242 3

(End definition for \hook_gput_code:nnn, __hook_gput_code:nnn, and __hook_hook_gput_code_-
do:nnn. This function is documented on page 12.)

_hook gput undeclared hook:nnn Often it may happen that a package A defines a hook foo, but package B, that adds
code to that hook, is loaded before A. In such case we need to add code to the hook
before its declared.

213 \cs_new_protected:Npn __hook_gput_undeclared_hook:nnn #1 #2 #3
244 {

25 __hook_declare:n {#1}

246 __hook_hook_gput_code_do:nnn {#1} {#2} {#3}

247 }

(End definition for __hook_gput_undeclared_hook:nnn.)

__hook_try declaring generic hook:nmn These entry-level macros just pass the arguments along to the common __hook_try_-

__hook_try declaring generic next hook:nn declaring_generic_hook:nNNnn with the right functions to execute when some action
is to be taken.

The wrapper __hook_try_declaring_generic_hook:nnn then defers \hook_-

gput_code:nnn if the generic hook was declared, or to __hook_gput_undeclared_-

hook:nnn otherwise (the hook was tested for existence before, so at this point if it isn’t

generic, it doesn’t exist).

32

The wrapper __hook_try_declaring generic_next_hook:nn for next-execution
hooks does the same: it defers the code to \hook_gput_next_code:nn if the generic hook
was declared, or to __hook_gput_next_do:nn otherwise.

25 \cs_new_protected:Npn __hook_try_declaring_generic_hook:nnn #1

249 {

250 __hook_try_declaring_generic_hook:nNNnn {#1}

251 \hook_gput_code:nnn __hook_gput_undeclared_hook:nnn

252 }

253 \cs_new_protected:Npn __hook_try_declaring_generic_next_hook:nn #1
254 {

255 __hook_try_declaring_generic_hook:nNNnn {#1}

256 \hook_gput_next_code:nn __hook_gput_next_do:nn

257 }

__hook_try_declaring_generic_hook:nNNnn now splits the hook name at the first /

(if any) and first checks if it is a file-specific hook (they require some normalization) using

\hook try declaring generic hook:nllimn __hook_if_file_hook:wTF. If not then check it is one of a predefined set for generic

hook try declaring generic hook split:nllinn names. We also split off the second component to see if we have to make a reversed hook.
_hook_try_declaring generic hook:inTF In either case the function returns (¢rue) for a generic hook and (false) in other cases.

255 \cs_new_protected:Npn __hook_try_declaring_generic_hook:nNNnn #1

259 {

260 __hook_if_file_hook:wTF #1 / / \s__hook_mark

261 {

262 \exp_args:Ne __hook_try_declaring_generic_hook_split:nNNnn
263 { \exp_args:Ne __hook_file_hook_normalize:n {#1} }

264 ¥

265 { __hook_try_declaring_generic_hook_split:nNNnn {#1} }

266 }

267 \cs_new_protected:Npn __hook_try_declaring_generic_hook_split:nNNnn #1 #2 #3
268 {

260 __hook_try_declaring_generic_hook:wnTF #1 / / / \scan_stop: {#1}
270 {#2}

271 { #3 } {#1}

272 }

o3 \prg_new_protected_conditional:Npnn __hook_try_declaring_generic_hook:wn
274 #1 / #2 / #3 / #4 \scan_stop: #5 { TF }

275 {

276 \tl_if_empty:nTF {#2}

277 { \prg_return_false: }

278 {

279 \prop_if_in:NnTF \c__hook_generics_prop {#1}

280 {

281 \hook_if_exist:nF {#5} { \hook_new:n {#5} }

After having declared the hook we check the second component (for file hooks) or the
third component for environment hooks) and if it is on the list of components for which
we should have declared a reversed hook we alter the hook data structure accordingly.

282 \prop_if_in:NnTF \c__hook_generics_reversed_ii_prop {#2}

283 { \tl_gset:cn { g__hook_#5_reversed_tl } { - } }

284 {

285 \prop_if_in:NnT \c__hook_generics_reversed_iii_prop {#3}
286 { \tl_gset:cn { g__hook_#5_reversed_tl } { - } }

287 }

33

__hook_if_file_hook_p:w
__hook_if_file_hook:wTF

__hook file hook normalize:n
__hook_strip_double_slash:n
__hook_strip_double_slash:w

Now that we know that the hook is declared we can add the code to it.

288 \prg_return_true:

289 ¥

200 { \prg_return_false: }
201 3

202 3

(End definition for __hook_try_declaring_generic_hook:nnn and others.)

__hook_if_file_hook:wTF checks if the argument is a valid file-specific hook (not, for
example, file/before, but file/before/foo.tex). If it is a file-specific hook, then it
executes the (true) branch, otherwise (false).

A file-specific hook is file/(position)/(name). If any of these parts don’t exist,
it is a general file hook or not a file hook at all, so the conditional evaluates to (false).
Otherwise, it checks that the first part is file and that the (position) is in the \c__-
hook_generics_file_prop.

A property list is used here to avoid having to worry with catcodes, because expl3’s
file name parsing turns all characters into catcode-12 tokens, which might differ from
hand-input letters.

203 \prg_new_conditional:Npnn __hook_if_file_hook:w

204 #1 / #2 / #3 \s__hook_mark { TF }

295 {

206 \str_if_eq:nnTF {#1} { file }

297 {

208 \bool_lazy_or:nnTF

299 { \tl_if_empty_p:n {#3} }

300 { \str_if_eq p:nn {#3} { / } }
301 { \prg_return_false: }

302 {

303 \prop_if_in:NnTF \c__hook_generics_file_prop {#2}
304 { \prg_return_true: }

305 { \prg_return_false: }

306 ¥

307 }

308 { \prg_return_false: }

309 3

(End definition for __hook_if_file_hook:wTF.)

When a file-specific hook is found, before being declared it is lightly normalized by
__hook_file_hook_normalize:n. The current implementation just replaces two con-
secutive slashes (//) by a single one, to cope with simple cases where the user did some-
thing like \def\input@path{{./mypath/}}, in which case a hook would have to be
\AddToHook{file/after/./mypath//file.tex}.

310 \cs_new:Npn __hook_file_hook_normalize:n #1

311 { __hook_strip_double_slash:n {#1} }

s> \cs_new:Npn __hook_strip_double_slash:n #1

313 { __hook_strip_double_slash:w #1 // \s__hook_mark }

This function is always called after testing if the argument is a file hook with __hook_-
if_file_hook:wTF, so we can assume it has three parts (it is either file/before/. ..
or file/after/...), so we use #1/#2/#3 // instead of just #1 // to prevent losing a
slash if the file name is empty.

34

\c__hook_generics_prop

\c_ hook generics reversed ii prop
\c_ hook generics reversed iii prop

\c__hook_generics_file_prop

\hook_gremove_code:nn
__hook_gremove_code:nn

512 \cs_new:Npn __hook_strip_double_slash:w #1/#2/#3 // #4 \s__hook_mark
315 {

316 \tl_if_empty:nTF {#4}

317 { #1/#2/#3 }

318 { __hook_strip_double_slash:w #1/#2/#3 / #4 \s__hook_mark }
319 }

(End definition for __hook_file_hook_normalize:n, __hook_strip_double_slash:n, and __hook_-
strip_double_slash:w.)

Property list holding the generic names. We don’t provide any user interface to this as
this is meant to be static.

env The generic hooks used in \begin and \end.
file The generic hooks used when loading a file

320 \prop_const_from_keyval:Nn \c__hook_generics_prop
321 {env=,file=,package=,class=,include=}

(End definition for \c__hook_generics_prop.)

Some of the generic hooks are supposed to use reverse ordering, these are the following
(only the second or third sub-component is checked):

32 \prop_const_from_keyval:Nn \c__hook_generics_reversed_ii_prop {after=,end=}

23 \prop_const_from_keyval:Nn \c__hook_generics_reversed_iii_prop {after=}

224 \prop_const_from_keyval:Nn \c__hook_generics_file_prop {before=,after=}

(End definition for \c__hook_generics_reversed_ii_prop, \c__hook_generics_reversed_iii_prop,
and \c__hook_generics_file_prop.)

With \hook_gremove_code:nn{(hook)}{(label)} any code for (hook) stored under (label)
is removed.

35 \cs_new_protected:Npn \hook_gremove_code:nn #1 #2

26 { __hook_normalize_hook_args:Nnn __hook_gremove_code:nn {#1} {#2} }

227 \cs_new_protected:Npn __hook_gremove_code:nn #1 #2

328 {
First check that the hook code pool exists. \hook_if_exist:nTF isn’t used here because
it should be possible to remove code from a hook before its defined (see section 2.1.6).

329 __hook_if_exist:nTF {#1}

330 {
Then remove the chunk and run __hook_update_hook_code:n so that the execution
token list reflects the change if we are after \begin{document}.

If all code is to be removed, clear the code pool \g__hook_(hook)_code_prop,

the top-level code __hook_toplevel (hook), and the next-execution code __hook_-
next (hook).

331 \str_if_eq:nnTF {#2} {*}

332 {

333 \prop_gclear:c { g__hook_#1_code_prop }

334 __hook_t1l_gclear:c { __hook_toplevel~#1 }
335 __hook_t1l_gclear:c { __hook_next~#1 }

336 }

337 {

35

If the label is top-level then clear the token list, as all code there is under the same
label. Marked removal is not implemented for top-level because it is hard to reliably
know that no code was added to __hook_toplevel (hook) (granted that an empty code
could be interpreted as that, but then it differs in behaviour from other labels, in which
an empty chunk is still valid for removal). Besides, it doesn’t make much (if any) sense for
packages to remove top-level code. So here the chunk is just cleared unconditionally.

338 \str_if_eq:nnTF {#2} { top-level }
339 { __hook_t1l_gclear:c { __hook_toplevel~#1 } }
340 {

Otherwise check if the label being removed exists in the code pool. If it does, just call
__hook_gremove_code_do:nn to do the removal, otherwise mark it to be removed.

341 \prop_get:cnNTF { g__hook_#1_code_prop } {#2} \1__hook_return_tl
342 { __hook_gremove_code_do:nn }
343 { __hook_mark_removal:nn }
344 {#1} {#2}
345 }
346 T
Finally update the code, if the hook exists.
347 \hook_if_exist:nT {#1}
348 { __hook_update_hook_code:n {#1} }
349 }

If the code pool for this hook doesn’t exist it means that nothing tried to add to it
before, so we just queue this removal order for later.

350 { __hook_mark_removal:nn {#1} {#2} }
351 }

Remove code for a given label.

32 \cs_new_protected:Npn __hook_gremove_code_do:nn #1 #2
__hook_gremove_code_do:nn 353 { \prop_gremove:cn { g__hook_#1_code_prop } {#2} }

(End definition for \hook_gremove_code:nn, __hook_gremove_code:nn, and __hook_gremove_code_-
do:nn. This function is documented on page 13.)

__hook_mark_removal:nn Marks (label) (#2) to be removed from (hook) (#1). The number of removals should be
fairly small, and \t1l_gremove_once:Nx is fairly efficient even for longer token lists, so
we use a single global token list, rather than one for each hook.

A hand-crafted token list is used here because property lists don’t hold repeated
items, so multiple usages of __hook_mark_removal:nn would be cancelled by a single
__hook_unmark_removal:nn.

35 \cs_new_protected:Npn __hook_mark_removal:nn #1 #2

355 {

356 \tl_gput_right:Nx \g__hook_removal_list_tl
357 { __hook_removal_tl:nn {#1} {#2} }

358 3

(End definition for __hook_mark_removal:nn.)

__hook_unmark_removal:nn Unmarks (label) (#2) to be removed from (hook) (#1). \tl_gremove_once:Nx is used
rather than \t1l_gremove_all:Nx so that two additions are needed to cancel two marked
removals, rather than only one.

350 \cs_new_protected:Npn __hook_unmark_removal:nn #1 #2

36

__hook_if_marked_removal:nnTF

__hook_removal_tl:nn

\g__hook_77_code_prop
__hook~??

\g__hook_77_reversed_tl

\hook_gset_rule:nnnn
__hook_gset_rule:nnnn

360 {

361 \tl_gremove_once:Nx \g__hook_removal_list_tl
362 { __hook_removal_tl:nn {#1} {#2} }
363 ¥

(End definition for __hook_unmark_removal:nn.)

Checks if the \g__hook_removal_list_tl contains the current (label) (#2) and (hook)
(#1).
500 \prg_new_protected_conditional:Npnn __hook_if_marked_removal:nn #1 #2 { TF }
365 {
366 \exp_args:NNx \tl_if_in:NnTF \g__hook_removal_list_tl
367 { __hook_removal_tl:nn {#1} {#2} }

368 { \prg_return_true: } { \prg_return_false: }
369 }

(End definition for __hook_if_marked_removal:nnTF.)

Builds a token list with #1 and #2 which can only be matched by #1 and #2. The &,
anchors a removal, so that #1 can’t be mistaken by #2 and vice versa, and the two $3
delimit the two arguments

370 \cs_new:Npn __hook_removal_tl:nn #1 #2
s { & \tl_to_str:n {#2} $ \tl_to_str:n {#1} $ }

(End definition for __hook_removal_tl:nn.)

Initially these variables simply used an empty “label” name (not two question marks).
This was a bit unfortunate, because then 13doc complains about __ in the middle of a
command name when trying to typeset the documentation. However using a “normal”
name such as default has the disadvantage of that being not really distinguishable from
a real hook name. I now have settled for ?? which needs some gymnastics to get it into
the csname, but since this is used a lot things should be fast, so this is not done with ¢
expansion in the code later on.
__hook~?7 isn’t used, but it has to be defined to trick the code into thinking that
77 is actually a hook.
572 \prop_new:c {g__hook_77_code_prop}
;73 \prop_new:c {__hook~77}
Default rules are always given in normal ordering (never in reversed ordering). If
such a rule is applied to a reversed hook it behaves as if the rule is reversed (e.g., after
becomes before) because those rules are applied first and then the order is reversed.

374 \tl_new:c {g__hook_?77_reversed_tl}

(End definition for \g__hook_??_code_prop, __hook~??, and \g__hook_7??_reversed_tl.)

3.7 Setting rules for hooks code

FMi: needs docu correction given new implementation
With \hook_gset_rule:nnnn{{hook)}{{labell)}{{relation)}{(label2)} a relation is
defined between the two code labels for the given (hook). The special hook 7?7 stands for
any hook describing a default rule.
375 \cs_new_protected:Npn \hook_gset_rule:nnnn #1#2#3#4
376 {

377 __hook_normalize_hook_rule_args:Nnnnn __hook_gset_rule:nnnn

37

378 {#1} {#2} {#3} {#4}

379 }
30 \cs_new_protected:Npn __hook_gset_rule:nnnn #1#2#3#4
381 {

First we ensure the basic data structure of the hook exists:
382 __hook_declare:n {#1}

Then we clear any previous relationship between both labels.
383 __hook_rule_gclear:nnn {#1} {#2} {#4}

Then we call the function to handle the given rule. Throw an error if the rule is invalid.

384 \cs_if_exist_use:cTF { __hook_rule_#3_gset:nnn }
385 {

386 {#1} {#2} {#4}

387 __hook_update_hook_code:n {#1}

388 }

380 { \msg_error:nnnnnn { hooks } { unknown-rule }
390 {#1} {#2} {#3} {#4} }
391 }

(End definition for \hook_gset_rule:nnnn and __hook_gset_rule:nnnn. This function is documented
on page 13.)

__hook_rule_before_gset:nnn Then we add the new rule. We need to normalize the rules here to allow for faster pro-

__hook_rule_after_gset:nnn cessing later. Given a pair of labels [4 and g, the rule [4 > [p is the same as [g < [4 only

__hook_rule_<_gset:nnn presented differently. But by normalizing the forms of the rule to a single representation,
__hook_rule_> gset:nnn say, lg < la, reduces the time spent looking for the rules later considerably.

Here we do that normalization by using \ (pdf) strcmp to lexically sort labels [4 and
Ip to a fixed order. This order is then enforced every time these two labels are used
together.

Here we use __hook_label_pair:nn {(hook)} {(l4)} {(l5)} to build a string Ip |14
with a fixed order, and use __hook_label_ordered:nnTF to apply the correct rule to
the pair of labels, depending if it was sorted or not.

o> \cs_new_protected:Npn __hook_rule_before_gset:nnn #1#2#3

393 {

394 __hook_t1l_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl1 }
395 { __hook_label_ordered:nnTF {#2} {#3} { <} { >} }

396 }

507 \cs_new_eq:cN { __hook_rule_<_gset:nnn } __hook_rule_before_gset:nnn

;08 \cs_new_protected:Npn __hook_rule_after_gset:nnn #1#2#3

399 {

400 __hook_t1l_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#3} {#2} _tl }
401 { __hook_label_ordered:nnTF {#3} {#2} { <} { >} }

402 }

203 \cs_new_eq:cN { __hook_rule_>_gset:nnn } __hook_rule_after_gset:nnn

(End definition for __hook_rule_before_gset:nnn and others.)

__hook_rule_voids_gset:nnn This rule removes (clears, actually) the code from label #3 if label #2 is in the hook #1.
204 \cs_new_protected:Npn __hook_rule_voids_gset:nnn #1#2#3

405 {

406 __hook_tl_gset:cx { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _tl }
a07 { __hook_label_ordered:nnTF {#2} {#3} { > } { <- } }

408 3

38

(End definition for __hook_rule_voids_gset:nnn.)

__hook rule_incompatible-error gset:nn These relations make an error/warning if labels #2 and #3 appear together in hook #1.
__hook_rule_incompatible-warning gset:nnn 200 \cs_new_protected:cpn { __hook_rule_incompatible-error_gset:nnn } #1#2#3
410 { __hook_t1l_gset:cn { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _t1 } { xE } }
211 \cs_new_protected:cpn { __hook_rule_incompatible-warning_gset:nnn } #1#2#3

sz { __hook_tl_gset:cn { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _t1 } { xW } }

(End definition for __hook_rule_incompatible-error_gset:nnn and __hook_rule_incompatible-warning_-
gset:nnn.)

__hook rule unrelated gset:nm Undo a setting. __hook_rule_unrelated_gset:nnn doesn’t need to do anything, since
__hook_rule_gclear:nnn we use __hook_rule_gclear:nnn before setting any rule.

213 \cs_new_protected:Npn __hook_rule_unrelated_gset:nnn #1#2#3 { }
414 \cs_new_protected:Npn __hook_rule_gclear:nnn #1#2#3
415 { \cs_undefine:c { g__hook_#1_rule_ __hook_label_pair:nn {#2} {#3} _t1 } }

(End definition for __hook_rule_unrelated_gset:nnn and __hook_rule_gclear:nnn.)

__hook_label_pair:nn Ensure that the lexically greater label comes first.
216 \cs_new:Npn __hook_label_pair:nn #1#2

417 {

a18 \if_case:w __hook_str_compare:nn {#1} {#2} \exp_stop_f:
419 #1 | #1 % O

420 \or: #1 | #2 % +1

a1 \else: #2 | #1 % -1

422 \fi:

423 }

(End definition for __hook_label_pair:nn.)

__hook_label ordered_p:nn Check that labels #1 and #2 are in the correct order (as returned by __hook_label_ -
__hook_label ordered:nnTF pair:nn) and if so return true, else return false.

24 \prg_new_conditional:Npnn __hook_label_ordered:nn #1#2 { TF }

425 {

426 \if_int_compare:w __hook_str_compare:nn {#1} {#2} > O \exp_stop_f:
a27 \prg_return_true:

428 \else

429 \prg_return_false:

430 \fi:

431 }

(End definition for __hook_label_ordered:nnTF.)

__hook_if_label case:nnnnn To avoid doing the string comparison twice in __hook_initialize_single:NNn (once
with \str_if_eq:nn and again with __hook_label_ordered:nn), we use a three-way
branching macro that will compare #1 and #2 and expand to \use_i:nnn if they are
equal, \use_ii:nn if #1 is lexically greater, and \use_iii:nn otherwise.

222 \cs_new:Npn __hook_if_label_case:nnnnn #1#2

433 {

434 \cs:w use_

435 \if_case:w __hook_str_compare:nn {#1} {#2}
436 i \or: ii \else: iii \fi: :nnn

437 \cs_end:

438 }

39

(End definition for __hook_if_label_case:nnnnn.)

__hook_update_hook_code:n Before \begin{document} this does nothing, in the body it reinitializes the hook code
using the altered data.

239 \cs_new_eq:NN __hook_update_hook_code:n \use_none:n

(End definition for __hook_update_hook_code:n.)

__hook_initialize_all: Initialize all known hooks (at \begin{document}), i.e., update the fast execution token
lists to hold the necessary code in the right order.

20 \cs_new_protected:Npn __hook_initialize_all: {
First we change __hook_update_hook_code:n which so far was a no-op to now initialize

one hook. This way any later updates to the hook will run that code and also update
the execution token list.

441 \cs_gset_eq:NN __hook_update_hook_code:n __hook_initialize_hook_code:n
Now we loop over all hooks that have been defined and update each of them.

w2 __hook_debug:n { \prop_gclear:N \g__hook_used_prop }
443 \seq_map_inline:Nn \g__hook_all_seq

444 {
a45 __hook_update_hook_code:n {##1}
446 }

If we are debugging we show results hook by hook for all hooks that have data.
w7 __hook_debug:n

448 { \iow_term:x{""JA1l~ initialized~ (non-empty)~ hooks:}
449 \prop_map_inline:Nn \g__hook_used_prop

450 { \dow_term:x{""J~ ##1~ ->~

451 \exp_not:v {__hook~##1}~ }

452 }

453 }

After all hooks are initialized we change the “use” to just call the hook code and not
initialize it (as it was done in the preamble.

w54 \cs_gset_eq:NN \hook_use:n __hook_use_initialized:n
w55 \cs_gset_eq:NN __hook_preamble_hook:n \use_none:n
456 F

(End definition for __hook_initialize_all:.)

\ hook initialize hook code:n Imitializing or reinitializing the fast execution hook code. In the preamble this is selec-
tively done in case a hook gets used and at \begin{document} this is done for all hooks
and afterwards only if the hook code changes.

457 \cs_new_protected:Npn __hook_initialize_hook_code:n #1

458 {
459 __hook_debug:n{ \iow_term:x{"~JUpdate~ code~ for~ hook~
460 ’#1° \on@line :""J} }

This does the sorting and the updates. First thing we do is to check if a legacy hook
macro exists and if so we add it to the hook under the label legacy. This might make
the hook non-empty so we have to do this before the then following test.

461 __hook_include_legacy_code_chunk:n {#1}

40

__hook_tl_csname:n
__hook_seq_csname:n

If there aren’t any code chunks for the current hook, there is no point in even starting
the sorting routine so we make a quick test for that and in that case just update __-
hook (hook) to hold the top-level and next code chunks. If there are code chunks we
call __hook_initialize_single:NNn and pass to it ready made csnames as they are
needed several times inside. This way we save a bit on processing time if we do that up
front.

462 \hook_if_exist:nT {#1}

463 {

464 \prop_if_empty:cTF {g__hook_#1_code_prop}
465 {

466 __hook_t1l_gset:co { __hook~#1 }

467 {

468 \cs:w __hook_toplevel~#1 \exp_after:wN \cs_end:
469 \cs:w __hook_next~#1 \cs_end:

470 }

471 }

472 {

By default the algorithm sorts the code chunks and then saves the result in a token list for
fast execution by adding the code one after another using \tl_gput_right:NV. When
we sort code for a reversed hook, all we have to do is to add the code chunks in the
opposite order into the token list. So all we have to do in preparation is to change two
definitions used later on.

a3 __hook_if_reversed:nTF {#1}

474 { \cs_set_eq:NN __hook_tl_gput:Nn __hook_t1l_gput_left:Nn
a7s \cs_set_eq:NN __hook_clist_gput:NV \clist_gput_left:NV }
a76 { \cs_set_eq:NN __hook_t1l_gput:Nn __hook_t1_gput_right:Nn
477 \cs_set_eq:NN __hook_clist_gput:NV \clist_gput_right:NV }

When sorting, some relations (namely voids) need to act destructively on the code
property lists to remove code that shouldn’t appear in the sorted hook token list, so we
temporarily save the old code property list so that it can be restored later.

478 \prop_set_eq:Nc \1__hook_work_prop { g__hook_#1_code_prop }
479 __hook_initialize_single:ccn
480 { __hook~#1 } { g__hook_#1_labels_clist } {#1}

For debug display we want to keep track of those hooks that actually got code added to
them, so we record that in plist. We use a plist to ensure that we record each hook name
only once, i.e., we are only interested in storing the keys and the value is arbitrary.

a81 __hook_debug:n{ \exp_args:NNx \prop_gput:Nnn

482 \g__hook_used_prop {#1}{} }
483 ¥

484 }

485 }

(End definition for __hook_initialize_hook_code:n.)

It is faster to pass a single token and expand it when necessary than to pass a bunch of
character tokens around.

FMi: note to myself: verify

256 \cs_new:Npn __hook_tl_csname:n #1 { 1__hook_label_#1_tl1 }
257 \cs_new:Npn __hook_seq_csname:n #1 { 1__hook_label_#1_seq }

41

\1__hook_labels_seq
\1__hook_labels_int
\1__hook_front_t1l
\1__hook_rear_tl
\1__hook_label _0_t1

__hook initialize single:Nlin

__hook_initialize single:ccn

(End definition for __hook_tl_csname:n and __hook_seq_csname:n.)

For the sorting I am basically implementing Knuth’s algorithm for topological sorting as
given in TAOCP volume 1 pages 263—266. For this algorithm we need a number of local
variables:

e List of labels used in the current hook to label code chunks:
a88 \seq_new:N \1__hook_labels_seq

e Number of labels used in the current hook. In Knuth’s algorithm this is called N:
489 \int_new:N \1__hook_labels_int

o The sorted code list to be build is managed using two pointers one to the front of
the queue and one to the rear. We model this using token list pointers. Knuth calls

them F and R:
490 \tl_new:N \1__hook_front_tl
401 \tl_new:N \1__hook_rear_tl

e The data for the start of the queue is kept in this token list, it corresponds to what
Don calls QLINK[0] but since we aren’t manipulating individual words in memory
it is slightly differently done:

492 \tl_new:c { __hook_tl_csname:n { 0 } }
(End definition for \1__hook_labels_seq and others.)

__hook_initialize_single:NNn implements the sorting of the code chunks for a
hook and saves the result in the token list for fast execution (#4). The argu-
ments are (hook-code-plist), (hook-code-tl), (hook-top-level-code-tl), (hook-next-code-tl),
(hook-ordered-labels-clist) and (hook-name) (the latter is only used for debugging—the
(hook-rule-plist) is accessed using the (hook-name)).

The additional complexity compared to Don’s algorithm is that we do not use simple
positive integers but have arbitrary alphanumeric labels. As usual Don’s data structures
are chosen in a way that one can omit a lot of tests and I have mimicked that as far as
possible. The result is a restriction I do not test for at the moment: a label can’t be
equal to the number 0!

FMi: Needs checking for, just in case
23 \cs_new_protected:Npn __hook_initialize_single:NNn #1#2#3
494 {

Step T1: Initialize the data structure ...

495 \seq_clear:N \1__hook_labels_seq
496 \int_zero:N \1__hook_labels_int

Store the name of the hook:
497 \tl_set:Nn \1__hook_cur_hook_t1l {#3}

42

We loop over the property list holding the code and record all labels listed there.
Only rules for those labels are of interest to us. While we are at it we count them (which
gives us the N in Knuth’s algorithm. The prefix label_ is added to the variables to
ensure that labels named front, rear, labels, or return don’t interact with our code.

408 \prop_map_inline:Nn \1__hook_work_prop

499 {

500 \int_incr:N \1__hook_labels_int

501 \seq_put_right:Nn \1__hook_labels_seq {##1}

502 __hook_tl_set:cn { __hook_tl_csname:n {##1} } { 0 }
503 \seq_clear_new:c { __hook_seq_csname:n {##1} }

504 }

Steps T2 and T3: Sort the relevant rules into the data structure. . .

This loop constitutes a square matrix of the labels in \1__hook_work_prop in the
vertical and the horizontal directions. However since the rule l4(rel)lp is the same as
Ip{rel)=l4 we can cut the loop short at the diagonal of the matrix (i.e., when both
labels are equal), saving a good amount of time. The way the rules were set up (see
the implementation of __hook_rule_before_gset:nnn above) ensures that we have no
rule in the ignored side of the matrix, and all rules are seen. The rules are applied
in __hook_apply_label_pair:nnn, which takes the properly-ordered pair of labels as
argument.

505 \prop_map_inline:Nn \1__hook_work_prop
506 {
507 \prop_map_inline:Nn \1__hook_work_prop
508 {
500 __hook_if_label_case:nnnnn {##1} {####1}
510 { \prop_map_break: }
511 { __hook_apply_label_pair:nnn {##1} {####1} }
512 { __hook_apply_label_pair:nnn {####1} {##1} }
513 {#3}
514 }
515 }
Take a breath and take a look at the data structures that have been set up:
516 __hook_debug:n { __hook_debug_label_data:N \1__hook_work_prop }
Step T4:
517 \tl_set:Nn \1__hook_rear_tl { O }
518 \tl_set:cn { __hook_tl _csname:n { 0 } } { 0 }
519 \seq_map_inline:Nn \1__hook_labels_seq
520 {
521 \int_compare:nNnT { \cs:w __hook_tl_csname:n {##1} \cs_end: } = 0
522 {
523 \tl_set:cn { __hook_tl_csname:n { \1__hook_rear_t1 } }{##1}
524 \tl_set:Nn \1__hook_rear_tl1 {##1}
525 }
526 }

527 \tl_set_eq:Nc \1__hook_front_tl { __hook_tl_csname:n { O } }

528 __hook_t1l_gclear:N #1
529 \clist_gclear:N #2

The whole loop combines steps TH-T7:

530 \bool_while_do:nn { ! \str_if_eq_p:Vn \1__hook_front_tl { 0 } }
531 {

43

This part is step T5:

532 \int_decr:N \1__hook_labels_int

533 \prop_get:NVN \1__hook_work_prop \1__hook_front_tl \1__hook_return_tl
534 \exp_args:NNV __hook_tl_gput:Nn #1 \1__hook_return_tl

535 __hook_clist_gput:NV #2 \1__hook_front_tl

536 __hook_debug:n{ \iow_term:x{Handled~ code~ for~ \1__hook_front_tl} }

This is step T6 except that we don’t use a pointer P to move through the successors,
but instead use ##1 of the mapping function.

537 \seq_map_inline:cn { __hook_seq_csname:n { \1__hook_front_tl } }
538 {
539 \tl_set:cx { __hook_tl_csname:n {##1} }
540 { \int_eval:n
541 { \cs:w __hook_tl_csname:n {##1} \cs_end: - 1 }
542 }
543 \int_compare:nNnT
544 { \cs:w __hook_tl_csname:n {##1} \cs_end: } = 0
545 {
546 \tl_set:cn { __hook_tl_csname:n { \1__hook_rear_tl } } {##1}
547 \tl_set:Nn \1__hook_rear_tl {##1}
548 }
549 }
and step T7:
550 \tl_set_eq:Nc \1__hook_front_tl
551 { __hook_tl_csname:n { \1__hook_front_tl } }

This is step T8: If we haven’t moved the code for all labels (i.e., if \1__hook_-
labels_int is still greater than zero) we have a loop and our partial order can’t be
flattened out.

552 }

553 \int_compare:nNnF \1__hook_labels_int = 0

554 {

555 \iow_term:x{ }

556 \iow_term:x{Error:~ label~ rules~ are~ incompatible:}

This is not really the information one needs in the error case but will do for now ...

557 __hook_debug_label_data:N \1__hook_work_prop
558 \iow_term:x{ }
559 }

After we have added all hook code to #1 we finish it off with adding extra code for the
top-level (#2) and for one time execution (#3). These should normally be empty. The
top-level code is added with __hook_t1_gput:Nn as that might change for a reversed
hook (then top-level is the very first code chunk added). The next code is always
added last.

560 \exp_args:NNo __hook_tl_gput:Nn #1 { \cs:w __hook_toplevel~#3 \cs_end: }

561 __hook_t1l_gput_right:No #1 { \cs:w __hook_next~#3 \cs_end: }

562 }

563 \cs_generate_variant:Nn __hook_initialize_single:NNn { cc }

(End definition for __hook_initialize_single:NNn.)

44

__hook_t1l_gput:Nn
__hook_clist_gput:NV

__hook_apply_label_pair:nnn

__hook_label if exist apply:nnnF

__hook_apply_rule:nnn

These append either on the right (normal hook) or on the left (reversed hook). This is
setup up in __hook_initialize_hook_code:n, elsewhere their behavior is undefined.

56+ \cs_new:Npn __hook_tl_gput:Nn { \ERROR }
s6s \cs_new:Npn __hook_clist_gput:NV { \ERROR }

(End definition for __hook_tl_gput:Nn and __hook_clist_gput:NV.)

This is the payload of steps T2 and T3 executed in the loop described above. This macro
assumes #1 and #2 are ordered, which means that any rule pertaining the pair #1 and #2
is \g__hook_(hook)_rule_#1|#2_t1, and not \g__hook_(hook)_rule_#2|#1_t1. This
also saves a great deal of time since we only need to check the order of the labels once.
The arguments here are (labell), (label2), (hook), and (hook-code-plist). We are
about to apply the next rule and enter it into the data structure. __hook_apply_-
label_pair:nnn will just call __hook_label_if_exist_apply:nnnF for the (hook),
and if no rule is found, also try the (hook) name ?? denoting a default hook rule.
__hook_label_if_exist_apply:nnnF will check if the rule exists for the given
hook, and if so call __hook_apply_rule:nnn.
se6 \cs_new_protected:Npn __hook_apply_label_pair:nnn #1#2#3
567 {
Extra complication: as we use default rules and local hook specific rules we first have to
check if there is a local rule and if that exist use it. Otherwise check if there is a default
rule and use that.

568 __hook_label_if_exist_apply:nnnF {#1} {#2} {#3}
569 {
If there is no hook-specific rule we check for a default one and use that if it exists.
570 __hook_label_if_exist_apply:nnnF {#1} {#2} { 7?7 } { }
571 }
572 }

573 \cs_new_protected:Npn __hook_label_if_exist_apply:nnnF #1#2#3

574 {

575 \if _cs_exist:w g__hook_ #3 _rule_ #1 | #2 _tl \cs_end:
What to do precisely depends on the type of rule we have encountered. If it is a before
rule it will be handled by the algorithm but other types need to be managed differently.
All this is done in __hook_apply_rule:nnnN.

576 __hook_apply_rule:nnn {#1} {#2} {#3}
577 \exp_after:wN \use_none:n

578 \else:

579 \use:nn

580 \fi:

581 }

(End definition for __hook_apply_label_pair:nnn and __hook_label_if_exist_apply:nnnF.)

This is the code executed in steps T2 and T3 while looping through the matrix This is
part of step T3. We are about to apply the next rule and enter it into the data structure.
The arguments are (labell), (label2), (hook-name), and (hook-code-plist).

s22 \cs_new_protected:Npn __hook_apply_rule:nnn #1#2#3

583 {

584 \cs:w __hook_apply_

585 \cs:w g__hook_#3_reversed_tl \cs_end: rule_

586 \cs:w g__hook_ #3 _rule_ #1 | #2 _tl \cs_end: :nnn \cs_end:

45

587 {#1} {#2} {#3}
588 }

(End definition for __hook_apply_rule:nnn.)

__hook_apply_rule_<:nnn The most common cases are < and > so we handle that first. They are relations < and
__hook_apply_rule_>:nnn = in TAOCP, and they dictate sorting.
s \cs_new_protected:cpn { __hook_apply_rule_<:nnn } #1#2#3

590 {

501 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }

502 \tl_set:cx { __hook_tl_csname:n {#2} }

593 { \int_eval:n{ \cs:w __hook_tl_csname:n {#2} \cs_end: + 1 } }
504 \seq_put_right:cn{ __hook_seq_csname:n {#1} }{#2}

595 }

506 \cs_new_protected:cpn { __hook_apply_rule_>:nnn } #1#2#3

507 {

508 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }

599 \tl_set:cx { __hook_tl_csname:n {#1} }

600 { \int_eval:n{ \cs:w __hook_tl_csname:n {#1} \cs_end: + 1 } }
601 \seq_put_right:cn{ __hook_seq_csname:n {#2} }{#1}

602 }

(End definition for __hook_apply_rule_<:nnn and __hook_apply_rule_>:nnn.)

__hook_apply_rule_xE:nnn These relations make two labels incompatible within a hook. xE makes raises an error if
__hook_apply_rule_xW:nnn the labels are found in the same hook, and xW makes it a warning.

603 \cs_new_protected:cpn { __hook_apply_rule_xE:nnn } #1#2#3

604 {

605 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }
606 \msg_error:nnnnnn { hooks } { labels-incompatible }

607 {#1} {#2} {#3} {1}

608 \use:c { __hook_apply_rule_->:nnn } {#1} {#2} {#3}

609 \use:c { __hook_apply_rule_<-:mnn } {#1} {#2} {#3}

610 3

611 \cs_new_protected:cpn { __hook_apply_rule_xW:nnn } #1#2#3

612 {

613 __hook_debug:n { __hook_msg_pair_found:nnn {#1} {#2} {#3} }
614 \msg_warning:nnnnnn { hooks } { labels-incompatible }

615 {#1} {#2} {#3> { 0 }

616 }

(End definition for __hook_apply_rule_xE:nnn and __hook_apply_rule_xW:nnn.)

__hook_apply_rule_->:nnn If we see —=> we have to drop code for label #3 and carry on. We could do a little better
__hook_apply_rule_<-:nnn and drop everything for that label since it doesn’t matter where we sort in the empty
code. However that would complicate the algorithm a lot with little gain.” So we still
unnecessarily try to sort it in and depending on the rules that might result in a loop that
is otherwise resolved. If that turns out to be a real issue, we can improve the code.
Here the code is removed from \1__hook_cur_hook_t1 rather than #3 because the
latter may be 7?7, and the default hook doesn’t store any code. Removing from \1__-
hook_cur_hook_t1l makes default rules -> and <- work properly.

TThis also hase the advantage that the result of the sorting doesn’t change which might otherwise
(for unrelated chunks) if we aren’t careful.

46

617 \cs_new_protected:cpn { __hook_apply_rule_->:nnn } #1#2#3

618 {

619 __hook_debug:n

620 {

621 __hook_msg_pair_found:nnn {#1} {#2} {#3}

622 \iow_term:x{--->~ Drop~ ’#2’~ code~ from~

623 \iow_char:N \\ g__hook_ \1__hook_cur_hook_tl _code_prop ~
624 because~ of~ ’#1’ }

625 }

626 \prop_put:Nnn \1__hook_work_prop {#2} { }

627 }

025 \cs_new_protected:cpn { __hook_apply_rule_<-:nnn } #1#2#3
629 {

630 __hook_debug:n

631 {

632 __hook_msg_pair_found:nnn {#1} {#2} {#3}

633 \iow_term:x{--->~ Drop~ ’#1’~ code~ from~

634 \iow_char:N \\ g__hook_ \1__hook_cur_hook_tl _code_prop ~
635 because~ of~ ’#2° }

636 }

637 \prop_put:Nnn \1__hook_work_prop {#1} { }

638 ¥

(End definition for __hook_apply_rule_->:nnn and __hook_apply_rule_<-:nnn.)

__hook_apply_-rule_<:nnn Reversed rules

__hook_apply_-rule_>:nnn 639 \CS_new_eq:cc __hook_apply_-rule_<:nnn
__hook_apply_-rule_<-:nnn o0 \cs_new_eq:cc { __hook_apply_-rule_>:nnn

{ __hook_apply_rule_>:nnn }
{
__hook_apply_-rule_->:nnn e \cs_new_eq:cc { __hook_apply_-rule_<-:nnn
{
{

__hook_apply_rule_<:nnn }

__hook_apply_rule_<-:nnn }
__hook_apply_rule_->:nnn }
__hook_apply_rule_xE:nnn }
__hook_apply_rule_xW:nnn }

__hook_apply_-rule_x:nnn 62 \CS_new_eq:cc __hook_apply_-rule_->:nnn
03 \CS_new_eq:cc __hook_apply_-rule_xE:nnn
s \cs_new_eq:cc { __hook_apply_-rule_xW:nnn

(End definition for __hook_apply_-rule_<:nnn and others.)

__hook_msg_pair_found:nnn A macro to avoid moving this many tokens around.
05 \cs_new_protected:Npn __hook_msg_pair_found:nnn #1#2#3

646 {

647 \iow_term:x{~ \str_if_eq:nnTF {#3} {77} {default} {~normall} ~

648 rule~ __hook_label_pair:nn {#1} {#2}:~

649 \use:c { g__hook_#3_rule_ __hook_label_pair:nn {#1} {#2} _t1 } ~
650 found}

651 }

(End definition for __hook_msg_pair_found:nnn.)

__hook_debug_label_data:N
652 \cs_new_protected:Npn __hook_debug_label_data:N #1 {

653 \low_term:x{Code~ labels~ for~ sorting:}

o5+ \iow_term:x{~ \seq_use:Nnnn\l__hook_labels_seq {~and~}{,~}{~and~} }

655 \iow_term:x{""J Data~ structure~ for~ label~ rules:}

es6 \prop_map_inline:Nn #1

657 {

658 \iow_term:x{~ ##1~ =~ \tl_use:c{ __hook_tl_csname:n {##1} }~ ->~
659 \seq_use:cnnn{ __hook_seq_csname:n {##1} }{~->~}{~->~}{~->~}

47

661 }
662 \iow_term:x{}
663 F

(End definition for __hook_debug_label_data:N.)

\hook_show:n This writes out information about the hook given in its argument onto the .log file and
\hook_log:n the terminal, if \show_hook:n is used. Internally both share the same structure, except
x that at the end, \hook_show:n triggers TEX’s prompt.
X

__hook_log_line_indent: 6+ \cs_new_protected:Npn \hook_log:n #1
__hook_log:nN 4 {

__hook_log_line:

666 \cs_set_eq:NN __hook_log_cmd:x \iow_log:x

667 __hook_normalize_hook_args:Nn __hook_log:nN {#1} \tl_log:x
668 }

e0 \cs_new_protected:Npn \hook_show:n #1

670 {

671 \cs_set_eq:NN __hook_log_cmd:x \iow_term:x

672 __hook_normalize_hook_args:Nn __hook_log:nN {#1} \tl_show:x
673 }

o72 \cs_new_protected:Npn __hook_log_line:x #1

o5 { __hook_log_cmd:x { >~#1 } }

o6 \cs_new_protected:Npn __hook_log_line_indent:x #1
o7 { __hook_log_cmd:x { >~\@spaces #1 } }

o7s \cs_new_protected:Npn __hook_log:nN #1 #2

679 {
680 __hook_preamble_hook:n {#1}
681 __hook_log_cmd:x { ~~J ->~The~hook~’#1’: }
682 \hook_if_exist:nF {#1}
683 { __hook_log_line:x { is~not~declared! } }
684 \hook_if_empty:nTF {#1}
685 { #2 { The~hook~is~empty } }
686 {
687 __hook_log_line:x { Code~chunks: }
688 \prop_if_empty:cTF { g__hook_#1_code_prop }
689 { __hook_log_line_indent:x { --—- } }
690 {
601 \prop_map_inline:cn { g__hook_#1_code_prop }
602 { __hook_log_line_indent:x { ##1~->~\tl_to_str:n {##2} } }
693 }
If there is code in the top-level token list, print it:
694 __hook_log_line:x
695 {
696 Document-level~(top-level)~code
697 \hook_if_exist:nT {#1}
608 { ~(executed~__hook_if_reversed:nTF {#1} {first} {last}) } :
699 }
700 __hook_log_line_indent:x
701 {
702 \tl_if_empty:cTF { __hook_toplevel~#1 }
703 {-—--1
704 { -> ~ \exp_args:Nv \tl_to_str:n { __hook_toplevel~#1 } }
705 }

48

706 __hook_log_line:x { Extra~code~for~next~invocation: }
707 __hook_log_line_indent:x

708 {
700 \tl_if_empty:cTF { __hook_next~#1 }
710 { —_— }

If the token list is not empty we want to display it but without the first tokens (the
code to clear itself) so we call a helper command to get rid of them.

711 { ->~ \exp_args:Nv __hook_log_next_code:n { __hook_next~#1 } }
712 ¥
Loop through the rules in a hook and for every rule found, print it. If no rule is

there, print ——-. The boolean \1__hook_tmpa_bool here indicates if the hook has no
rules.

713 __hook_log_line:x { Rules: }

714 \bool_set_true:N \1__hook_tmpa_bool

715 __hook_list_rules:nn {#1}

716 {

77 \bool_set_false:N \1__hook_tmpa_bool

718 __hook_log_line_indent:x

719 {

720 ##2~ with~

721 \str_if_eq:nnT {##3} {77} { default~ }

722 relation~ ##1

723 }

724 }

725 \bool_if:NT \1__hook_tmpa_bool

726 { __hook_log_line_indent:x { -—- } }

When the hook is declared (that is, the sorting algorithm is applied to that hook)
and not empty

727 \bool_lazy_and:nnTF

728 { \hook_if_exist_p:n {#1} }

729 { ! \hook_if_empty_p:n {#1} }

730 {

731 __hook_log_line:x

732 {

733 Execution~order

734 \bool_if:NTF \1__hook_tmpa_bool

735 { __hook_if_reversed:nT {#1} { ~(after~reversal) } }
736 { ~(after~

737 __hook_if_reversed:nT {#1} { reversal~and~ }
738 applying~rules)

739 } :

740 }

741 #2 % \tl_show:n

742 {

743 \@spaces

744 \clist_if_empty:cTF { g__hook_#1_labels_clist }
745 { - }

746 { \clist_use:cn {g__hook_#1_labels_clist} { ,~ } }
747 }

748 }

749 {

750 #2

49

__hook_log_next_code:n

__hook_list_rules:nn
__hook_list_one_rule:nnn
__hook list if rule exists:nnnF

751 {
752 Hook~ \hook_if_exist:nTF {#1}
753 {code~pool~empty} {not~declared}

757 }

To display the code for next invocation only (i.e., from \AddToHookNext we have to
remove the first two tokens at the front which are \t1_gclear:N and the token list to
clear.

755 \cs_new:Npn __hook_log_next_code:n #1

750 { \exp_args:No \tl_to_str:n { \use_none:nn #1 } }

(End definition for \hook_show:n and others. These functions are documented on page 14.)

This macro takes a (hook) and an (inline function) and loops through each pair of (labels)
in the (hook), and if there is a relation between this pair of (labels), the (inline function)
is executed with #1 = (relation), #2 = (labely) | (labely), and #3 = (hook) (the latter may
be the argument #1 to __hook_list_rules:nn, or 77 if it is a default rule).

760 \cs_new_protected:Npn __hook_list_rules:nn #1 #2

761 {

762 \cs_set_protected:Npn __hook_tmp:w ##1 ##2 ##3 {#2}
763 \prop_map_inline:cn { g__hook_#1_code_prop }

764

765 \prop_map_inline:cn { g__hook_#1_code_prop }

766 {

767 __hook_if_label_case:nnnnn {##1} {####1}

768 { \prop_map_break: }

769 { __hook_list_one_rule:nnn {##1} {####1} }
770 { __hook_list_one_rule:nnn {####1} {##1} }
771 {#1}

772 }

773 }

774 }

These two are quite similar to __hook_apply_label_pair:nnn and __hook_-
label_if_exist_apply:nnnF, respectively, but rather than applying the rule, they pass
it to the (inline function).

~

75 \cs_new_protected:Npn __hook_list_one_rule:nnn #1#2#3

776 {

777 __hook_list_if_rule_exists:nnnF {#1} {#2} {#3}

778 { __hook_list_if_rule_exists:nnnF {#1} {#2} { 7?2 >} { } }
779 }

720 \cs_new_protected:Npn __hook_list_if_rule_exists:nnnF #1#2#3
781 {

782 \if _cs_exist:w g__hook_ #3 _rule_ #1 | #2 _tl \cs_end:
783 \exp_args:Nv __hook_tmp:w

784 { g__hook_ #3 _rule_ #1 | #2 _t1 } { #1 | #2 } {#3}
785 \exp_after:wN \use_none:nn

786 \fi:

787 \use:n

788 }

50

(End definition for __hook_list_rules:nn, __hook_list_one_rule:nnn, and __hook_list_if_-
rule_exists:nnnF.)

__hook_debug_print_rules:n A shorthand for debugging that prints similar to \prop_show:N.
750 \cs_new_protected:Npn __hook_debug_print_rules:n #1

790 {

701 \iow_term:n { The~hook~#1~contains~the~rules: }

792 \cs_set_protected:Npn __hook_tmp:w ##1

793 {

794 __hook_list_rules:nn {#1}

795 {

796 \iow_term:x

797 {

798 > ##1 {####2} ##1 => ##1 {####1}

799 \str_if_eq:nnT {####3} {77} { ~(default) }
800 }

801 }

802 }

803 \exp_args:No __hook_tmp:w { \use:nn { ~ } { ~ } }
804 }

(End definition for __hook_debug_print_rules:n.)

3.8 Specifying code for next invocation

\hook_gput_next_code:nn

% __hook_gput_next_code:mn s05 \cs_new_protected:Npn \hook_gput_next_code:nn #1
__hook_gput_next_do:nn g5 { __hook_normalize_hook_args:Nn __hook_gput_next_code:nn {#1} }

__hook_gput_next_do:Nnn s07 \cs_new_protected:Npn __hook_gput_next_code:nn #1 #2
__hook_clear_next:n 808 {
809 __hook_declare:n {#1}
810 \hook_if_exist:nTF {#1}
811 { __hook_gput_next_do:nn {#1} {#2} }
812 { __hook_try_declaring_generic_next_hook:nn {#1} {#2} }
813 T
s14 \cs_new_protected:Npn __hook_gput_next_do:nn #1
815 {
816 \exp_args:Nc __hook_gput_next_do:Nnn
817 { __hook_next~#1 } {#1}
818 T

First check if the “next code” token list is empty: if so we need to add a \tl_gclear:c
to clear it, so the code lasts for one usage only. The token list is cleared early so that
nested usages don’t get lost. \tl_gclear:c is used instead of \tl_gclear:N in case
the hook is used in an expansion-only context, so the token list doesn’t expand before
\tl_gclear:N: that would make an infinite loop. Also in case the main code token list
is empty, the hook code has to be updated to add the next execution token list.

s10 \cs_new_protected:Npn __hook_gput_next_do:Nnn #1 #2

820 {

821 \tl_if_empty:cT { __hook~#2 }

822 { __hook_update_hook_code:n {#2} }

823 \tl_if_empty:NT #1

824 { __hook_t1l_gset:Nn #1 { __hook_clear_next:n {#2} } }
825 __hook_t1l_gput_right:Nn #1

o1

\hook_use:n
__hook_use_initialized:n
__hook_use_undefined:w
__hook_use_end:
__hook_preamble_hook:n

826 }
27 \cs_new_protected:Npn __hook_clear_next:n #1
o8 { \cs_gset_eq:cN { __hook_next~#1 } \c_empty_tl }

(End definition for \hook_gput_next_code:nn and others. This function is documented on page 12.)

3.9 Using the hook

\hook_use:n as defined here is used in the preamble, where hooks aren’t initialized
by default. __hook_use_initialized:n is also defined, which is the non-\protected
version for use within the document. Their definition is identical, except for the __-
hook_preamble_hook:n (which wouldn’t hurt in the expandable version, but it would be
an unnecessary extra expansion).

__hook_use_initialized:n holds the expandable definition while in the pream-
ble. __hook_preamble_hook:n initializes the hook in the preamble, and is redefined to
\use_none:n at \begin{document}.

Both versions do the same internally: check if the hook exist as given, and if so use
it as quickly as possible. If it doesn’t exist, the a call to __hook_use:wn checks for file
hooks.

At \begin{document}, all hooks are initialized, and any change in them causes an
update, so \hook_use:n can be made expandable. This one is better not protected
so that it can expand into nothing if containing no code. Also important in case of
generic hooks that we do not generate a \relax as a side effect of checking for a csname.
In contrast to the TEX low-level \csname ...\endcsname construct \tl_if_exist:c is
careful to avoid this.

220 \cs_new_protected:Npn \hook_use:n #1

830 {

831 \tl_if_exist:cTF { __hook~#1 }

832 {

833 __hook_preamble_hook:n {#1}

834 \cs:w __hook~#1 \cs_end:

835 }

836 { __hook_use:wn #1 / \s__hook_mark {#1} }
837 }

s33 \cs_new:Npn __hook_use_initialized:n #1
839 {

840 \if_cs_exist:w __hook~#1 \cs_end:

841 \else:

842 __hook_use_undefined:w

843 \fi:

844 \cs:w __hook~#1 __hook_use_end:

845 }

216 \cs_new:Npn __hook_use_undefined:w #1 #2 __hook~#3 __hook_use_end:
847 {

848 #1 9 fi
849 __hook_use:wn #3 / \s__hook_mark {#3}
850 }

es1 \cs_new_protected:Npn __hook_preamble_hook:n #1
g2 { __hook_initialize_hook_code:n {#1} }
e53 \cs_new_eq:NN __hook_use_end: \cs_end:

(End definition for \hook_use:n and others. This function is documented on page 12.)

52

__hook_use:wn
__hook_try_file_hook:n
__hook_if_exist_use:n

\hook_use_once:n

__hook_use:wn does a quick check to test if the current hook is a file hook: those
need a special treatment. If it is not, the hook does not exist. If it is, then __hook_-
try_file_hook:n is called, and checks that the current hook is a file-specific hook using
__hook_if_file_hook:wTF. If it’s not, then it’s a generic file/ hook and is used if it
exist.

If it is a file-specific hook, it passes through the same normalization as during decla-
ration, and then it is used if defined. __hook_if_exist_use:n checks if the hook exist,
and calls __hook_preamble_hook:n if so, then uses the hook.

ess \cs_new:Npn __hook_use:wn #1 / #2 \s__hook_mark #3

856 \str_if_eq:nnTF {#1} { file }

857 { __hook_try_file_hook:n {#3} }

858 { } % Hook doesn’t exist

859 }

s0 \cs_new_protected:Npn __hook_try_file_hook:n #1
861 {

862 __hook_if_file_hook:wTF #1 / / \s__hook_mark
863 {

864 \exp_args:Ne __hook_if_exist_use:n

865 { \exp_args:Ne __hook_file_hook_normalize:n {#1} }
866 ¥

867 { __hook_if_exist_use:n {#1} } % file/ generic hook (e.g. file/before)
868 }

s0 \cs_new_protected:Npn __hook_if_exist_use:n #1
870 {

871 \tl_if_exist:cT { __hook~#1 }

872 {

873 __hook_preamble_hook:n {#1}

874 \cs:w __hook~#1 \cs_end:

875 }

876 }

(End definition for __hook_use:wn, __hook_try_file_hook:n, and __hook_if_exist_use:n.)

For hooks that can and should be used only once we have a special use command that
remembers the hook name in \g__hook_execute_immediately_prop. This has the effect
that any further code added to the hook is executed immediately rather than stored in
the hook.

The code needs some gymnastics to prevent space trimming from the hook name,
since \hook_use:n and \hook_use_once:n are documented to not trim spaces.

PhO: Should this raise an error if the hook doesn’t exist?

s77 \cs_new_protected:Npn \hook_use_once:n #1

878 {

879 \tl_if_exist:cT { __hook~#1 }

880 {

881 \tl_set:Nn \1__hook_return_tl {#1}

882 __hook_normalize_hook_args:Nn __hook_use_once_store:n
883 { \1__hook_return_tl }

884 \hook_use:n {#1}

885 }

886 3

53

\hook_if_empty_p:n
\hook_if_empty:nTF

\hook_if_exist_p:n
\hook_if_exist:nTF

ss7 \cs_new_protected:Npn __hook_use_once_store:n #1
sss { \prop_gput:Nnn \g__hook_execute_immediately_prop {#1} { } }

(End definition for \hook_use_once:n. This function is documented on page 12.)

3.10 Querying a hook

Simpler data types, like token lists, have three possible states; they can exist and be
empty, exist and be non-empty, and they may not exist, in which case emptiness doesn’t
apply (though \tl_if_empty:N returns false in this case).

Hooks are a bit more complicated: they have four possible states. A hook may exist
or not, and either way it may or may not be empty (even a hook that doesn’t exist may
be non-empty).

A hook is said to be empty when no code was added to it, either to its permanent
code pool, or to its “next” token list. The hook doesn’t need to be declared to have code
added to its code pool (it may happen that a package A defines a hook foo, but it’s
loaded after package B, which adds some code to that hook. In this case it is important
that the code added by package B is remembered until package A is loaded).

A hook is said to exist when it was declared with \hook_new:n or some variant
thereof.

Test if a hook is empty (that is, no code was added to that hook). A (hook) being empty
means that all three of its \g__hook_(hook)_code_prop, its __hook_toplevel (hook)
and its __hook_next (hook) are empty.

ss0 \prg_new_conditional:Npnn \hook_if_empty:n #1 { p , T , F , TF }
890 {

891 __hook_if_exist:nTF {#1}

892 {

803 \bool_lazy_and:nnTF

894 { \prop_if_empty_p:c { g__hook_#1_code_prop } }
895 {

896 \bool_lazy_and_p:nn

897 { \tl_if_empty_p:c { __hook_toplevel~#1 } }
898 { \tl_if_empty_p:c { __hook_next~#1 } }

899 3

900 { \prg_return_true: }

901 { \prg_return_false: }

902 }

903 { \prg_return_true: }

904 3

(End definition for \hook_if_empty:nTF. This function is documented on page 13.)

A canonical way to test if a hook exists. A hook exists if the token list that stores
the sorted code for that hook, __hook (hook), exists. The property list \g__hook_-
(hook)_code_prop cannot be used here because often it is necessary to add code to a
hook without knowing if such hook was already declared, or even if it will ever be (for
example, in case the package that defines it isn’t loaded).

o5 \prg_new_conditional:Npnn \hook_if_exist:n #1 { p , T , F , TF }

906 {

007 \tl_if_exist:cTF { __hook~#1 }

908 { \prg_return_true: }

909 { \prg_return_false: }

54

910 }

(End definition for \hook_if_exist:nTF. This function is documented on page 13.)

__hook_if_exist_p:n An internal check if the hook has already been declared with __hook_declare:n. This
__hook_if_exist:nTF means that the hook was already used somehow (a code chunk or rule was added to it),
but it still wasn’t declared with \hook_new:n.

o1 \prg_new_conditional:Npnn __hook_if_exist:n #1 { p , T , F , TF }

912 {

013 \prop_if_exist:cTF { g__hook_#1_code_prop }
014 { \prg_return_true: }

015 { \prg_return_false: }

916 }

(End definition for __hook_if_exist:nTF.)

__hook_if_reversed_p:n An internal conditional that checks if a hook is reversed.
__hook_if _reversed:nTF .; \prg_new_conditional:Npnn __hook_if_reversed:n #1 {p , T , F , TF }

018 {

019 \if_int_compare:w \cs:w g__hook_#1_reversed_tl \cs_end: 1 < O \exp_stop_f:
920 \prg_return_true:

921 \else:

022 \prg_return_false:

923 \fi:

924 3

(End definition for __hook_if_reversed:nTF.)

3.11 Messages

>s \msg_new:nnnn { hooks } { labels-incompatible }

©

926 {

927 Labels~‘#1’~and~ ‘#2’~are~incompatible

928 \str_if_eq:nnF {#3} {?7} { ~in~hook~‘#3’ } .~

929 \int_compare:nNnTF {#4} = { 1 }

930 { The~ code~ for~ both~ labels~ will~ be~ dropped. }
031 { You~ may~ see~ errors~ later. }

932 3

o33 { LaTeX~found~two~incompatible~labels~in~the~same~hook.~
934 This~indicates~an~incompatibility~between~packages. 1}

o35 \msg_new:nnnn { hooks } { exists }

936 { Hook~‘#1’~ has~ already~ been~ declared. }

937 { There~ already~ exists~ a~ hook~ declaration~ with~ this~
938 name.\\

939 Please~ use~ a~ different~ name~ for~ your~ hook.}

o0 \msg_new:nnn { hooks } { empty-label }

941 {

942 Empty~code~label~\msg_line_context:.~

943 Using~‘__hook_currname_or_default:’~instead.

944 }

oss \msg_new:nnn { hooks } { no-default-label }

946 {

947 Missing~ (empty)~default~label~\msg_line_context:. \\

55

949

}

This~command~was~ignored.

os0 \msg_new:nnnn { hooks } { unknown-rule }

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

971

972

974

975

976

977

979

980

982

983

984

985

986

987

988

989

990

{

}

Unknown~ relationship~ ‘#3’~

between~ labels~ ‘#2’~ and~ ‘#4°’~
\str_if_eq:nnF {#1} {?7} { ~in~hook~‘#1’ }. ~
Perhaps~ a~ missspelling?

The~ relation~ used~ not~ known~ to~ the~ system.~ Allowed~ values~ are~
‘before’~ or~ ‘<’,~

‘after’~ or~ ‘>’ ,~

‘incompatible-warning’,~

‘incompatible-error’,~

‘voids’~ or~

‘unrelated’.

\msg_new:nnnn { hooks } { misused-top-level }

{

}

Illegal~\iow_char:N \\AddToHook{#1}[top-levell{...}.\\
’top-level’~is~reserved~for~the~user’s~document.

The~’top-level’~label~is~meant~for~user~code~only, ~and~should~only~
be~used~ (sparingly) ~in~the~main~document.~Use~the~default~label~
’__hook_currname_or_default:’~for~this~\@cls@pkg, ~or~another~
suitable~label.

\msg_new:nnn { hooks } { set-top-level }

{

}

You~cannot~change~the~default~label~#1~‘top-level’.~Illegal \\
\use:nn { ~ } { ~ } \iow_char:N \\#2{#3} \\
\msg_line_context:.

\msg_new:nnn { hooks } { ddhl-deprecated }

{

}

\iow_char:N \\DeclareDefaultHookLabel~is~deprecated.\\
Use~\iow_char:N \\SetDefaultHookLabel~instead.\\ \\
The~deprecated~name~will~be~removed~in~the~next~release.

\msg_new:nnn { hooks } { extra-pop-label }

{

}

Extra~\iow_char:N \\PopDefaultHookLabel. \\
This~command~will~be~ignored.

\msg_new:nnn { hooks } { missing-pop-label }

{

}

Missing~\iow_char:N \\PopDefaultHookLabel. \\
The~label~ ‘#1’~was~pushed~but~never~popped.~Something~is~wrong.

\msg_new:nnn { hooks } { should-not-happen }

{

56

\NewHook
\NewReversedHook
\NewMirroredHookPair

\AddToHook

\AddToHookNext

\RemoveFromHook

\SetDefaultHookLabel
\PushDefaultHookLabel
\PopDefaultHookLabel
\DeclareDefaultHookLabel
__hook_curr_name_push:n
__hook_curr_name_push_aux:n
__hook_curr_name_pop:

__hook_end_document_label check:

1000 ERROR! ~This~should~not~happen.~#1 \\
1001 Please~report~at~https://github.com/latex3/latex2e.
1002 }

3.12 FKETgEX 2¢ package interface commands

Declaring new hooks . ..

1003 \NewDocumentCommand \NewHook { m }{ \hook_new:n {#1} }

1004 \NewDocumentCommand \NewReversedHook { m }{ \hook_new_reversed:n {#1} }
1005 \NewDocumentCommand \NewMirroredHookPair { mm }{ \hook_new_pair:nn {#1}{#2} }

(End definition for \NewHook , \NewReversedHook , and \NewMirroredHookPair. These functions are doc-
umented on page 3.)

1006 \NewDocumentCommand \AddToHook { m o +m }
1007 { \hook_gput_code:nnn {#1} {#2} {#3} }

(End definition for \AddToHook. This function is documented on page /.)

100s \NewDocumentCommand \AddToHookNext { m +m }
1009 { \hook_gput_next_code:nn {#1} {#2} }

(End definition for \AddToHookNext. This function is documented on page 5.)

1010 \NewDocumentCommand \RemoveFromHook { m o }
1011 { \hook_gremove_code:nn {#1} {#2} }

(End definition for \RemoveFromHook. This function is documented on page 4.)

The token list \g__hook_hook_curr_name_t1 stores the name of the current package/file
to be used as label for hooks. Providing a consistent interface is tricky, because packages
can be loaded within packages, and some packages may not use \SetDefaultHookLabel
to change the default label (in which case \@currname is used).

To pull that one off, we keep a stack that contains the default label for each level
of input. The bottom of the stack contains the default label for the top-level (this
stack should never go empty). If we’re building the format, set the default label to be
top-level:
w12 \tl_gset:Nn \g__hook_hook_curr_name_tl { top-level }

Then, in case we’re in latexrelease we push something on the stack to support roll
forward. But in some rare cases, latexrelease may be loaded inside another package
(notably platexrelease), so we’ll first push the top-level entry:

w13 (latexrelease) \seq_gput_right:Nn \g__hook_name_stack_seq { top-level }
then we dissect the \@currnamestack, adding \@currname to the stack:

(latexrelease) \cs_set_protected:Npn __hook_tmp:w #1 #2 #3
(latexrelease) {
(latexrelease) \quark_if_recursion_tail_stop:n {#1}
(latexrelease) \seq_gput_right:Nn \g__hook_name_stack_seq {#1}
1015 (latexrelease) __hook_tmp:w
()
()
()
()

1014
1015
1016

1017

latexrelease) }

latexrelease) \exp_after:wN __hook_tmp:w \@currnamestack
latexrelease
latexrelease

1019
1020
\q_recursion_tail \q_recursion_tail
\q_recursion_tail \q_recursion_stop

1021

1022

57

and finalle set the default label to be the \@currname:
1023 (latexrelease)\t1_gset:Nx \g__hook_hook_curr_name_tl { \@currname }

Two commands keep track of the stack: when a file is input, __hook_curr_name_-
push:n pushes the current default label to the stack, and sets the new default label in
one go:

124 \cs_new_protected:Npn __hook_curr_name_push:n #1

w25 { \exp_args:Nx __hook_curr_name_push_aux:n { __hook_make_name:n {#1} } }
1026 \cs_new_protected:Npn __hook_curr_name_push_aux:n #1

1027 {

108 \tl_if blank:nTF {#1}

1029 { \msg_error:nn { hooks } { no-default-label } }
1030 {

1031 \str_if_eq:nnTF {#1} { top-level }

1032 {

1033 \msg_error:nnnnn { hooks } { set-top-level }
1034 { to } { PushDefaultHookLabel } {#1}

1035 }

1036 {

1037 \seq_gpush:NV \g__hook_name_stack_seq \g__hook_hook_curr_name_tl
1038 \tl_gset:Nn \g__hook_hook_curr_name_tl {#1}
1039 }

1040 }

1041 T

and when an input is over, the topmost item of the stack is popped, since the label will
not be used again, and \g__hook_hook_curr_name_t1 is updated to the now topmost
item of the stack:

1022 \cs_new_protected:Npn __hook_curr_name_pop:

1043 {

1044 \seq_gpop:NNTF \g__hook_name_stack_seq \1__hook_return_tl

1045 { \tl_gset_eq:NN \g__hook_hook_curr_name_tl \1__hook_return_tl }
1046 { \msg_error:nn { hooks } { extra-pop-label } }

1047 }

At the end of the document we want to check if there was no __hook_curr_name_-
push: without a matching __hook_curr_name_pop: (not a critical error, but it might
indicate that something else is not quite right):

1ss \t1l_gput_right:Nn \@kernel®@after@enddocument@afterlastpage
1049 { __hook_end_document_label_check: }
1050 \cs_new_protected:Npn __hook_end_document_label_check:

1051 {

1052 \seq_gpop:NNT \g__hook_name_stack_seq \1__hook_return_tl

1053 {

1054 \msg_error:nnx { hooks } { missing-pop-label }

1055 { \g__hook_hook_curr_name_tl }

1056 \tl_gset_eq:NN \g__hook_hook_curr_name_tl \1__hook_return_tl
1057 __hook_end_document_label_check:

1058 }

1059 3

The token list \g__hook_hook_curr_name_t1 is but a mirror of the top of the stack.
Now define a wrapper that replaces the top of the stack with the argument, and
updates \g__hook_hook_curr_name_t1 accordingly.

1060 \NewDocumentCommand \SetDefaultHookLabel { m }

58

1061 {

1062 \seq_if_empty:NTF \g__hook_name_stack_seq

1063 {

1064 \msg_error:nnnnn { hooks } { set-top-level }
1065 { for } { SetDefaultHookLabel } {#1}

1066 }

1067 { \exp_args:Nx __hook_set_default_label:n { __hook_make_name:n {#1} } }
1068 }

1060 \cs_new_protected:Npn __hook_set_default_label:n #1
1070 {

1071 \str_if_eq:nnTF {#1} { top-level }

1072 {

1073 \msg_error:nnnnn { hooks } { set-top-level }
1074 { to } { SetDefaultHookLabel } {#1}

1075 }

1076 { \tl_gset:Nn \g__hook_hook_curr_name_tl {#1} }
1077 }

1078 \NewDocumentCommand \DeclareDefaultHookLabel { m }
1079 {

1080 \msg_error:nn { hooks } { ddhl-deprecated }

1081 \SetDefaultHookLabel {#1}

1082 ¥

The label is only automatically updated with \@onefilewithoptions (\usepackage
and \documentclass), but some packages, like TikZ, define package-like interfaces, like
\usetikzlibrary that are wrappers around \input, so they inherit the default label
currently in force (usually top-level, but it may change if loaded in another package).
To provide a package-like behaviour also for hooks in these files, we provide high-level
access to the default label stack.

1053 \NewDocumentCommand \PushDefaultHookLabel { m }
wes { __hook_curr_name_push:n {#1} }

1055 \NewDocumentCommand \PopDefaultHookLabel { }
1086 { __hook_curr_name_pop: }

The current label stack holds the labels for all files but the current one (more or less
like \@currnamestack), and the current label token list, \g__hook_hook_curr_name_t1,
holds the label for the current file. However \@pushfilename happens before \@currname
is set, so we need to look ahead to get the \@currname for the label. expl3 also requires
the current file in \@pushfilename, so here we abuse \@expl@push@filename@aux@@ to
do __hook_curr_name_push:n.

1057 \cs_gset_protected:Npn \@expl@push@filenameQaux@Q #1#2#3

1088 {

1089 __hook_curr_name_push:n {#3}

1090 \str_gset:Nx \g_file_curr_name_str {#3}
1001 #1 #2 {#3}

1092 }

(End definition for \SetDefaultHookLabel and others. These functions are documented on page 7.)

\UseHook Avoid the overhead of xparse and its protection that we don’t want here (since the hook
\UseOneTimeHook should vanish without trace if empty)!

1003 \cs_new:Npn \UseHook { \hook_use:n }
1004 \cs_new:Npn \UseOneTimeHook { \hook_use_once:n }

(End definition for \UseHook and \UseOneTimeHook. These functions are documented on page 3.)

59

\ShowHook
\LogHook 4 \cs_new_protected:Npn \ShowHook { \hook_show:n }
1006 \cs_new_protected:Npn \LogHook { \hook_log:n }

(End definition for \ShowHook and \LogHook. These functions are documented on page 10.)

\DebugHooks0On
\DebugHooks0ff \cs_new_protected:Npn \DebugHooksOn { \hook_debug_on: }
1008 \cs_new_protected:Npn \DebugHooksOff { \hook_debug_off: }

(End definition for \DebugHooksOn and \DebugHooksOff. These functions are documented on page 11.)

\DeclareHookRule
1000 \NewDocumentCommand \DeclareHookRule { m m m m }
1100 { \hook_gset_rule:nnnn {#1}{#2}{#3}{#4} }

(End definition for \DeclareHookRule. This function is documented on page 8.)

\DeclareDefaultHookRule This declaration is only supported before \begin{document}.

1100 \NewDocumentCommand \DeclareDefaultHookRule { m m m }
1102 { \hook_gset_rule:nnnn {77}{#1}{#2}{#3} }
1103 \@onlypreamble\DeclareDefaultHookRule

(End definition for \DeclareDefaultHookRule. This function is documented on page 9.)

\ClearHookRule A special setup rule that removes an existing relation. Basically @Q_ rule_ gclear:nnn
plus fixing the property list for debugging.

FMi: Need an L3 interface, or maybe it should get dropped?

1104 \NewDocumentCommand \ClearHookRule { m m m }
105 { \hook_gset_rule:nnnn {#1}{#2}{unrelated}{#3} }

(End definition for \ClearHookRule. This function is documented on page 9.)

\IfHookExistsTF Here we avoid the overhead of xparse, since \IfHookEmptyTF is used in \end (that is,
\IfHookEmptyTF every IWTEX environment). As a further optimisation, use \let rather than \def to avoid
one expansion step.

1106 \cs_new_eq:NN \IfHookExistsTF \hook_if_exist:nTF
1107 \cs_new_eq:NN \IfHookEmptyTF \hook_if_empty:nTF

(End definition for \IfHookExistsTF and \IfHookEmptyTF. These functions are documented on page
10.)

5

60

3.13 Internal commands needed elsewhere

Here we set up a few horrible (but consistent) KTEX 22 names to allow for internal
commands to be used outside this module. We have to unset the @@ since we want
double “at” sign in place of double underscores.

1108 <@@=>

\@expl@Q@Q@initialize@all@@

\Qexpl00ChookOcurr@name@popl® ;159 \cs_new_eq:NN \@expl@@@initialize@all@e
1110 __hook_initialize_all:

1111 \cs_new_eq:NN \@expl@@@hook@curr@name@pop@@
1112 __hook_curr_name_pop:

(End definition for \@expl@0@initialize@all@@ and \@expl@@@hook@curr@name@op@@. These functions
are documented on page 77.)

1113 \EXplSynt ax0ff

Rolling back here doesn’t undefine the interface commands as they may be used in
packages without rollback functionality. So we just make them do nothing which may or
may not work depending on the code usage.

114 (/2ekernel | latexrelease)
(latexrelease)\EndIncludeInRelease
(latexrelease)\IncludeInRelease{0000/00/00}%
(latexrelease {\NewHook}{The hook management},
(latexrelease
(latexrelease)\def\NewHook#1{}
(latexrelease)\def \NewReversedHook#1{}
(latexrelease)\def \NewMirroredHookPair#1#2{}
(latexrelease
(latexrelease)\long\def\AddToHookNext#1#2{}
(latexrelease
125 (latexrelease)\def\AddToHook#1{\@gobble@AddToHook@args}
126 (latexrelease) \providecommand\@gobble@AddToHook@args [2] [1{}
(
(
(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)
)
latexrelease)
)
)
)
)
)
)
)
)
)
)
)

5

1

1116

1117

1118

1119

1120

1

21

1122

1123

1

oy

24

=

25

1127
1125 (latexrelease)\def \RemoveFromHook#1{\@gobble@RemoveFromHook@arg}
latexrelease) \providecommand\@gobble@RemoveFromHook@arg[1] [1{}
latexrelease

latexrelease)\def \UseHook #1{}

latexrelease)\def \UseOneTimeHook #1{}

latexrelease)\def \ShowHook #1{}

latexrelease)\1let \DebugHooksOn \@empty

latexrelease)\let \DebugHooks0ff\Q@empty

latexrelease

latexrelease)\def \DeclareHookRule #1#2#3#4{}

135 (latexrelease)\def \DeclareDefaultHookRule #1#2#3{}

130 (latexrelease)\def \ClearHookRule #1#2#3{}

If the hook management is not provided we make the test for existence false and the test
for empty true in the hope that this is most of the time reasonable. If not a package
would need to guard against running in an old kernel.
1s0 (latexrelease)\long\def \IfHookExistsTF #1#2#3{#3}
na (latexrelease)\long\def \IfHookEmptyTF #1#2#3{#2}

)
142 (latexrelease)
1145 (latexrelease)\EndIncludeInRelease

1129
1130
1131
1132
1133
1134
1135
1136

1137

61

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols

623, 634, 938, 947,
967, 978, 979, 984, 985, 990, 995, 1000

\(addto-cmd)

\{env) 18
(name) internal commands:
__hook next_(name) 25

\AddToHook ,
2, 3, 4, 8, 12, 15, 16, 17, 1006, 1125

\AddToHookNext 4y 4, 8, 12, 49, 1008, 1123
\AfterEndEnvironment 18
\AtBeginDocument 2,6, 16, 17, 17, 17, 19
\AtBeginDvi 17
\AtBeginEnvironment 18
\AtEndDocument 17, 19, 20
\AtEndEnvironment 18
\AtEndPreamble 19
B
\BeforeBeginEnvironment 18, 18, 18, 18
\begin 1, 18, 19, 34
\bfdefault 21
\bfseries 21
bool commands:
\bool_gset_false:N 15
\bool_gset_true:N 10
\bool_if:NTF 21, 725, 734
\bool_lazy_and:nnTF 727, 893
\bool_lazy_and_p:nn 896
\bool_lazy_or:nnTF 298
\bool _new:N 6, 24
\bool_set_false:N 717
\bool_set_true:N 714
\bool_while_do:nn 530
C
\ClearHookRule 8, 1104, 1139
\clearpagec.coiino.n 20
clist commands:
\clist_gclear:N 529
\clist_gput_left:Nn 475
\clist_gput_right:Nn 477
\clist_if_empty:NTF 744
\clist_new:N 79
\clist_use:Nn 746

cs commands:
\cs:w 29, 163, 434, 468
469, 521, 541, 544, 560, 561, 584,
585, 586, 593, 600, 834, 844, 874, 919
\cs_end: 163, 437, 468, 469, 521,
541, 544, 560, 561, 575, 585, 586,
593, 600, 782, 834, 840, 853, 874, 919
\cs_generate_variant:Nn 37, 38, 39
45, 46, 53, 54, 55, 58, 64, 68, 218, 563
\cs_gset_eq:NN . 441, 454, 455, 828

\cs_gset_nopar:Npx 48, 50, 52
\cs_gset_protected:Npn 1087
\cs_gset_protected:Npx 20
\cs_if_exist_use:NTF 384
\cs_new:Npn 114, 120
133, 143, 144, 146, 160, 166, 310,
312, 314, 370, 416, 432, 486, 487,
564, 565, 758, 838, 846, 854, 1093, 1094
\cs_new_eq:NN 7, 23, 36, 65
397, 403, 439, 639, 640, 641, 642,
643, 644, 853, 1106, 1107, 1109, 1111
\cs_new_protected:Npn 8,
13, 18, 41, 43, 47, 49, 51, 56, 59,
66, 69, 71, 84, 93, 95, 100, 102, 167,
176, 181, 189, 199, 201, 219, 243,
248, 253, 258, 267, 325, 327, 352,
354, 359, 375, 380, 392, 398, 404,
400, 411, 413, 414, 440, 457, 493,
566, 573, 582, 589, 596, 603, 611,
617, 628, 645, 652, 664, 669, 674,
676, 678, 760, 775, 780, 789, 805,
807, 814, 819, 827, 829, 851, 860,
869, 877, 887, 1024, 1026, 1042,
1050, 1069, 1095, 1096, 1097, 1098
\cs_set_eq:NN
....... 474, 475, 476, 477, 666, 671
\cs_set_nopar:Npx 42, 44
\cs_set_protected:Npn 762, 792, 1014
\cs_to_str:N 29
\cs_undefine:N 415
\csname 4
D
debug commands:
\debug_resume: 24
\debug_suspend: 24

\DebugHooks0ff
\DebugHooksOn

10, 1097, 1135
10, 1097, 1134

\DeclareDefaultHookLabel 1012
\DeclareDefaultHookRule 8, 1101, 1138
\DeclareHookRule

....... 1, 8, 7, 8, 10, 12, 1099, 1137

\DeclareHookrule 7

\def 59, 1119, 1120
1121, 1123, 1125, 1128, 1131, 1132
1133, 1137, 1138, 1139, 1140, 1141

\document 19

\documentclass 5, 6, 58

E

Nelse ..ot 428

else commands:

\else: 421, 436, 578, 841, 921
\end 1, 18, 19, 21, 34, 59
\end(env)ii.... 18
\endcsname 4
\enddocument 16, 19, 20
\EndIncludeInRelease 1115, 1143
NERRORcououuo... 564, 565
\errorstopmode 9, 13
exp commands:

\exp_after:wN 50,

57, 62, 162, 163, 468, 577, 785, 1020
\exp_args:Nc 816
\exp_args:Ne 262, 263, 864, 865
\exp_args:Nnnv 108
\exp_args:NNo 560
\exp_args:NNV 534
\exp_args:NNx 366, 481
\exp_args:No 759, 803
\exp_args:Nv 704, 711, 783
\exp_args:Nx 1025, 1067
\exp_last_unbraced:NNNNo 165
\exp_not:N 173
\exp_not:n 451
\exp_stop_f: 418, 426, 919

\expanded 29
\ExplSyntaxOff 1113
\ExplSyntaxOn 5

fi commands:
\fi: 422, 430, 436, 580, 786, 843, 923
file commands:

\g_file_curr_name_str 1090
G
group commands:
\group_begin: 169
\group_end: 172

H
hook commands:
\hook_debug_off: 7, 13, 1098
\hook_debug_on: 7, 13,1097

\hook_gput_code:nnn
11, 11, 30, 31, 199, 251, 1007
\hook_gput_next_code:nn
11, 32, 256, 805, 1009
\hook_gremove_code:nn 12, 34, 325, 1011
\hook_gset_rule:nnnn
12, 36, 375, 1100, 1102, 1105
\hook_if_empty:nTF
4, 5, 12, 684, 889, 1107
\hook_if_empty_p:n 12, 729, 889
\hook_if_exist:n 9, 12
\hook_if_exist:nTF
.. 4, 5, 12, 34, T3, 209, 222, 281,
347, 462, 682, 697, 752, 810, 905, 1106
\hook_if_exist_p:n 12, 728, 905
\hook_log:n 13, 664, 1096
\hook_new:n

11, 26, 53, 54, 69, 101, 281, 1003
\hook_new_pair:nn 11, 100, 1005
\hook_new_reversed:n 11, 93, 101, 1004
\hook_show:n 13, 47, 664, 1095
\hook_use:n 4, b,

11, 15, 29, 51, 52, 454, 829, 884, 1093
\hook_use_once:n 4, 11, 15, 52, 877, 1094
hook internal commands:

\g__hook_..._code_prop 69
\g__hook_77_code_prop 372
\g__hook_77_reversed_tl 372
\g__hook_(hook)_labels_clist 20
\g__hook_(name)_code_prop 25
\g__hook_(name)_reversed_tl 25
\g__hook_all_seq 28, 76, 443
__hook_apply_-rule_->:nnn 639
__hook_apply_-rule_<-:nnn 639
__hook_apply_-rule_<:nnn 639
__hook_apply_-rule_>:nnn 639
__hook_apply_-rule_x:nnn 639

__hook_apply_label_pair:nnn
42, 44, 49, 511, 512, 566

__hook_apply_rule:nnn .. /44, 576, 582
__hook_apply_rule:nnnN 44
__hook_apply_rule_->:nnn 617
__hook_apply_rule_<-:nnn 617
__hook_apply_rule_<:nnn 589
__hook_apply_rule_>:nnn 589
__hook_apply_rule_xE:nnn 603
__hook_apply_rule_xW:nnn 603
__hook_clear_next:n 805

__hook_clist_gput:Nn

475, 477, 535, 564

\1__hook_cur_hook_tl
............ 30, 45, 497, 623, 634
__hook_curr_name_pop: 57, 1012 1112

__hook_curr_name_push: 57
__hook_curr_name_push:n 57, 58, 1012
__hook_curr_name_push_aux:n . 1012

__hook_currname_or_default:
.................... 28, 28,
117, 125, 129, 145, 146, 227, 943, 973

__hook_debug:n

7, 22, 221, 442, 447, 459, 481,
516, 536, 591, 598, 605, 613, 619, 630

\g__hook_debug_bool . 6, 10, 15, 21

__hook_debug_gset: 7

__hook_debug_label_data:N
.................. 516, 557, 652

__hook_debug_print_rules:n ... 789

__hook_declare:n

81, 54, 78, 84, 229, 245, 382, 809

__hook_end_document_label -

check: 1012
\g__hook_execute_immediately_-
PIOP . . oo 32, 52, 203, 888

__hook_file_hook_normalize:n ...
............... 33, 263, 310, 865

\1__hook_front_tl 488,
527, 530, 533, 535, 536, 537, 550, 551

\c__hook_generics_file_prop

.................. 33, 303, 322
\c__hook_generics_prop 279, 320
\c__hook_generics_reversed_ii_-

PIOP -« v oo 282, 322
\c__hook_generics_reversed_iii_-

PIOP - o v oot 285, 322
__hook_gput_code:nnn 199
__hook_gput_next_do:nn . 32, 256, 805
__hook_gput_next_do:Nnn 805
__hook_gput_undeclared_hook:nnn

.................. 81, 243, 251
__hook_gremove_code:nn 325
__hook_gremove_code_do:nn

................... 35, 342, 352
__hook_gset_rule:nnnn 375

\g__hook_hook_curr_name_tl 28, 34
56, 57, 57, 58, 148, 158, 1012, 1023
1037, 1038, 1045, 1055, 1056, 1076
__hook_hook_gput_code_do:nnn . ..
.................. 108, 199, 246
__hook_if_exist:nTF 86, 329, 891, 911
__hook_if_exist_p:n 911
__hook_if_exist_use:n 52, 854
__hook_if_file_hook:wTF
....... 32, 33, 33, 52, 260, 293, 862
__hook_if_file_hook_p:w 293

64

__hook_if_label_case:nnnnn
.................. 432, 509, 767

__hook_if_marked_removal:nnTF ..
.................... 206, 364

__hook_if_reversed:nTF
........... 473, 698, 735, 737, 917

__hook_if_reversed_p:n 917
__hook_include_legacy_code_-
chunk:n 81, 102, 461

__hook_initialize_all: . 440, 1110

__hook_initialize_hook_code:n ..
............... 44, 441, 457, 852

__hook_initialize_single:NNn . ..

............. 38, 40, 41, 479, 493

\1__hook_label O_tl 488

__hook_label_if_exist_apply:nnnTF
................... 44, 49, 566

__hook_label_ordered:nn 38

__hook_label_ordered:nnTF
............ 37, 395, 401, 407, 424
__hook_label_ordered_p:nn 424
__hook_label_pair:nn 37, 38, 394,
400, 406, 410, 412, 415, 416, 648, 649
\1__hook_labels_int
........ 48, 488, 496, 500, 532, 553
\1__hook_labels_seq
........... 488, 495, 501, 519, 654
__hook_list_if_rule_exists:nnnTF

........................ 760
__hook_list_one_rule:nnn 760
__hook_list_rules:nn 49, 715, 760, 794
__hook_log:nN 664

__hook_log_cmd:n
........... 666, 671, 675, 677, 681

__hook_log_line:n 664
__hook_log_line_indent:n 664
__hook_log_next_code:n 711, 758

__hook_make_name:n

25, 29, 139, 145, 154, 160, 1025, 1067
__hook_make_name:w 160
__hook_mark_removal:nn

............... 35, 343, 350, 354
__hook_msg_pair_found:nnn

. 591, 598, 605, 613, 621, 632, 645
\g__hook_name_stack_seq

34, 1013, 1017, 1037, 1044, 1052, 1062
__hook_new:n 70, 71, 97
__hook_new_reversed:n 93
__hook_normalize_hook_args:Nn ..

..... 70, 94, 167, 667, 672, 806, 882
__hook_normalize_hook_args:Nnn .

.................. 167, 200, 326
__hook_normalize_hook_args_-

aux:Nn 167

__hook_normalize_hook_rule_-

args:Nnnnn 167, 377
__hook_parse_dot_label:n .. 118, 120
__hook_parse_dot_label:w 120
__hook_parse_dot_label _aux:w .. 120

__hook_parse_dot_label_cleanup:w
__hook_parse_label_default:n ...

. 114, 179, 185, 186, 193, 194, 196
__hook_preamble_hook:n
51, 52, 455, 680, 829, 873
\1__hook_rear_tl
488, 517, 523, 524, 546, 547
\g__hook_removal_list_prop 29
\g__hook_removal_list_tl
29, 36, 356, 361, 366
__hook_removal_tl:nn

357, 362, 367, 370

\1__hook_return_tl
25, 235, 238, 341, 533,
534, 881, 883, 1044, 1045, 1052, 1056

__hook_rule_<_gset:nnn 392
__hook_rule_>_gset:nnn 392
__hook_rule_after_gset:nnn 392

__hook_rule_before_gset:nnn 42, 392

__hook_rule_gclear:nnn . 3§, 383, 413

__hook_rule_incompatible-error_-
gset:nnn 409

__hook_rule_incompatible-warning_ -
gset:nnn 409

__hook_rule_unrelated_gset:nnn .

38, 413
404

__hook_rule_voids_gset:nnn

__hook_seq_csname:n
486, 503, 537, 594, 601, 659
__hook_set_default_label:n

__hook_str_compare:nn

23, 418, 426, 435

__hook_strip_double_slash:n 310
__hook_strip_double_slash:w 310
__hook_tl_csname:n 4806, 492

502, 518, 521, 523, 527, 539, 541,

544, 546, 551, 592, 593, 599, 600, 658
__hook_t1l_gclear:N
66, 110, 334, 335, 339, 528
__hook_t1l_gput:Nn
48, 474, 476, 534, 560, 564
__hook_t1_gput_left:Nn 59, 474
__hook_tl_gput_right:Nn
56, 230, 476, 561, 825
__hook_t1l_gset:Nn 47,

57, 61, 394, 400, 406, 410, 412, 466, 824
__hook_t1l_gset_eq:NN 65, 67

65

__hook_tl_set:Nn 24, 41, 502
__hook_tmp:w 36,
762, 783, 792, 803, 1014, 1018, 1020
\1__hook_tmpa_bool
24, 48, 714, 717, 725, 734

\1__hook_tmpa_tl 25
\1__hook_tmpb_tl 25
__hook_try_declaring_generic_-
hook:nnn 31, 214, 248
__hook_try_declaring_generic_-
hook :nNNnn 31, 32, 250, 255, 258
__hook_try_declaring_generic_-
hook:wnTF 258
__hook_try_declaring_generic_-
hook_split:nNNnn 258
__hook_try_declaring_generic_-
next_hook:nn 32, 248, 812
__hook_try_file_hook:n 52, 854
__hook_unmark_removal:nn
................ 30, 35, 207, 359

__hook_update_hook_code:n 30,
84, 39, 212, 348, 387, 439, 441, 445, 822
__hook_use:wn 51, 52, 836, 849, 854

__hook_use_end: 829
__hook_use_initialized:n 51, 454, 829
__hook_use_once_store:n ... 882, 887
__hook_use_undefined:w 829
\g__hook_used_prop .. 33, 442, 449, 482
\1__hook_work_prop .31, 42,478

498, 505, 507, 516, 533, 557, 626, 637

I
if commands:
\if_case:w 418, 435
\if_cs_exist:w 575, 782, 840
\if_int_compare:w 426, 919

\IfHookEmptyTF . 4, 5,8, 59, 1106, 1141
\IfHookExistsTF 4, 5, 9, 1106, 1140
\ignorespaces 19
\include 21
\IncludeInRelease 3, 1116
\input 6, 21, 58

int commands:

\int_compare:nNnTF . 521, 543, 553, 929
\int_decr:N 532
\int_eval:n

\int_incr:N 500
\int_new:N 489
\int_zero:N 496
int internal commands:
__hook~ 29
__hook~... 69
__hook~?? 36, 372
__hook (hook) 40

__hook (name)
iow commands:

\iow_char:N

623, 634, 967, 979, 984, 985, 990, 995

\iow_log:n 666
\iow_term:n 221, 448, 450, 459
536, 555, 556, 558, 622, 633, 647,

653, 654, 655, 658, 662, 671, 791, 796

K
kernel internal commands:

__kernel_exp_not:w 42, 48, 50, 57, 62

L
\let 59, 1134, 1135
\listfilesc....... 20
\LogHook 9, 1095
\long 1123, 1140, 1141
M
\mdseries 21
msg commands:
\msg_error:nn 1029, 1046, 1080
\msg_error:nnn 74, 232, 1054
\msg_error:nnnnn 1033, 1064, 1073
\msg_error:nnnnnn 389, 606
\msg_expandable_error:nn 124
\msg_expandable_error:nnn 152
\msg_line_context: 942, 947, 980

\msg_new:nnn

. 940, 945, 976, 982, 988, 993, 998
\msg_new:nnnn 925, 935, 950, 965
614

\msg_warning:nnnnnn

\NewDocumentCommand 1003,
1004, 1005, 1006, 1008, 1010, 1060,

1078, 1083, 1085, 1099, 1101, 1104
\newenvironment 18
\NewHook 2, 2,

2,4,8,9, 12, 14, 18, 1003, 1117, 1119
\NewMirroredHookPair . 2, 9, 12, 1003, 1121
\NewReversedHook

2,2, 6,9, 12, 14, 1003, 1120

next ... internal commands:
__hook_mext~... 69
next (name) internal commands:
__hook_next (name) 25
\normalfont 21
\normalsize 3
(@)
or commands:
Nor: ... 420, 436

66

P
\PopDefaultHookLabel
prg commands:

\prg_new_conditional:Npnn
293, 424, 889, 905, 911, 917
\prg_new_protected_conditional:Npnn
..................... 273, 364
\prg_return_false: 277, 290, 301,
305, 308, 368, 429, 901, 909, 915, 922
\prg_return_true: 288,
304, 368, 427, 900, 903, 908, 914, 920
prop commands:
\prop_const_from_keyval:Nn

320, 322, 323, 324

\prop_gclear:N 333, 442
\prop_get:NnN 533
\prop_get:NoNTF 235, 341
\prop_gput :Nnn . 237, 240, 481, 888
\prop_gremove:Nn 353
\prop_if_empty:NTF 464, 688
\prop_if_empty_p:N 894
\prop_if_exist:NTF 913

\prop_if_in:NnTF 203, 279, 282, 285, 303

\prop_map_break: 510, 768

\prop_map_inline:Nn
449, 498, 505, 507, 656, 691, 763, 765

\prop_new:N 31, 32, 33, 88, 372, 373
\prop_put:Nnn 626, 637
\prop_set_eq:NN 478
\prop_show:N 50
\providecommand 1126, 1129
\PushDefaultHookLabel 5, 6, 6, 1012

Q

quark commands:
\quark_if_recursion_tail_stop:n 1016

\g_recursion_stop 1022

\gq_recursion_tail 1021, 1022
quark internal commands:

\s__hook_mark 40,

130, 133, 136, 140, 143, 144, 260,
204, 313, 314, 318, 836, 849, 854, 862

R
\relax 29, 51
\RemoveFromHook 3, 3, 1010, 1128
\RequirePackage 6
\rmfamily 21
S
scan commands:
\scan_new:N 40
\scan_stop: 269, 274
\selectfont 21

seq commands:

\seq_clear:N 495

\seq_clear_new:N 503

\seq_gpop:NNTF 1044, 1052

\seq_gpush:Nn 1037

\seq_gput_right:Nn 76, 1013, 1017

\seq_if_empty:NTF 1062

\seq_map_inline:Nn 443, 519, 537

\seq_new:N 28, 35, 488

\seq_put_right:Nn 501, 594, 601

\seq_use:Nnnn 654, 659
\SetDefaultHookLabel 5, 6, 6, 56, 1012
\sffamily 21
\shipout 20, 21
show commands:

\show_hook:n 47
\ShowHook 9, 13, 15, 1095, 1133
\small 3
\space 224
\special 20
str commands:

\str_gset:Nn 1090

\str_if_eq:nn 38

\str_if_eq:nnTF
128, 225, 227, 296, 331, 338
647, 721, 799, 856, 928, 953, 1031, 1071

\str_if_eq p:nn 300, 530
str internal commands:
__str_if_eq:nn 22, 23
T
TEX and ETEX 2 commands:
\@...hook 26, 27
\@begindocumenthook 17, 26, 27
\@C1SOPKE . . o vt 973
\@currname

28, 56, 56, 57, 58, 150, 156, 1023
\@currnamestack 56, 58, 1020
\Qempty 1134, 1135
\@expl@@Ghook@curr@name@pop@@ . 1109

\@expl@@Qinitialize@all@@ . 1109
\@expl@push@filename@aux@@ 58, 1087
\efirstofone 2
\@gobble@AddToHook®@args .. 1125, 1126
\@gobble@RemoveFromHook@arg .
.................... 1128, 1129
\@kernel@after@(hookname) 16

\@kernel@after@enddocument@afterlastpage

........................ 1048
\@kernel@before@(hookname) 16
\@onefilewithoptions 58
\@onlypreamble 1103
\@pushfilename 58
\@spaces 677, 743

\@end 20
\expand@font@defaults 21
\g@addto@macro 26
\on@line 224, 460
\protected 51
tl commands:
\c_empty_tl 67, 828
\c_novalue_tl 28
\tl_gclear:N 49, 50
\tl_gput_right:Nn 40, 356, 1048
\tl_gremove_all:Nn 35

\tl_gremove_once:Nn 35, 35, 37, 37, 361
\tl_gset:Nn
98, 283, 286, 1012, 1023, 1038, 1076
\tl_gset_eq:NN 65, 1045, 1056
\tl_if_blank:nTF
\tl_if_empty:N
\tl_if_empty:NTF
. 106, 148, 150, 702, 709, 821, 823
\tl_if_empty:nTF 122 135, 138, 276, 316

\tl_if_empty_p:N 897, 898
\tl_if_empty _p:m 299
\tl_if_exist:N 51

\tl_if_exist:NTF 104, 831, 871, 879, 907

\tl_if_in:NnTF 366
\tl_if_novalue:nTF 116
\tl_log:n 37, 39, 667
\tl_new:N 25, 26, 27, 29

30, 34, 77, 80, 89, 90, 374, 490, 491, 492
\tl_set:Nn 497, 517, 518,

523, 524, 539, 546, 547, 592, 599, 881
\tl_set_eq:NN 527, 550
\t1_show:n 37, 38, 672, 741
\tl_to_str:n 166, 224, 371, 692, 704, 759

\tl_trim_spaces:n 195
\tl_trim_spaces_apply:nN 118
\tl use:N 658
token commands:
\token_to_str:N 163
toplevel (name) internal commands:
__hook_toplevel (name) 25
\ttfamily 21
U
use commands:
\use:N 608, 609, 649
\use:n 170, 787
\use:nn 579, 803, 979
\use_i:nnn 38
\use_ii:nn 38
\use_iii:nn 38
\use_none:n 7, 51, 439, 455, 577
\use_none:nn 759, 785
\UseHook 2, 4, 5, 13, 15, 16, 1093, 1131

67

\UseOneTimeHook

2, 4, 15,1093, 1132 \usetikzlibrary

\usepackage 5, 6, 21, 58

68

	Contents
	1 Introduction
	2 Package writer interface
	2.1 LaTeX2e interfaces
	2.1.1 Declaring hooks and using them in code
	2.1.2 Updating code for hooks
	2.1.3 Hook names and default labels
	2.1.4 The top-level label
	2.1.5 Defining relations between hook code
	2.1.6 Querying hooks
	2.1.7 Displaying hook code
	2.1.8 Debugging hook code

	2.2 L3 programming layer (expl3) interfaces
	2.3 On the order of hook code execution
	2.4 The use of "reversed" hooks
	2.5 Difference between "normal" and "one-time" hooks
	2.6 Private LaTeX kernel hooks
	2.7 Legacy LaTeX2e interfaces
	2.8 LaTeX2e commands and environments augmented by hooks
	2.8.1 Generic hooks for all environments
	2.8.2 Hooks provided by \begin{document}
	2.8.3 Hooks provided by \end{document}
	2.8.4 Hooks provided \shipout operations
	2.8.5 Hooks provided by file loading operations
	2.8.6 Hooks provided in NFSS commands

	3 The Implementation
	3.1 Loading further extensions
	3.2 Debugging
	3.3 Borrowing from internals of other kernel modules
	3.4 Declarations
	3.5 Providing new hooks
	3.6 Parsing a label
	3.7 Setting rules for hooks code
	3.8 Specifying code for next invocation
	3.9 Using the hook
	3.10 Querying a hook
	3.11 Messages
	3.12 LaTeX2e package interface commands
	3.13 Internal commands needed elsewhere

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U

