User Manual for glossaries.sty v4.46

Nicola L.C. Talbot
dickimaw—-books.com/contact

2020-03-19

Abstract

The glossaries package provides a means to define terms or abbreviations or symbols
that can be referenced within your document. Sorted lists with collated locations can
be generated either using TgX or using a supplementary indexing application. Sample
documents are provided with the glossaries package. These are listed in Section 19.

glossaries-extra.sty Additional features not provided here may be available through the extension package
glossaries-extra which, if required, needs to be installed separately. New features will be
added to glossaries-extra. Versions of the glossaries package after v4.21 will mostly be just

bug fixes or minor maintenance. Note that glossaries-extra provides an extra indexing
option (bib2gls) which isn’t available with just the base glossaries package.

If you require multilingual support you must also separately install the relevant lan-
guage module. Each language module is distributed under the name glossaries—(language),
where (language) is the root language name. For example, glossaries—french or
glossaries—german. If a language module is required, the glossaries package will auto-
matically try to load it and will give a warning if the module isn’t found. See Section 1.3
for further details. If there isn’t any support available for your language, use the nolangwarn
package option to suppress the warning and provide your own translations. (For example,
use the title keyin \printglossary.)

The glossaries package requires a number of other packages including, but not limited to,
tracklang, mfirstuc, etoolbox, xkeyval (at least version dated 2006/11/18), textcase, xfor, datatool-
base (part of the datatool bundle) and amsgen. These packages are all available in the latest
TgX Live and MIikTgX distributions. If any of them are missing, please update your TgX
distribution using your update manager. For help on this see, for example, How do I
update my TpX distribution? or (for Linux users) Updating TgX on Linux.

Note that occasionally you may find that certain packages need to be loaded after pack-
ages that are required by glossaries. For example, a package (X) might need to be loaded
after amsgen. In which case, load the required package first (for example, amsgen), then
(X), and finally load glossaries.

http://www.dickimaw-books.com/contact
http://tex.stackexchange.com/questions/55437/how-do-i-update-my-tex-distribution
http://tex.stackexchange.com/questions/55437/how-do-i-update-my-tex-distribution
http://tex.stackexchange.com/questions/14925/updating-tex-on-linux

Documents have wide-ranging styles when it comes to presenting glossaries or lists of
terms or notation. People have their own preferences and to a large extent this is de-
termined by the kind of information that needs to go in the glossary. They may just
have symbols with terse descriptions or they may have long technical words with com-
plicated descriptions. The glossaries package is flexible enough to accommodate such

varied requirements, but this flexibility comes at a price: a big manual.

® If youre freaking out at the size of this manual, start with
glossariesbegin.pdf (“The glossaries package: a guide for beginnners”).
You should find it in the same directory as this document or try texdoc
glossariesbegin.pdf. Once you've got to grips with the basics, then come
back to this manual to find out how to adjust the settings.

The glossaries bundle comes with the following documentation:

glossariesbegin.pdf If you are a complete beginner, start with “The glossaries pack-
age: a guide for beginners”.

glossary2glossaries.pdf If youare moving over from the obsolete glossary package,
read “Upgrading from the glossary package to the glossaries package”.

glossaries-user.pdf This document is the main user guide for the glossaries package.

glossaries-code.pdf Advanced users wishing to know more about the inner work-
ings of all the packages provided in the glossaries bundle should read “Documented
Code for glossaries v4.46”.

INSTALL Installation instructions.
CHANGES Change log.
README.md Package summary.
Related resources:
* glossaries-extra and bib2gls: An Introductory Guide.
e glossaries FAQ
® https://www.dickimaw-books.com/gallery/#glossariesglossaries gallery
¢ asummary of all glossary styles provided by glossaries and glossaries-extra

* glossaries performance (comparing document build times for the different options
provided by glossaries and glossaries-extra).

¢ Using LaTeX to Write a PhD Thesis (chapter 6).

¢ Incorporating makeglossaries or makeglossaries-lite or bib2gls into the document
build

glossariesbegin.pdf
glossary2glossaries.pdf
glossaries-code.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://www.dickimaw-books.com/faqs/glossariesfaq.html
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
http://www.dickimaw-books.com/latex/thesis/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

¢ The glossaries-extra package

® bib2gls

A If you use hyperref and glossaries, you must load hyperref first (although hyperref
should be loaded after most other packages). Similarly the doc package must also
be loaded before glossaries. (If doc is loaded, the file extensions for the default main
glossary are changed to gls2, glo2 and glg2 to avoid conflict with doc’s changes
glossary.)

If you are using hyperref, it’s best to use pdflatex rather than latex (DVI format)

as pdflatex deals with hyperlinks much better. If you use the DVI format, you will
encounter problems where you have long hyperlinks or hyperlinks in subscripts or su-
perscripts. This is an issue with the DVI format not with glossaries. If you really need to
use the DVI format and have a problem with hyperlinks in maths mode, I recommend
you use glossaries-extra with the hyperoutside and textformat attributes set to appropriate
values for problematic entries.

The glossaries package replaces the glossary package which is now obsolete. Please
see the document “Upgrading from the glossary package to the glossaries package” (glos-
sary2glossaries.pdf) for assistance in upgrading.

http://ctan.org/pkg/glossaries-extra
http://ctan.org/pkg/bib2gls

Contents

Glossary
1 Introduction
1.1 Indexing Options
1.2 Dummy Entries for Testing
1.3 Multi-Lingual Support o o
1.3.1 Changing the Fixed Names
1.4 Generating the Associated Glossary Files
141 Using the makeglossaries Perl Script
1.4.2 Using the makeglossaries-lite Lua Script
143 Using xindy explicitly (Option3)
144 Using makeindex explicitly (Option2)
1.5 Note to Front-End and Script Developers
151 Makelndexand Xindy L.
152 EntryLabels o o
153 Bib2GlIs.
2 Package Options
21 GeneralOptions L
2.2 Sectioning, Headings and TOC Options
2.3 Glossary Appearance Options
24 IndexingOptions
25 Sorting Options
2.6 Glossary TypeOptions oo
2.7 Acronym and Abbreviation Options
2.71 Deprecated Acronym Style Options
28 OtherOptions
2.9 Setting Options After the Packageis Loaded
3 Setting Up
31 Option1
32 Options2and3
4 Defining Glossary Entries
41 Plurals
42 Other Grammatical Constructs

10

11

12

13

Contents

43 AdditionalKeys 99

431 DocumentKeys 99

432 StorageKeys 101
44 EXpansion 106
45 Sub-Entries. e 107

45.1 Hierarchical Categories 107

452 Homographs 0 .. 108
4.6 Loading Entries FromaFile 109
4.7 Moving Entries to Another Glossary 111
4.8 Drawbacks With Defining Entries in the Document Environment 111

481 Technicallssues i 112

482 GoodPracticelssues 113
Number lists 114
51 EncapValues. 114
5.2 Locations e e e e e e 115
53 RangeFormations 119
54 StyleHook 121
Links to Glossary Entries 122
6.1 The \gls-Like Commands (First Use Flag Queried) 126
6.2 The \glstext-Like Commands (First Use Flag Not Queried) 131
6.3 Changing the format of the linktext 136
6.4 Enabling and disabling hyperlinks to glossary entries 141
Adding an Entry to the Glossary Without Generating Text 144
Cross-Referencing Entries 147
8.1 Customising Cross-reference Text 149
Using Glossary Terms Without Links 151
Displaying a glossary 159
Xindy (Option 3) 164
11.1 Language and Encodings 165
11.2 Locations and Numberlists 166
11.3 Glossary Groupso e 172
Defining New Glossaries 174
Acronyms and Other Abbreviations 176
13.1 Changing the AbbreviationStyle 182

13.1.1 Predefined Acronym Styles 183

13.1.2 Defining A Custom Acronym Style. 187

Contents

13.2 Displaying the List of Acronyms 198
13.3 Upgrading From the glossary Package 199
14 Unsetting and Resetting Entry Flags 201

14.1 Counting the Number of Times an Entry has been Used (First Use Flag Unset)203

15 Glossary Styles 208
15.1 Predefined Styles 208
15.1.1 ListStyles 211

15.1.2 LongtableStyles 213

15.1.3 Longtable Styles (Ragged Right) 214

15.1.4 Longtable Styles (booktabs) 216

15.1.5 SupertabularStyles 217

15.1.6 Supertabular Styles (Ragged Right) 218

15.1.7 Tree-LikeStyles L. 219

15.1.8 MulticolsStyle o oo 223

1519 In-LineStyle 224

15.2 Defining your own glossary style 226

16 Utilities 233
16.1 LoOps . . . o o oo 233
16.2 Conditionals L 234
16.3 Fetching and Updating the ValueofaField 239

17 Prefixes or Determiners 241
18 Accessibility Support 247
19 Sample Documents 252
19.1 Basic e 252
19.2 Acronymsand FirstUse 257
19.3 Non-Page Locations 272
19.4 Multiple Glossaries o 280
195 Sorting 289
19.6 Child Entries 295
19.7 Cross-Referencing L 306
19.8 CustomKeys. L 308
199 Xindy (Option3) 312
19.10No Indexing Application (Option1) 321
19.110ther L 321

20 Troubleshooting 335
Index 336

List of Examples

Ul = W N =

Mixing Alphabetical and Order of Definition Sorting 75
Customizing Standard Sort (Options2or3) 76
Defining CustomKeys 100
Defining Custom Storage Key (Acronyms and Initialisms) 101
Defining Custom Storage Key (Acronyms and Non-Acronyms with Descrip-

HONS) . . . o o e e e 104
Hierarchical Categories—Greek and Roman Mathematical Symbols 107
Loading Entries from Another File 109
Custom Entry DisplayinText 139
Custom Format for Particular Glossary 140
First Use With Hyperlinked Footnote Description 141
Suppressing Hyperlinks on First Use Just For Acronyms 142
Only Hyperlink in Text Mode Not MathMode 142
One Hyper Link Per Entry Per Chapter 143
Dual Entries 145
Switch to Two Column Mode for Glossary 163
Changing the Font Used to Display Entry Names in the Glossary 163
Custom Font for Displaying a Location 166
Custom Numbering System for Locations 167
LocationsasDice 168
Locations as Words not Digits 170
Defining an Abbreviation 177
Adapting a Predefined Acronym Style, 186
Defining a Custom Acronym Style 189
Italic and Upright Abbreviations 194
Abbreviations with Full Stops (Periods) 197
Don’t index entries that are only usedonce 207
Creating a completelynewstyle. 229
Creating a new glossary style based on an existing style 230
Example: creating a glossary style that uses the userl, ..., useré keys .. 231
Defining Determiners 241
Using Prefixes 243
Adding Determiner to Glossary Style 245

List of Tables

1.1
1.2
1.3

4.1
6.1

13.1
13.2

15.1
15.2

Glossary Options: ProsandCons 18
Customised Text 40
Commands and package options that have no effect when using xindy or

makeindexexplicitly o oo oo oo 49
Key to Field Mappings 106
Predefined Hyperlinked Location Formats 125
Synonyms provided by the package option shortcuts 181
The effect of using xspace 200
Glossary Styles 209
Multicolumn Styles L o 224

Glossary

This glossary style was setup using:

\usepackage [xindy,
nonumberlist,
toc,
nopostdot,
style=altlist,
nogroupskip] {glossaries}

bib2gls

An indexing application that combines two functions in one: (1) fetches entry def-
inition from a bib file based on information provided in the aux file (similar to
bibtex); (2) hierarchically sorts and collates location lists (similar to makeindex
and xindy). This application is designed for use with glossaries-extra and can’t be
used with just the base glossaries package. See Option 4.

Command Line Interface (CLI)

An application that doesn’t have a graphical user interface. That is, an application
that doesn’t have any windows, buttons or menus and can be run in a command
prompt or terminal. The command prompt is indicated with $ in this documentation.
Don’t type that character when copying examples.

convertgls2bib

An application provided with bib2gls that converts tex files containing entry def-
initions to bib files suitable for use with bib2gls. This application is designed
for files that just contain entry definitions, but it can work on a complete doc-
ument file. However, there will be a lot of “undefined command” warnings as
convertgls2bib only has a limited set of known commands. You can limit it so
that it only parses the preamble with the --preamble-only switch (requires at least
bib2gls v2.0).

Entry location

The location of the entry in the document. This defaults to the page number on which
the entry appears. An entry may have multiple locations.

Extended Latin Alphabet

An alphabet consisting of Latin characters and extended Latin characters.

http://www.dickimaw-books.com/latex/novices/html/terminal.html
http://www.dickimaw-books.com/latex/novices/html/terminal.html

Glossary

Extended Latin Character

A character that’s created by combining Latin characters to form ligatures (e.g.)
or by applying diacritical marks to a Latin character or characters (e.g. 4). See also
non-Latin character.

First use

The first time a glossary entry is used (from the start of the document or after a reset)
with one of the following commands: \gls, \G1ls, \GLS, \glspl, \Glspl, \GLSpl
or \glsdisp. (See first use flag & first use text.)

First use flag

A conditional that determines whether or not the entry has been used according to
the rules of first use. Commands to unset or reset this conditional are described in
Section 14.

First use text

The text that is displayed on first use, which is governed by the first and
firstplural keys of \newglossaryentry. (May be overridden by \glsdisp
or by \defglsentry.)

glossaries-extra

A separate package that extends the glossaries package, providing new features or
improving existing features. If you want to use glossaries-extra, you must have both
the glossaries package and the glossaries-extra package installed.

Indexing application

An application (piece of software) separate from TEX/IKTEX that collates and sorts
information that has an associated page reference. Generally the information is an
index entry but in this case the information is a glossary entry. There are two main
indexing applications that are used with TgX: makeindex and xindy. These are both
command line interface (CLI) applications.

Latin Alphabet

The alphabet consisting of Latin characters. See also extended Latin alphabet.

Latin Character

One of the letters a, ..., z, A, ..., Z. See also extended Latin character.

Link text

The text produced by commands such as \gls. It may or may not be a hyperlink to
the glossary.

10

Glossary

makeglossaries

A custom designed Perl script interface to xindy and makeindex provided with the
glossaries package. TgX distributions on Windows convert the original makeglossaries
script into an executable makeglossaries. exe for convenience (but Perl is still re-
quired).

makeglossariesqgui
A Java GUI alternative to makeglossaries that also provides diagnostic tools.
Available separately on CTAN.

makeglossaries-lite

A custom designed Lua script interface to xindy and makeindex provided with
the glossaries package. This is a cut-down alternative to the Perl makeglossaries
script. If you have Perl installed, use the Perl script instead. This script is actually
distributed with the file namemakeglossaries-1lite. lua, but TgX Live (on Unix-
like systems) creates a symbolic link called makeglossaries-1lite (without the
. lua extension) to the actual makeglossaries—-1lite. lua script.

makeindex

An indexing application. See Option 2.

Non-Latin Alphabet

An alphabet consisting of non-Latin characters.

Non-Latin Character

An extended Latin character or a character that isn’t a Latin character.

Number list
A list of entry locations (also called a location list). The number list can be suppressed
using the nonumberlist package option.

Sanitize

Converts command names into character sequences. That is, a command called, say,
\foo, is converted into the sequence of characters: \, £, o, o. Depending on the font,
the backslash character may appear as a dash when used in the main document text,
so \ foo will appear as: —foo.

Earlier versions of glossaries used this technique to write information to the files used
by the indexing applications to prevent problems caused by fragile commands. Now,
this is only used for the sort key.

Small caps

Small capitals. The IXTgX kernel provides \textsc{(text)} to produce small capi-
tals. This uses a font where lowercase letters have a small capital design. Uppercase

11

http://ctan.org/pkg/makeglossariesgui

Glossary

letters have the standard height and there’s no noticeable difference with uppercase
characters in corresponding non-small caps fonts. This means that for a small caps
appearance, you need to use lowercase letters in the (text) argument. The package
provides \textsmaller{(text)} which simulates small caps by reducing the size
of the font, so in this case the contents of (text) should be uppercase (otherwise the
effect is simply smaller lowercase letters). Some fonts don’t support small caps com-
bined with bold or slanted properties. In this case, there will be a font substitution
warning and one of the properties (such as small caps or slanted) will be dropped.

Standard IATEX Extended Latin Character

An extended Latin character that can be created by a core IXIgX command, such as
\o (@) or \" e (é). That is, the character can be produced without the need to load
a particular package.

xindy

A flexible indexing application with multilingual support written in Perl. See Op-
tion 3.

12

1 Introduction

The glossaries package is provided to assist generating lists of terms, symbols or abbrevi-
ations. (For convenience, these lists are all referred to as glossaries in this manual. The
terms, symbols and abbreviations are collectively referred to as entries.) The package has
a certain amount of flexibility, allowing the user to customize the format of the glossary
and define multiple glossaries. It also supports glossary styles that include an associated
symbol (in addition to a name and description) for each glossary entry.

There is provision for loading a database of glossary entries. Only those entries indexed!
in the document will be displayed in the glossary. (Unless you use Option 5, which doesn’t
use any indexing but will instead list all defined entries in order of definition.)

It’s not necessary to actually have a glossary in the document. You may be interested
in using this package just as means to consistently format certain types of terms, such as
abbreviations, or you may prefer to have descriptions scattered about the document and
be able to easily link to the relevant description (Option 6).

The simplest document is one without a glossary:

\documentclass{article}
\usepackage [

Q

sort=none % no sorting or indexing required

]

{glossaries}

\newglossaryentry
{cafe}% label
{%$ definition:
name={caf\'e},
description={small restaurant selling refreshments}

}
\setacronymstyle{long-short}

\newacronym
{html}% label
{HTML}% short form
{hypertext markup language}$% long form

\newglossaryentry
{pi}% label

IThat is, if the entry has been referenced using any of the commands described in Section 6 and Section 7 or
via \glssee (or the see key) or commands such as \acrshort or \glsxtrshort

13

glossaries-extra.sty

1 Introduction

{% definition:
name={\ensuremath{\pi}},
description={Archimedes' Constant}

\newglossaryentry
{distance}% label
{% definition:
name={distance},
description={the length between two points},
symbol={m}

\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}.
Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} (\glsentrydesc{distance}) is measured in
\glssymbol{distance}.
\end{document }

(This is a trivial example. For a real document I recommend you use siunitx for units.)

The glossaries-extra package, which is distributed as a separate bundle, extends the ca-
pabilities of the glossaries package. The simplest document with a glossary can be created
with glossaries-extra (which internally loads the glossaries package):

\documentclass{article}

\usepackage [

sort=none, % no sorting or indexing required
abbreviations, % create list of abbreviations
symbols, $ create list of symbols

o)

postdot, % append a full stop after the descriptions
stylemods, style=index % set the default glossary style
l{glossaries—-extra}
\newglossaryentry % provided by glossaries.sty
{cafe}% label
{% definition:
name={caf\'e},
description={small restaurant selling refreshments}

% provided by glossaries-extra.sty:
\setabbreviationstyle{long-short}
\newabbreviation % provided by glossaries—extra.sty
{html}% label
{HTML}% short form

14

1 Introduction

{hypertext markup language}% long form
% provided by glossaries-extra.sty 'symbols' option:
\glsxtrnewsymbol
[description={Archimedes' constant}]% options
{pi}% label
{\ensuremath{\pi}}% symbol
\newglossaryentry % provided by glossaries.sty
{distance}% label
{% definition:
name={distance},
description={the length between two points},
symbol={m}
}

\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}.
Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} is measured in \glssymbol{distance}.

\printunsrtglossaries % list all defined entries
\end{document}

Note the difference in the way the abbreviation (HTML) and symbol (7r) are defined in
the two above examples. The abbreviations, postdot and stylemods options are specific to
glossaries-extra. Other options are passed to the base glossaries package.

glossaries-extra.sty In this document, commands and options displayed in teal, such as
\newabbreviation and stylemods, are only available with the glossaries-extra
package. There are also some commands and options (such as \makeglossaries

and symbols) that are provided by the base glossaries package but are redefined by the
glossaries-extra package. See the glossaries-extra user manual for further details of those
commands.

One of the strengths of the glossaries package is its flexibility, however the drawback of
this is the necessity of having a large manual that covers all the various settings. If you
are daunted by the size of the manual, try starting off with the much shorter guide for
beginners (glossariesbegin.pdf).

There’s a common misconception that you have to have Perl installed in order to use the
glossaries package. Perl is not a requirement (as demonstrated by the above examples)

but it does increase the available options, particularly if you use an extended Latin
alphabet or a non-Latin alphabet.

15

1 Introduction

This document uses the glossaries package. For example, when viewing the PDF version
of this document in a hyperlinked-enabled PDF viewer (such as Adobe Reader or Okular)
if you click on the word “xindy” you'll be taken to the entry in the glossary where there’s
a brief description of the term “xindy”. This is the way the glossaries mechanism works.
An indexing application is used to generated the sorted list of terms. The indexing appli-
cations are command line interface (CLI) tools, which means they can be run directly from
a command prompt or terminal, or can be integrated into some text editors, or you can use
a build tool such as arara to run them.

Neither of the above two examples require an indexing application. The first is just using
the glossaries package for consistent formatting, and there is no list. The second has lists
but they are unsorted (see Option 5).

The remainder of this introductory section covers the following:

¢ Section 1.1 lists the available indexing options.

Section 19 lists the sample documents provided with this package.

Section 1.2 lists the dummy glossary files that may be used for testing.

Section 1.3 provides information for users who wish to write in a language other than
English.

Section 1.4 describes how to use an indexing application to create the sorted glos-
saries for your document (Options 2 or 3).

1.1 Indexing Options

The basic idea behind the glossaries package is that you first define your entries (terms,
symbols or abbreviations). Then you can reference these within your document (like
\cite or \ref). You can also, optionally, display a list of the entries you have refer-
enced in your document (the glossary). This last part, displaying the glossary, is the part
that most new users find difficult. There are three options available with the base glossaries
package (Options 1-3). The glossaries-extra extension package provides two extra options
for lists (Options 4 and 5) as well as an option for standalone descriptions within the doc-
ument body (Option 6).

An overview of Options 1-5 is given in table 1.1. Option 6 is omitted from the table as
it doesn’t produce a list. For a more detailed comparison of the various methods, see the
glossaries performance page.

If you are developing a class or package that loads glossaries, I recommend that you
don’t force the user into a particular indexing method by adding an unconditional
\makeglossaries into your class or package code. Aside from forcing the user into

a particular indexing method, it means that they’re unable to use any commands that
must come before \makeglossaries (such as \newglossary) and they can’t switch
off the indexing whilst working on a draft document.

16

https://www.dickimaw-books.com/gallery/glossaries-performance.shtml

glossaries-extra.sty

1 Introduction

Strictly speaking, Options 5 and 6 aren’t actually indexing options as no indexing is
performed. In the case of Option 5, all defined entries are listed in order of definition.
In the case of Option 6, the entry hypertargets and descriptions are manually inserted at
appropriate points in the document. These two options are included here for completeness
and for comparison with the actual indexing options.

Option 1 (TEX)
Example Document:

\documentclass{article}
\usepackage{glossaries}

\makenoidxglossaries % use TeX to sort

\newglossaryentry{sample}{name={sample},
description={an example}}

\begin{document }

\gls{sample}.

\printnoidxglossary
\end{document }

You can place all your entry definitions in a separate file and load it in the preamble with
\loadglsentries (after \makenoidxglossaries).

This option doesn’t require an external indexing application but, with the default alpha-
betic sorting, it’s very slow with severe limitations. If you want a sorted list, it doesn’t
work well for extended Latin alphabets or non-Latin alphabets. However, if you use the
sanitizesort=false package option (the default for Option 1) then the standard IXTEX accent
commands will be ignored, so if an entry’s name is set to { \’ e} 1ite then the sort value
will default to elite if sanitizesort=false is used and will default to \” elite if sanitizesort=
true is used. If you have any other kinds of commands that don’t expand to ASCII charac-
ters, such as \alpha or \si, then you must use sanitizesort=true or change the sort method
(sort=use or sort=def) in the package options or explicitly set the sort key when you define
the relevant entries. For example:

\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
sort={alpha},description={...}}

The glossaries-extra package has a modified symbols package option that provides

\glsxtrnewsymbol, which automatically sets the sort key to the entry label (instead
of the name).

This option works best with the sort=def or sort=use setting. For any other setting, be
prepared for a long document build time, especially if you have a lot of entries defined.
This option is intended as a last resort for alphabetical sorting. This option allows a

17

1 Introduction

Table 1.1: Glossary Options: Pros and Cons

Option1 Option 2 Option 3 Option 4 Option 5
Requires glossaries-extra? 4 4
Requires an external application? 4 4 4
Requires Perl? 4
Requires Java? v
Can sort extended Latin alphabets b & X N/A
or non-Latin alphabets?
Efficient sort algorithm? X N/A
Can use a different sort method xt xt N/A
for each glossary?
Any problematic sort values? 4 4 v ¥
Are entries with identical sort XS
values treated as separate unique
entries?
Can automatically form ranges in b 4 b 4
the location lists?
Can have non-standard locations X
in the location lists?
Maximum hierarchical depth oo* 3 o) 00 ()
(style-dependent)
\glsdisplaynumberlist X X b 4
reliable?

\newglossaryentry allowed in X v v) & v
document environment? (Not

recommended.)

Requires additional write 4 4

registers?

Default value of sanitizesort false true true true
package option

® ®

true

* Strips standard IATEX accents (that is, accents generated by core IATEX commands) so, for example, \AA is
treated the same as A.

t Only with the hybrid method provided with glossaries-extra.

¥ Provided sort=none is used.

S Entries with the same sort value are merged.

¢ Requires some setting up.

1 The locations must be set explicitly through the custom 1ocat ion field provided by glossaries-extra.

Unlimited but unreliable.

* Entries are defined in bib format. \newglossaryentry should not be used explicitly.

* Provided docdef=true or docdef=restricted but not recommended.
* Provided docdef=false or docdef=restricted.
* Irrelevant with sort=none. (The record=only option automatically switches this on.)

18

1 Introduction

mixture of sort methods. (For example, sorting by word order for one glossary and order
of use for another.) This option is not suitable for hierarchical glossaries and does not form
ranges in the number lists. If you really can’t use an indexing application consider using
Option 5 instead.

1. Add
\makenoidxglossaries

to your preamble (before you start defining your entries, as described in Section 4).

2. Put
\printnoidxglossary

where you want your list of entries to appear (described in Section 10). Alternatively,
to display all glossaries use the iterative command:

\printnoidxglossaries

3. Run IXTEX twice on your document. (As you would do to make a table of contents
appear.) For example, click twice on the “typeset” or “build” or “PDFIETEX” button
in your editor.

Option 2 (makeindex)
Example document:

\documentclass{article}
\usepackage{glossaries}

\makeglossaries % open glossary files

\newglossaryentry{sample}{name={sample},
description={an example}}
\begin{document}

\gls{sample}.

\printglossary
\end{document }

You can place all your entry definitions in a separate file and load it in the preamble with
\loadglsentries (after \makeglossaries).

This option uses a CLI application called makeindex to sort the entries. This application
comes with all modern TgX distributions, but it’s hard-coded for the non-extended Latin
alphabet. It can’t correctly sort accent commands (such as \’ or \c) and fails with UTF-8
characters, especially for any sort values that start with a UTF-8 character (as it separates

19

glossaries-extra.sty

1 Introduction

the octets resulting in an invalid file encoding). This process involves making ETgX write
the glossary information to a temporary file which makeindex reads. Then makeindex
writes a new file containing the code to typeset the glossary. Then \printglossary reads
this file in on the next run.

This option works best if you want to sort entries according to the English alphabet and
you don’t want to install Perl or Java. This method can also work with the restricted shell
escape since makeindex is considered a trusted application. (So you should be able to use
the automake package option provided the shell escape hasn’t been completely disabled.)

This method can form ranges in the number list but only accepts limited number for-
mats: \arabic, \roman, \Roman, \alph and \Alph.

This option does not allow a mixture of sort methods. All glossaries must be sorted
according to the same method: word/letter ordering or order of use or order of definition.
If you need word ordering for one glossary and letter ordering for another you’ll have to
explicitly call makeindex for each glossary type.

The glossaries-extra package allows a hybrid mix of Options 1 and 2 to provide word/
letter ordering with Option 2 and order of use/definition with Option 1. See the

glossaries-extra documentation for further details. See also the glossaries-extra alternative
to sampleSort.tex in Section 19.5.

1. If you want to use makeindex’s —g option you must change the quote character
using \GlsSetQuote. For example:

\GlsSetQuote{+}
This must be used before \makeglossaries. Note that if you are using babel, the

shorthands aren’t enabled until the start of the document, so you won’t be able to use
the shorthands in definitions made in the preamble.

2. Add

\makeglossaries

to your preamble (before you start defining your entries, as described in Section 4).

3. Put
\printglossary

where you want your list of entries to appear (described in Section 10). Alternatively,
to display all glossaries use the iterative command:

\printglossaries

20

1 Introduction

4. Run IXIEX on your document. This creates files with the extensions glo and ist
(for example, if your ETEX document is called myDoc.tex, then you'll have two
extra files called myDoc.glo and myDoc. ist). If you look at your document at this
point, you won't see the glossary as it hasn’t been created yet. (If you use glossaries-
extra you'll see the section heading and some boilerplate text.)

If you have used package options such as symbols there will also be other sets of files
corresponding to the extra glossaries that were created by those options.

5. Run makeindex with the . glo file as the input file and the . ist file as the style so
that it creates an output file with the extension . gls. If you have access to a terminal
or a command prompt (for example, the MSDOS command prompt for Windows
users or the bash console for Unix-like users) then you need to run the command:

$ makeindex -s myDoc.ist —-o myDoc.gls myDoc.glo

(Replace myDoc with the base name of your IXIEX document file. Avoid spaces in the
file name if possible. The $ symbol indicates the command prompt and should be
omitted.)

The file extensions vary according to the glossary type. See Section 1.4.4 for fur-

ther details. makeindex must be called for each set of files.

If you don’t know how to use the command prompt, then you can probably access
makeindex via your text editor, but each editor has a different method of doing this.
See Incorporating makeglossaries or makeglossaries-lite or bib2gls into the document
build for some examples.

Alternatively, run makeindex indirectly via the makeglossaries script:

$ makeglossaries myDoc

Note that the file extension isn’t supplied in this case. (Replace makeglossaries
with makeglossaries-1lite if you don’t have Perl installed.) This will pick up all
the file extensions from the aux file and run makeindex the appropriate number of
times with all the necessary switches.

The simplest approach is to use arara and add the following comment lines to the
start of your document:

o\

arara: pdflatex
arara: makeglossaries
arara: pdflatex

o\°

o\

(Replace makeglossaries with makeglossarieslite in the second line above
if you don’t have Perl installed. Note that there’s no hyphen in this case.)

21

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1 Introduction

The default sort is word order (“sea lion” comes before “seal”). If you want letter
ordering you need to add the -1 switch:

$ makeindex -1 -s myDoc.ist —o myDoc.gls myDoc.glo

(See Section 1.4.4 for further details on using makeindex explicitly.) If you use
makeglossaries ormakeglossaries-1lite then use the order=letter package op-
tion and the -1 option will be added automatically.

6. Once you have successfully completed the previous step, you can now run ETEX on
your document again.

You'll need to repeat the last step if you have used the toc option (unless you're using
glossaries-extra) to ensure the section heading is added to the table of contents. You'll also
need to repeat steps 5 and 6 if you have any cross-references which can’t be indexed until
the glossary file has been created.

Option 3 (xindy)
Example document:

\documentclass{article}
\usepackage [xindy] {glossaries}
\makeglossaries % open glossary files

\newglossaryentry{sample}{name={sample},
description={an example}}
\begin{document}

\gls{sample}.

\printglossary
\end{document}

You can place all your entry definitions in a separate file and load it in the preamble with
\loadglsentries (after \makeglossaries).

This option uses a CLI application called xindy to sort the entries. This application is
more flexible than makeindex and is able to sort extended Latin alphabets or non-Latin
alphabets, however it does still have some limitations.

The xindy application comes with both TEX Live and MiKTgX, but since xindy is a Perl
script, you will also need to install Perl, if you don’t already have it. In a similar way to
Option 2, this option involves making ITEX write the glossary information to a temporary
file which xindy reads. Then xindy writes a new file containing the code to typeset the
glossary. Then \printglossary reads this file in on the next run.

This is the best option with just the base glossaries package if you want to sort according
to a language other than English or if you want non-standard location lists, but it can
require some setting up (see Section 11). There are some problems with certain sort values:

22

1 Introduction
¢ entries with the same sort value are merged by xindy into a single glossary line so
you must make sure that each entry has a unique sort value;
¢ xindy forbids empty sort values;

* xindy automatically strips control sequences, the math-shift character $ and braces
{} from the sort value, which is usually desired but this can cause the sort value to
collapse to an empty string which xindy forbids.

In these problematic cases, you must set the sort field explicitly. For example:

\newglossaryentry{alpha} {name={\ensuremath{\alpha}},
sort={alpha},description={...}}

glossaries-extra.sty The glossaries-extra package has a modified symbols package option that provides
\glsxtrnewsymbol, which automatically sets the sort key to the entry label (instead
of the name).

All glossaries must be sorted according to the same method (word /letter ordering, order
of use, or order of definition).

glossaries-extra.sty The glossaries-extra package allows a hybrid mix of Options 1 and 3 to provide word/

letter ordering with Option 3 and order of use/definition with Option 1. See the
glossaries-extra documentation for further details.

1. Add the xindy option to the glossaries package option list:
\usepackage[xindy] {glossaries}

If you are using a non-Latin script you'll also need to either switch off the creation of
the number group:

\usepackage [xindy={glsnumbers=false}] {glossaries}

or use either \GlsSetXdyFirstLetterAfterDigits{(letter)} (to indicate the
first letter group to follow the digits) or \GlsSetXdyNumberGroupOrder {(spec) }
to indicate where the number group should be placed (see Section 11).

2. Add \makeglossaries to your preamble (before you start defining your entries,
as described in Section 4).

3. Run ETEX on your document. This creates files with the extensions glo and xdy
(for example, if your ETEX document is called myDoc. tex, then you'll have two
extra files called myDoc.glo and myDoc. xdy). If you look at your document at this
point, you won't see the glossary as it hasn’t been created yet. (If you're using the

23

1 Introduction

glossaries-extra extension package, you'll see the section header and some boilerplate
text.)

If you have used package options such as symbols there will also be other sets of files
corresponding to the extra glossaries that were created by those options.

. Run xindy with the . glo file as the input file and the . xdy file as a module so that
it creates an output file with the extension .gls. You also need to set the language
name and input encoding. If you have access to a terminal or a command prompt
(for example, the MSDOS command prompt for Windows users or the bash console
for Unix-like users) then you need to run the command (all on one line):

$ xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.glg -o

myDoc.gls myDoc.glo

(Replace myDoc with the base name of your KIEX document file. Avoid spaces in the
file name. If necessary, also replace english with the name of your language and
ut £8 with your input encoding, for example, -L. german -C din5007-utf8.)

The file extensions vary according to the glossary type. See Section 1.4.3 for fur-

ther details. xindy must be called for each set of files.

It’s much simpler to use makeglossaries instead:

$ makeglossaries myDoc

Note that the file extension isn’t supplied in this case. This will pick up all the file
extensions from the aux file and run xindy the appropriate number of times with
all the necessary switches.

There’s no benefit in using makeglossaries—-1lite with xindy. (Remember that
xindy is a Perl script so if you can use xindy then you can also usemakeglossaries,
and if you don’t want to use makeglossaries because you don’t want to install
Perl, then you can’t use xindy either.)

If you don’t know how to use the command prompt, then you can probably access
xindy or makeglossaries via your text editor, but each editor has a different
method of doing this. See Incorporating makeglossaries or makeglossaries-lite or
bib2gls into the document build for some examples.

Again, a convenient method is to use arara and add the follow comment lines to
the start of your document:

o\

arara: pdflatex
arara: makeglossaries
arara: pdflatex

o\

o

24

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

glossaries-extra.sty

1 Introduction

The default sort is word order (“sea lion” comes before “seal”). If you want letter
ordering you need to add the order=letter package option:

\usepackage [xindy, order=letter] {glossaries}

(and return to the previous step). This option is picked up by makeglossaries. If
you are explicitly using xindy then you'll need to add -M ord/letorder to the
options list. See Section 1.4.3 for further details on using xindy explicitly.

5. Once you have successfully completed the previous step, you can now run ETEX on
your document again. As with makeindex (Option 2), you may need to repeat the
previous step and this step to ensure the table of contents and cross-references are
resolved.

Option 4 (bib2gls)

This option is only available with the glossaries-extra extension package. This method uses
bib2gls to both fetch entry definitions from bib files and to hierarchically sort and col-
late.

Example document:

\documentclass{article}

\usepackage [record=nameref] {glossaries—extra}
\GlsXtrLoadResources[src={entries}]
\begin{document}

\gls{sample}, \gls{alpha}, \gls{html}.
\printunsrtglossary

\end{document}

where the file entries.bib contains:

@entry{sample,
name={sample},
description={an example}

}

@symbol{alpha,
name={\ensuremath{\alpha}},
description={...}

}

@abbreviation{html,
short={HTML},
long={hypertext markup language}

}

All entries must be provided in one or more bib files. See the bib2gls user manual for
the required format.

25

1 Introduction

Note that the sort key should not be used. Each entry type (Gentry, @symbol,
@abbreviation) has a particular field that’s used for the sort value by default (name,

the label, short). You will break this mechanism if you explicitly use the sort key. See
bib2gls gallery: sorting for examples.

The glossaries-extra package needs to be loaded with the record package option:

\usepackage [record] {glossaries—-extra}

or (equivalently)

\usepackage [record=only] {glossaries—-extra}

or (with at least glossaries-extra v1.37 and bib2gls v1.8):
\usepackage [record=nameref] {glossaries—extra}

The record=nameref option is the best method.

(It’s possible to use a hybrid of this method and Options 2 or 3 with record=alsoindex but
in general there is little need for this and it complicates the build process.)

Each resource set is loaded with \GlsXtrLoadResources [(options)]. For example:

\GlsXtrLoadResources
[$ definitions in entriesl.bib and entries2.bib:

src={entriesl,entries?},
sort={de-CH-1996}% sort according to this locale

]

The bib files are identified as a comma-separated list in the value of the src key. The
sort option identifies the sorting method. This may be a locale identifier for alphabetic
sorting, but there are other sort methods available, such as character code or numeric. One
resource set may cover multiple glossaries or one glossary may be split across multiple
resource sets, forming logical sub-blocks.

If you want to ensure that all entries are selected, even if they haven’t been referenced in
the document, then add the option selection=all. (There are also ways of filtering the
selection or you can even have a random selection by shuffling and truncating the list. See
the bib2gls user manual for further details.)

The glossary is displayed using;:

\printunsrtglossary
Alternatively all glossaries can be displayed using the iterative command:
\printunsrtglossaries

The document is built using:

$ pdflatex myDoc

$ bib2gls myDoc
$ pdflatex myDoc

26

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

glossaries-extra.sty

1 Introduction

If letter groups are required, you need the ——group switch:

$ bib2gls —--group myDoc
or with arara:

[o)

% arara: bib2gls: { group: on }

(You will also need an appropriate glossary style.)

Unlike Options 2 and 3, this method doesn’t create a file containing the typeset glossary
but simply determines which entries are needed for the document, their associated loca-
tions and (if required) their associated letter group. This option allows a mixture of sort
methods. For example, sorting by word order for one glossary and order of use for another
or even sorting one block of the glossary differently to another block in the same glossary.
See bib2gls gallery: sorting.

This method supports Unicode and uses the Common Locale Data Repository, which
provides more extensive language support than xindy.? The locations in the number list
may be in any format. If bib2gls can deduce a numerical value it will attempt to form
ranges otherwise it will simply list the locations.

See glossaries-extra and bib2gls: An Introductory Guide or the bib2gls user manual
for further details of this method, and also Incorporating makeglossaries or makeglossaries-
lite or bib2gls into the document build.

Option 5 (no sorting)

This option is only available with the extension package glossaries-extra. No indexing ap-
plication is required.
Example document:

\documentclass{article}

\usepackage [sort=none] {glossaries—-extra}
\newglossaryentry{sample} {name={sample},
description={an example}}
\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
description={...}}

\begin{document }

\gls{sample}.

\printunsrtglossary
\end{document }

This method is best used with the package option sort=none (as shown above). There’s
no “activation” command (such as \makeglossaries for Options 2 and 3).

All entries must be defined before the glossary is displayed (preferably in the pream-
ble) in the required order, and child entries must be defined immediately after their parent
entry if they must be kept together in the glossary. (Some glossary styles indent entries

2Except for Klingon, which is supported by xindy, but not by the CLDR.

27

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

glossaries-extra.sty

1 Introduction

that have a parent but it’s the indexing application that ensures the child entries are listed
immediately after the parent. If you're opting to use this manual approach then it’s your
responsibility to define the entries in the correct order.) You can place all your entry defi-
nitions in a separate file and load it in the preamble with \1oadglsentries.

The glossary is displayed using:

\printunsrtglossary

Alternatively all glossaries can be displayed using the iterative command:

\printunsrtglossaries

This will display all defined entries, regardless of whether or not they have been used in
the document. The number lists have to be set explicitly otherwise they won’t appear. Note
that this uses the same command for displaying the glossary as Option 4. This is because
bib2gls takes advantage of this method by defining the wanted entries in the required
order and setting the locations (and letter group information, if required).

Therefore, the above example document has a glossary containing the entries: sample
and « (in that order). Note that the alpha entry has been included even though it wasn’t
referenced in the document.

This just requires a single IXIEX call:

$ pdflatex myDoc

unless the glossary needs to appear in the table of contents, in which case a second run is
required:

$ pdflatex myDoc
$ pdflatex myDoc

(Naturally if the document also contains citations, and so on, then additional steps are
required. Similarly for all the other options above.)
See the glossaries-extra documentation for further details of this method.

Option 6 (standalone)

This option is only available with the glossaries-extra extension package.® Instead of creating
a list, this has standalone definitions throughout the document. The entry name may or
may not be in a section heading.

You can either define entries in the document preamble (or in an external file loaded
with \loadglsentries), as with Option 5, for example:

\documentclass{article}

\usepackage [colorlinks] {hyperref}

3You can just use the base glossaries package for the first case, but it’s less convenient. You’d have to
manually insert the entry target before the sectioning command and use \glsentryname{(label)} or
\Glsentryname {(label)} to display the entry name.

1 Introduction

\usepackage [sort=none,
nostyles%$ <- no glossary styles are required
]{glossaries—extra}

\newglossaryentry{set} {name={set},

description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

\newglossaryentry{function} {name={function},
description={a rule that assigns every element in the
domain \gls{set} to an element in the range \gls{set}},
symbol={\ensuremath{f (x) }}

\newcommandx* {\termdef} [1]{%
\section{\glsxtrglossentry{#1} \glsentrysymbol{#1}}%
\begin{quote}\em\Glsentrydesc{#1}.\end{quote}%

\begin{document}
\tableofcontents

\section{Introduction}
Sample document about \glspl{function} and \glspl{set}.

\termdef {set}

More detailed information about \glspl{set} with examples.
\termdef {function}

More detailed information about \glspl{function} with examples.
\end{document}

Or you can use bib2gls if you want to manage a large database of terms. For example
(requires glossaries-extra v1.42, see below):

\documentclass{article}

\usepackage[colorlinks] {hyperref}

\usepackage [record,
nostyles% <- no glossary styles are required
]{glossaries—extra}

\GlsXtrLoadResources |[src=terms, sort=none, save—-locations=false]

\newcommandx* { \termdef} [1]{%

29

1 Introduction

\section{\glsxtrglossentry{#1} \glossentrysymbol{#1}}%
\glsadd{#1}% <- index this entry
\begin{quote}\em\Glsentrydesc{#1}.\end{quote}%

}

\begin{document }
\tableofcontents

\section{Introduction}
Sample document about \glspl{function} and \glspl{set}.

\termdef {set}

More detailed information about \glspl{set} with examples.
\termdef {function}

More detailed information about \glspl{function} with examples.
\end{document}

Where the file terms .bib contains:

@entry{set,
name={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}

@entry{function,
name={function},
description={a rule that assigns every element in the domain
\gls{set} to an element in the range \gls{set}},
symbol={\ensuremath{f (x) }}

}

The advantage in this approach (with \loadglsentries or bib2gls) is that you can
use an existing database of entries shared across multiple documents, ensuring consistent
notation for all of them.

In both cases, there’s no need to load all the glossary styles packages, as they’re not
required, so I've used the nostyles package option to prevent them from being loaded.

In the first case, you need the sort=none package option (as in Option 5) and then define
the terms in the preamble. No external tool is required. Just run I£IgX as normal. (Twice to
ensure that the table of contents is up to date.)

$ pdflatex myDoc
$ pdflatex myDoc

In the second case, you need the record package option (as in Option 4) since bib2gls
is needed to select the required entries, but you don’t need a sorted list:

30

1 Introduction

\GlsXtrLoadResources [src={terms}, sort=none]

This will ensure that any entries indexed in the document (through commands like \gls
or \glsadd) will be selected by bib2gls, but it will skip the sorting step. (The chances
are you probably also won’t need location lists either. If so, you can add the option
save-locations=false.)

Remember that for this second case you need to run bib2gls as per Option 4:

$ pdflatex myDoc
$ bib2gls myDoc

$ pdflatex myDoc
$ pdflatex myDoc

For both cases (with or without bib2gls), instead of listing all the entries using
\printunsrtglossary, you use \glsxtrglossentry{(label)} where you want the
name (and anchor with hyperref) to appear in the document. This will allow the link text
created by commands like \gls to link to that point in the document. The description
can simply be displayed with \glsentrydesc{(label)} or \Glsentrydesc{(label)}, as
in the above examples. In both examples, I've defined a custom command \termdef to
simplify the code and ensure consistency. Extra styling, such as placing the description in
a coloured frame, can be added to this custom definition as required.

(Instead of using \glsentrydescor \Glsentrydesc,youcanuse \glossentrydesc
{ (label) }, which will obey attributes such as glossdesc and glossdescfont. See the glossaries-
extra manual for further details.)

The symbol (if required) can be displayed with either \glsentrysymbol{(label)} or
\glossentrysymbol{(label)}. In the first example, I've used \glsentrysymbol. In
the second I've used \glossentrysymbol. The latter is necessary with bib2gls if the
symbol needs to go in a section title as the entries aren’t defined on the first IXIgX run.

In normal document text, \glsentrysymbol will silently do nothing if the entry hasn’t
been defined, but when used in a section heading it will expand to an undefined internal
command when written to the aux file, which triggers an error.

The \glossentrysymbol command performs an existence check, which triggers a
warning if the entry is undefined. (All entries will be undefined before the first bib2gls
call.) You need at least glossaries-extra v1.42 to use this command in a section title.* If hyper-
ref has been loaded, this will use \texorpdfstring to allow a simple expansion for the
PDF bookmarks (see the glossaries-extra user manual for further details).

If you want to test if the symbol field has been set, you need to use \ifglshassymbol
outside of the section title. For example:

\ifglshassymbol {#1}%
{\section{\glsxtrglossentry{#1} \glossentrysymbol{#1}}}
{\section{\glsxtrglossentry{#1}}}

#\glossentrysymbol is defined by the base glossaries package but is redefined by glossaries-extra.

31

1 Introduction

In both of the above examples, the section titles start with a lowercase character (because
the name value is all lowercase in entry definitions). You can apply automatic case-change
with the glossname attribute. For example:

\glssetcategoryattribute{general}{glossname}{firstuc}
or (for title-case)
\glssetcategoryattribute{general}{glossname}{title}

However, this won’t apply the case-change in the table of contents or bookmarks.
In the second example, you can instead use bib2gls to apply a case-change:

\GlsXtrLoadResources [src=terms,
sort=none, save-locations=false,
replicate-fields={name=text},
name—case—change=firstuc

]

(Or name-case-change=title for title-case.) This copies the name value to the text
field and then applies a case-change to the name field (leaving the text field unchanged).
The name in the section titles now starts with a capital but the link text produced by com-
mands like \g1s is still lowercase.

In the first example (without bib2gls) you need to do this manually. For example:

\newglossaryentry{set}{name={Set},text={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

Note that if you use the default save-locations=true with bib2gls, it’s possible
to combine Options 4 and 6 to have both standalone definitions and an index. Now I do
need a glossary style. In this case I'm going to use bookindex, which is provided in the
glossary-bookindex package (bundled with glossaries-extra). I don’t need any of the other
style packages, so I can still keep the nostyles option and just load glossary-bookindex:

\usepackage [record=nameref, $ <- using bib2gls

nostyles, % <- don't load default style packages
stylemods=bookindex, % <- load glossary-bookindex.sty
style=bookindex% <- set the default style to 'bookindex'
]{glossaries—-extra}

I also need to sort the entries, so the resource command is now:

\GlsXtrLoadResources[src=terms, % definitions in terms.bib
sort=en-GB, % sort by this locale
replicate-fields={name=text},
name-case-change={firstuc}

]
At the end of the document, I can add the glossary:

32

1 Introduction

\printunsrtglossary[title=Index,target=false]

Note that I've had to switch off the hypertargets with target=false (otherwise there
would be duplicate targets). If you want letter group headings you need to use the
——group switch:

$ bib2gls —-—-group myDoc
or if you are using arara:

o)

% arara: bib2gls: { group: on }

The bookindex style doesn’t show the description, so only the name and location is dis-
played. Remember that the name has had a case-conversion so it now starts with an initial
capital. If you feel this is inappropriate for the index, you can adjust the bookindex style so
that it uses the text field instead. For example:

\renewcommand=* { \glsxtrbookindexname} [1]{%
\glossentrynameother{#1}{text}}

See the glossaries-extra user manual for further details about this style.

Note that on the first IXIEX run none of the entries will be defined. Once they are defined,
the page numbers may shift due to the increased amount of document text. You may
therefore need to repeat the document build to ensure the page numbers are correct.

If there are extra terms that need to be included in the index that don’t have a description,
you can define them with @index in the bib file. For example:

@index{element}
@index{member,alias={element}}

They can be used in the document as usual:

The objects that make up a set are the \glspl{element}
or \glspl{member}.

See glossaries-extra and bib2gls: An Introductory Guide or the bib2gls user manual for
further details.

The glossaries package comes with a number of sample documents that illustrate the
various functions. These are listed in Section 19.

1.2 Dummy Entries for Testing

In addition to the sample files described above, glossaries also provides some files contain-
ing lorum ipsum dummy entries. These are provided for testing purposes and are on TgX’s
path (in tex/latex/glossaries/test-entries)so they can be included via \ input
or \loadglsentries. The glossaries-extra package provides bib versions of all these files
for use with bib2gls. The files are as follows:

33

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

1 Introduction

example-glossaries-brief.tex These entries all have brief descriptions. For example:
\newglossaryentry{lorem}{name={lorem},description={ipsum}}
example-glossaries-long.tex These entries all have long descriptions. For example:

\newglossaryentry{loremipsum}{name={lorem ipsum},
description={dolor sit amet, consectetuer adipiscing
elit. Ut purus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur dictum gravida
mauris.}}

example-glossaries-multipar.tex These entries all have multi-paragraph descriptions. For
example:

\longnewglossaryentry{loremi-ii}{name={lorem 1--2}1}%
{%

Lorem ipsum

Nam dui ligula...

}
example-glossaries-symbols.tex These entries all use the symbol key. For example:

\newglossaryentry{alpha}{name={alpha},
symbol={\ensuremath{\alpha}},
description={Quisque ullamcorper placerat ipsum.}}

example-glossaries-symbolnames.tex Similar to the previous file but the symbol key isn’t
used. Instead the symbol is stored in the name key. For example:

\newglossaryentry{sym.alpha}{sort={alpha},
name={\ensuremath{\alpha}},
description={Quisque ullamcorper placerat ipsum.}}

example-glossaries-images.tex These entries use the userl key to store the name of an
image file. (The images are provided by the mwe package and should be on TgX’s
path.) One entry doesn’t have an associated image to help test for a missing key. The
descriptions are long to allow for tests with the text wrapping around the image. For
example:

\longnewglossaryentry{sedfeugiat} {name={sed feugiat},
userl={example-image}}%
(%

Cum sociis natoque...

Etiam...

}

34

1 Introduction

example-glossaries-acronym.tex These entries are all abbreviations. For example:

\newacronym[type=\glsdefaulttype] {1id}{LID}{lorem ipsum
dolor}

glossaries-extra.sty If you use the glossaries-extra extension package, then \newacronym is redefined
to use \newabbreviation with the category key set to acronym (rather than
the default abbreviation). This means that you need to set the abbreviation

style for the acronym category. For example:

\setabbreviationstyle[acronym] {long—short}

example-glossaries-acronym-desc.tex This file contains entries that are all abbreviations
that use the description key. For example:

\newacronym[type=\glsdefaulttype,
description={fringilla a, euismod sodales,
sollicitudin vel, wisi}]{ndl}{NDL}{nam dui ligula}

glossaries-extra.sty If you use the glossaries-extra extension package, then \newacronym is redefined
touse \newabbreviation with the category key set to acronym (rather than
the default abbreviation). This means that you need to set the abbreviation
style for the acronym category. For example:

\setabbreviationstyle[acronym] {long-short-desc}

example-glossaries-acronyms-lang.tex These entries are all abbreviations, where some of
them have a translation supplied in the user1 key. For example:

\newacronym[type=\glsdefaulttype,userl={love itself}]
{1li}{LI}{lorem ipsum}

glossaries-extra.sty If you use the glossaries-extra extension package, then \newacronym is redefined
to use \newabbreviation with the category key set to acronym (rather than
the default abbreviation). This means that you need to set the abbreviation

style for the acronym category. For example:

\setabbreviationstyle[acronym] {long—-short—-user}

example-glossaries-parent.tex These are hierarchical entries where the child entries use the
name key. For example:

35

1 Introduction

\newglossaryentry{sedmattis}{name={sed mattis},
description={erat sit amet}

\newglossaryentry{gravida} {parent={sedmattis},
name={gravida},description={malesuada}}

example-glossaries-childnoname.tex These are hierarchical entries where the child entries
don’t use the name key. For example:

\newglossaryentry{scelerisque} {name={scelerisque},
description={at}}

\newglossaryentry{vestibulum} {parent={scelerisque},
description={eu, nulla}}

example-glossaries-cite.tex These entries use the userl key to store a citation key (or
comma-separated list of citation keys). The citations are defined in xampl.bib,
which should be available on all modern TgX distributions. One entry doesn’t have
an associated citation to help test for a missing key. For example:

\newglossaryentry{fusce} {name={fusce},
description={suscipit cursus sem},userl={article-minimal}}

example-glossaries-url.tex These entries use the user1 key to store an URL associated with
the entry. For example:

\newglossaryentry{aenean—-url} {name={aenean},
description={adipiscing auctor est},
userl={http://uk.tug.org/}}

The samplefile glossary-lipsum-examples.texinthedoc/latex/glossaries/
samples directory uses all these files. See also https://www.dickimaw-books.com/
gallery/#glossaries.

glossaries-extra.sty The glossaries-extra package provides the additional test file:

example-glossaries-xr.tex These entries use the see key provided by the base glossaries
package and also the alias and seealso keys that require glossaries-extra. For ex-
ample:

\newglossaryentry{alias-lorem}{name={alias-lorem},
description={ipsum},alias={lorem}}

\newglossaryentry{amet} {name={amet}, description={consectetuer},
see={dolor}}

\newglossaryentry{arcu} {name={arcu}, description={libero},
seealso={placerat,vitae,curabitur}}

36

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/glossary-lipsum-examples.tex
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/#glossaries

1 Introduction

1.3 Multi-Lingual Support

The glossaries package uses the tracklang package to determine the document languages.
Unfortunately, because there isn’t a standard language identification framework pro-
vided with IIEX, tracklang isn’t always able to detect the selected languages either as a

result of using an unknown interface or where the interface doesn’t provide a way of
detecting the language. See Localisation with t racklang. tex for further details.

As from version 1.17, the glossaries package can be used with xindy as well as
makeindex. If you are writing in a language that uses an extended Latin alphabet or non-
Latin alphabet it’s best to use Option 3 (xindy) or Option 4 (bib2gls) as makeindex
(Option 2) is hard-coded for the non-extended Latin alphabet and Option 1 can only per-
form limited ASCII comparisons.

This means that with Options 3 or 4 you are not restricted to the A, ..., Z letter groups.
If you want to use xindy, remember to use the xindy package option. For example:

\documentclass |[frenchb] {article}
\usepackage [utf8] {inputenc}
\usepackage[T1l] {fontenc}
\usepackage {babel}
\usepackage[xindy] {glossaries}

If you want to use bib2gls, you need to use the record option with glossaries-extra and
supply the definitions in bib files. (See the bib2gls user manual for further details.)

Note that although a non-Latin character, such as é, looks like a plain charac-
ter in your tex file, with standard ETgX it’s actually a macro and can therefore

cause expansion problems. You may need to switch off the field expansions with
\glsnoexpandfields. This issue doesn’t occur with Xgl&TEX or Lual&TgX.

With inputenc, if you use a non-Latin character (or other expandable) character at the start
of an entry name, you must place it in a group, or it will cause a problem for commands
that convert the first letter to upper case (e.g. \G1s). For example:

\newglossaryentry{elite} {name={{é}lite},
description={select group or class}}

For further details, see the “UTF-8” section in the mfirstuc user manual.

If you are using xindy or bib2gls, the application needs to know the encod-
ing of the tex file. This information is added to the aux file and can be picked
up by makeglossaries and bib2gls. If you use xindy explicitly instead of via
makeglossaries, you may need to specify the encoding using the —C option. Read the
xindy manual for further details of this option.

37

https://www.dickimaw-books.com/latex/tracklang/

1 Introduction

As from v4.24, if you are writing in German (for example, using the ngerman package®
or babel with the ngerman package option), and you want to use makeindex’s —g option,
you'll need to change makeindex’s quote character using:

\GlsSetQuote{(character)}

Note that (character) may not be one of ? (question mark), | (pipe) or ! (exclamation mark).
For example:

\GlsSetQuote{+}

This must be done before \makeglossaries and any entry definitions. It's only
applicable for makeindex. This option in conjunction with ngerman will also cause
makeglossaries to use the —g switch when invoking makeindex.

Be careful of babel’s shorthands. These aren’t switched on until the start of the docu-
ment, so any entries defined in the preamble won’t be able to use those shorthands.
However, if you define the entries in the document and any of those shorthands hap-

pen to be special characters for makeindex or xindy (such as the double-quote) then
this will interfere with code that tries to escape any of those characters that occur in the
sort key.

In general, it’s best not to use babel’s shorthands in entry definitions. For example:
\documentclass{article}

\usepackage [ngerman] {babel}
\usepackage{glossaries}

\GlsSetQuote{+}
\makeglossaries

\newglossaryentry{rna} {name={ribonukleins\"aure},
sort={ribonukleins"aure},
description={eine Nukleins\"aure}}

\begin{document}
\gls{rna}

\printglossaries
\end{document }

The ngerman package has the shorthands on in the preamble, so they can be used in
definitions if \G1sSetQuote has been used to change the makeindex quote character.
Example:

5deprecated, use babel instead

38

1 Introduction

\documentclass{article}

\usepackage [ngerman] {babel}
\usepackage{glossaries}

\GlsSetQuote{+}
\makeglossaries

\newglossaryentry{rna} {name={ribonukleins"aure},
description={eine Nukleins"aure}}

\begin{document}
\gls{rna}

\printglossaries
\end{document}

1.3.1 Changing the Fixed Names

The fixed names are produced using the commands listed in table 1.2. If you aren’t using
a language package such as babel or polyglossia that uses caption hooks, you can just rede-
fine these commands as appropriate. If you are using babel or polyglossia, you need to use
their caption hooks to change the defaults. See changing the words babel uses or read the
babel or polyglossia documentation. If you have loaded babel, then glossaries will attempt to
load translator, unless you have used the notranslate, translate=false or translate=babel package
options. If the translator package is loaded, the translations are provided by dictionary files
(for example, glossaries-dictionary-English.dict). See the translator package for
advice on changing translations provided by translator dictionaries. If you can’t work out
how to modify these dictionary definitions, try switching to babel’s interface using translate
=babel:

\documentclass[english, french]{article}
\usepackage {babel}
\usepackage[translate=babel] {glossaries}

and then use babel’s caption hook mechanism. Note that if you pass the language options
directly to babel rather that using the document class options or otherwise passing the same
options to translator, then translator won’t pick up the language and no dictionaries will be
loaded and babel’s caption hooks will be used instead.

As from version 4.12, multilingual support is provided by separate language modules
that need to be installed in addition to installing the glossaries package. You only need
to install the modules for the languages that you require. If the language module has an
unmaintained status, you can volunteer to take over the maintenance by contacting me at
http://www.dickimaw-books.com/contact .html. The translator dictionary files for
glossaries are now provided by the appropriate language module. For further details about

39

https://texfaq.org/FAQ-latexwords
http://www.dickimaw-books.com/contact.html

Command Name
\glossaryname
\acronymname
\entryname
\descriptionname

\symbolname

\pagelistname

1 Introduction

Table 1.2: Customised Text

Translator Key Word
Glossary
Acronyms

Notation
(glossaries)

Description
(glossaries)

Symbol (glossaries)

Page List
(glossaries)

\glssymbolsgroupname Symbols

(glossaries)

\glsnumbersgroupname Numbers

(glossaries)

40

Purpose

Title of the main glossary.

Title of the list of acronyms (when
used with package option acronym).
Header for first column in the
glossary (for 2, 3 or 4 column
glossaries that support headers).
Header for second column in the
glossary (for 2, 3 or 4 column
glossaries that support headers).
Header for symbol column in the
glossary for glossary styles that
support this option.

Header for page list column in the
glossary for glossaries that support
this option.

Header for symbols section of the
glossary for glossary styles that
support this option.

Header for numbers section of the
glossary for glossary styles that
support this option.

1 Introduction

information specific to a given language, please see the documentation for that language
module.
Examples of use:

¢ Using babel and translator:

\documentclass|[english, french] {article}
\usepackage{babel}
\usepackage{glossaries}

(translator is automatically loaded).
¢ Using babel:

\documentclass[english, french] {article}
\usepackage{babel}
\usepackage[translate=babel] {glossaries}

(translator isn’t loaded). The glossaries-extra package has translate=babel as the default
if babel has been loaded.

¢ Using polyglossia:

\documentclass{article}
\usepackage{polyglossia}
\setmainlanguage{english}
\usepackage{glossaries}

Due to the varied nature of glossaries, it’s likely that the predefined translations may
not be appropriate. If you are using the babel package and the glossaries package option
translate=babel, you need to be familiar with the advice given in changing the words ba-
bel uses. If you are using the translator package, then you can provide your own dic-
tionary with the necessary modifications (using \deftranslation) and load it using
\usedictionary. If you simply want to change the title of a glossary, you can use
the title key in commands like \printglossary (but not the iterative commands like
\printglossaries).

Note that the translator dictionaries are loaded at the beginning of the document, so it
won’t have any effect if you put \deftranslation in the preamble. It should be

put in your personal dictionary instead (as in the example below). See the translator
documentation for further details. (Now with beamer documentation.)

Your custom dictionary doesn’t have to be just a translation from English to another
language. You may prefer to have a dictionary for a particular type of document. For
example, suppose your institution’s in-house reports have to have the glossary labelled as
“Nomenclature” and the page list should be labelled “Location”, then you can create a file
called, say,

myinstitute-glossaries—-dictionary-English.dict

41

https://texfaq.org/FAQ-latexwords
https://texfaq.org/FAQ-latexwords

1 Introduction

that contains the following;:

\ProvidesDictionary{myinstitute-glossaries-dictionary}{English}
\deftranslation{Glossary} {Nomenclature}
\deftranslation{Page List (glossaries) }{Location}

You can now load it using;:

\usedictionary{myinstitute-glossaries—dictionary}

(Make sure thatmyinstitute—glossaries—dictionary-English.dict canbe found
by TgX.) If you want to share your custom dictionary, you can upload it to CTAN.

If you are using babel and don’t want to use the translator interface, you can use the
package option translate=babel. For example:

\documentclass[british] {article}

\usepackage {babel}
\usepackage [translate=babel] {glossaries}

\addto\captionsbritish{%
\renewcommand*{\glossaryname} {List of Terms}%
\renewcommand+* {\acronymname} {List of Acronyms}$%

Note that xindy and bib2gls provide much better multi-lingual support than makeindex,
so I recommend that you use Options 3 or 4 if you have glossary entries that contain non-
Latin characters. See Section 11 for further details on xindy, and see the bib2gls user
manual for further details of that application.

Creating a New Language Module

The glossaries package now uses the tracklang package to determine which language mod-
ules need to be loaded. If you want to create a new language module, you should first read
the tracklang documentation.

To create a new language module, you need to at least create two files called: glossaries
—(lang) .1df and glossaries-dictionary—(Lang).dict where (lang) is the root lan-
guage name (for example, english) and (Lang) is the language name used by translator
(for example, English).

Here’s an example of glossaries-dictionary-English.dict:

\ProvidesDictionary{glossaries—-dictionary}{English}

\providetranslation{Glossary}{Glossary}
\providetranslation{Acronyms}{Acronyms}
\providetranslation{Notation (glossaries) }{Notation}
\providetranslation{Description (glossaries) }{Description}
\providetranslation{Symbol (glossaries) }{Symbol}
\providetranslation{Page List (glossaries) }{Page List}
\providetranslation{Symbols (glossaries) }{Symbols}
\providetranslation{Numbers (glossaries) }{Numbers}

42

http://www.ctan.org/

1 Introduction

You can use this as a template for your dictionary file. Change English to the translator
name for your language (so that it matches the file name glossaries-dictionary-
(Lang) .dict) and, for each \providetranslation, change the second argument to the
appropriate translation.

Here’s an example of glossaries—-english.1ldf:

\ProvidesGlossariesLang{english}

\glsifusedtranslatordict{English}

{%
\addglossarytocaptions{\CurrentTrackedLanguage}$%
\addglossarytocaptions{\CurrentTrackedDialect}%

—_— e

o\

\@ifpackageloaded{polyglossial}l%
{%

\newcommandx {\glossariescaptionsenglish}{%
\renewcommand~*{\glossaryname} {\textenglish{Glossary}}$%
\renewcommand~* { \acronymname} { \textenglish{Acronyms}}$%
\renewcommand+ { \entryname} {\textenglish{Notation}}%
\renewcommand«* {\descriptionname} {\textenglish{Description}}%
\renewcommand#* { \symbolname} {\textenglish{Symbol}}%
\renewcommand«* { \pagelistname} {\textenglish{Page List}}%
\renewcommand+* {\glssymbolsgroupname} { \textenglish{Symbols}}%
\renewcommandx* { \glsnumbersgroupname} { \textenglish{Numbers}}$%

—
o\°

o o

—_~— e

\newcommand*{\glossariescaptionsenglish} {%
\renewcommandx*{\glossaryname} {Glossary}$%
\renewcommand= { \acronymname } {Acronyms } %
\renewcommand=*{\entryname} {Notation}%
\renewcommand«* {\descriptionname} {Description}%
\renewcommand~* { \symbolname} { Symbol}$%
\renewcommandx* { \pagelistname} {Page List}%
\renewcommand«*{\glssymbolsgroupname} {Symbols}%
\renewcommand+* { \glsnumbersgroupname} {Numbers}$%

o\°

}
1%
\ifcsdef{captions\CurrentTrackedDialect}

{%

\csappto{captions\CurrentTrackedDialect}%

{%

\glossariescaptionsenglish

~— e
-
o

o° o

\ifcsdef{captions\CurrentTrackedLanguage}

{

43

1 Introduction

\csappto{captions\CurrentTrackedLanguage}$%
{%

\glossariescaptionsenglish

o

}

o\

o\

}
{
}

o\

1%
\glossariescaptionsenglish

}

\renewcommandx* {\glspluralsuffix}{s}

\renewcommand=* {\glsacrpluralsuffix}{\glspluralsuffix}
\renewcommand=* {\glsupacrpluralsuffix}{\glstextup{\glspluralsuffix}}

This is a somewhat longer file, but again you can use it as a template. Replace English
with the translator language label (Lang) used for the dictionary file and replace english
with the root language name (lang). Within the definition of \glossariescaptions(lang),
replace the English text (such as “Glossaries”) with the appropriate translation.

The suffixes used to generate the plural forms when the plural hasn’t been speci-

fied are given by \glspluralsuffix (for general entries). For abbreviations de-

fined with \newacronym, \glsupacrpluralsuffix is used for acronyms where
the suffix needs to be set using \glstextup to counteract the effects of \textsc and
\glsacrpluralsuffix for other acronym styles. There’s no guarantee when these com-
mands will be expanded. They may be expanded on definition or they may be expanded
on use, depending on the glossaries configuration.

Therefore these plural suffix command definitions aren’t included in the caption mech-
anism as that’s typically not switched on until the start of the document. This means
that the suffix in effect will be for the last loaded language that redefined these com-

mands. It’s best to initialise these commands to the most common suffix required in
your document and use the plural, longplural, shortplural etc keys to override
exceptions.

If you want to add a regional variation, create a file called glossaries—(iso lang)-(iso
country) . 1Ld£, where (iso lang) is the ISO language code and (iso country) is the ISO country
code. For example, glossaries—-en-GB. 1df. This file can load the root language file and
make the appropriate changes, for example:

\ProvidesGlossariesLang{en—-GB}

\RequireGlossariesLang{english}

\glsifusedtranslatordict{British}

{%
\addglossarytocaptions{\CurrentTrackedLanguage}$%
\addglossarytocaptions{\CurrentTrackedDialect}%

}
{

o\°

44

1 Introduction

\@ifpackageloaded{polyglossial}l%

{%

Modify \glossariescaptionsenglish as appropriate for
polyglossia

o° oo

N
o o

Modify \glossariescaptionsenglish as appropriate for
non-polyglossia

o° o

If the translations includes non-Latin characters, it’s necessary to provide code that’s
independent of the input encoding. Remember that while some users may use UTF-§,
others may use Latin-1 or any other supported encoding, but while users won’t appreciate
you enforcing your preference on them, it’s useful to provide a UTF-8 version for XgI£TEX
users.

The glossaries-irish. 1df file provides this as follows:

\ProvidesGlossariesLang{irish}

\glsifusedtranslatordict{Irish}

{%
\addglossarytocaptions{\CurrentTrackedLanguage}$%
\addglossarytocaptions{\CurrentTrackedDialect}%

~—
o

\ifdefstring{\inputencodingname} {utf8}

{\input{glossaries—irish-utf8.1df}}%

{%
\ifdef{\XeTeXinputencoding}$%$ XeTeX defaults to UTF-8
{\input{glossaries-irish-utf8.1df}}*%
{\input{glossaries-irish-noenc.1df}}

}

\ifcsdef{captions\CurrentTrackedDialect}

{%
\csappto{captions\CurrentTrackedDialect}%
{%

\glossariescaptionsirish

-
o\

~— e
o o

\ifcsdef{captions\CurrentTrackedLanguage}

{
\csappto{captions\CurrentTrackedLanguage}$%
{%

\glossariescaptionsirish

—
o\

o° oo

45

1 Introduction

o\

}
1%
\glossariescaptionsirish

}

(Again you can use this as a template. Replace irish with your root language label and
Irish with the translator dictionary label.)

There are now two extra files: glossaries-irish-noenc.1ldf (no encoding infor-
mation) and glossaries—irish-utf£8.1df (UTE-8).

These both define \glossariescaptionsirishbutthe x—noenc.1df uses KIEX ac-
cent commands:

\@ifpackageloaded{polyglossia}l%
{%

\newcommandx {\glossariescaptionsirish}{%
\renewcommand*{\glossaryname} {\textirish{Gluais}}%
\renewcommandx*{ \acronymname} {\textirish{Acrainmneacha}}$%
\renewcommand+* {\entryname} {\textirish{Ciall}}%
\renewcommand«*{\descriptionname} {\textirish{Tuairisc}}%
\renewcommand+* {\symbolname} {\textirish{Comhartha}}%
\renewcommand~*{\glssymbolsgroupname} {\textirish{Comhartha\'{\i}}}%
\renewcommand~* { \pagelistname} {\textirish{Leathanaigh}}%
\renewcommand~* { \glsnumbersgroupname} {\textirish{Uimhreacha}}%

—
o

o\

~—~ e
o\

\newcommand*{\glossariescaptionsirish}{%
\renewcommand*{\glossaryname} {Gluais}$%
\renewcommand+* { \acronymname} { Acrainmneacha}$%
\renewcommand+* {\entryname}{Ciall}%

\renewcommand«* {\descriptionname} {Tuairisc}$%
\renewcommand+* { \symbolname} {Comhartha}$%
\renewcommand*{\glssymbolsgroupname} {Comhartha\'{\1}}%
\renewcommandx* { \pagelistname} {Leathanaigh}$%
\renewcommand+* {\glsnumbersgroupname}{Uimhreacha}%

-
o\

}

whereas the x—ut £8. 1df replaces the accent commands with the appropriate UTF-8 char-
acters.

1.4 Generating the Associated Glossary Files

This section is only applicable if you have chosen Options 2 or 3. You can ignore this sec-
tion if you have chosen any of the other options. If you want to alphabetically sort your

entries always remember to use the sort key if the name contains any IIEX commands
(except if you're using bib2gls).

46

1 Introduction

If this section seriously confuses you, and you can’t work out how to run external tools
like makeglossaries or makeindex, you can try using the automake package option, de-
scribed in Section 2.5, but you will need TgX’s shell escape enabled. See also Incorporating
makeglossaries or makeglossaries-lite or bib2gls into the document build.

In order to generate a sorted glossary with compact number lists, it is necessary to use an
external indexing application as an intermediate step (unless you have chosen Option 1,
which uses TgX to do the sorting or Option 5, which doesn’t perform any sorting). It is
this application that creates the file containing the code required to typeset the glossary. If
this step is omitted, the glossaries will not appear in your document. The two indexing
applications that are most commonly used with IXIEX are makeindex and xindy. As
from version 1.17, the glossaries package can be used with either of these applications.
Previous versions were designed to be used with makeindex only. With the glossaries-extra
package, you can also use bib2gls as the indexing application. (See the glossaries-extra
and bib2gls user manuals for further details.) Note that xindy and bib2g1ls have much
better multi-lingual support than makeindex, so xindy or bib2gls are recommended if
you're not writing in English. Commands that only have an effect when xindy is used are
described in Section 11.

This is a multi-stage process, but there are methods of automating document compi-
lation using applications such as latexmk and arara. With arara you can just add
special comments to your document source:

arara: pdflatex
arara: makeglossaries
% arara: pdflatex

With latexmk you need to set up the required dependencies.

The glossaries package comes with the Perl script makeglossaries which will run
makeindex or xindy on all the glossary files using a customized style file (which is
created by \makeglossaries). See Section 1.4.1 for further details. Perl is stable,
cross-platform, open source software that is used by a number of TgX-related applica-
tions (including xindy and latexmk). Most Unix-like operating systems come with
a Perl interpreter. TEX Live also comes with a Perl interpreter. MiKTEX doesn’t come
with a Perl interpreter so if you are a Windows MiKTgX user you will need to install
Perl if you want to use makeglossaries or xindy. Further information is available
athttp://www.perl.org/about.html and MiKTeX and Perl scripts (and one Python
script).

The advantages of using makeglossaries:

¢ It automatically detects whether to use makeindex or xindy and sets the relevant
application switches.

¢ One call of makeglossaries will run makeindex/xindy for each glossary type.

e If things go wrong, makeglossaries will scan the messages from makeindex or

47

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
http://www.perl.org/about.html
http://tex.stackexchange.com/questions/158796/miktex-and-perl-scripts-and-one-python-script
http://tex.stackexchange.com/questions/158796/miktex-and-perl-scripts-and-one-python-script

1 Introduction

xindy and attempt to diagnose the problem in relation to the glossaries package. This
will hopefully provide more helpful messages in some cases. If it can’t diagnose the
problem, you will have to read the relevant transcript file and see if you can work it
out from the makeindex or xindy messages.

¢ If makeindex warns about multiple encap values, makeglossaries will detect
this and attempt to correct the problem.® This correction is only provided by
makeglossaries when makeindex is used since xindy uses the order of the at-
tributes list to determine which format should take precedence. (see Section 11.2.)

As from version 4.16, the glossaries package also comes with a Lua script called
makeglossaries—1lite. This is a trimmed-down alternative to the makeglossaries
Perl script. It doesn’t have some of the options that the Perl version has and it doesn’t
attempt to diagnose any problems, but since modern TgX distributions come with LuaTgX
(and therefore have a Lua interpreter) you don’t need to install anything else in order to
use makeglossaries—lite so it’s an alternative to makeglossaries if you want to
use Option 2 (makeindex).

If things go wrong and you can’t work out why your glossaries aren’t being generated
correctly, you can use makeglossariesgui as a diagnostic tool. Once you've fixed the
problem, you can then go back to using makeglossaries or makeglossaries-lite.

Whilst I strongly recommended that you use the makeglossaries Perl script or the
makeglossaries-lite Lua script, it is possible to use the glossaries package without
using those applications. However, note that some commands and package options have
no effect if you explicitly run makeindex/xindy. These are listed in table 1.3.

If you are choosing not to use makeglossaries because you don’t want to install Perl,

you will only be able to use makeindex as xindy also requires Perl. (Other useful Perl
scripts include epstopdf and latexmk, so it’s well-worth the effort to install Perl.)

Note that if any of your entries use an entry that is not referenced outside the glossary,
you will need to do an additional makeglossaries, makeindex or xindy run, as ap-
propriate. For example, suppose you have defined the following entries:”

\newglossaryentry{citrusfruit}{name={citrus fruit},
description={fruit of any citrus tree. (See also
\gls{orange}) }}

\newglossaryentry{orange}{name={orange},
description={an orange coloured fruit.}}

and suppose you have \gls{citrusfruit} in your document but don’t reference the
orange entry, then the orange entry won’t appear in your glossary until you first create

6 Added to version makeglossaries 2.18.
7As from v3.01 \g1s is no longer fragile and doesn’t need protecting.

48

1 Introduction

the glossary and then do another run of makeglossaries, makeindex or xindy. For
example, if the document is called myDoc . tex, then you must do:

$ pdflatex myDoc
$ makeglossaries myDoc

$ pdflatex myDoc
$ makeglossaries myDoc
$ pdflatex myDoc

(In the case of Option 4, bib2gls will scan the description for instances of commands
like \gls to ensure they are selected but an extra bib2gls call is required to ensure the
locations are included, if locations lists are required. See the and bib2gls manual for
further details.)

Likewise, an additional makeglossaries and IXIEX run may be required if the docu-
ment pages shift with re-runs. For example, if the page numbering is not reset after the
table of contents, the insertion of the table of contents on the second ETEX run may push
glossary entries across page boundaries, which means that the number lists in the glossary
may need updating.

The examples in this document assume that you are accessing makeglossaries,
xindy or makeindex via a terminal. Windows users can use the MSDOS Prompt which
is usually accessed via the Start — All Programs menu or Start — All Programs — Accessories
menu.

Alternatively, your text editor may have the facility to create a function that will call the
required application. See Incorporating makeglossaries or makeglossaries-lite or bib2gls
into the document build.

If any problems occur, remember to check the transcript files (e.g. glg or alg) for mes-
sages.

Table 1.3: Commands and package options that have no effect when using xindy or
makeindex explicitly

Command or Package Option makeindex xindy

order=letter use —1 use -M ord/letorder
order=word default default
xindy={language=(lang),codename=(code)} N/A use —L (lang) —C (code)
\GlsSetxdyLanguage { (lang)} N/A use —L (lang)
\GlsSetxdyCodePage {{code) } N/A use —C (code)

1.4.1 Using the makeglossaries Perl Script

The makeglossaries script picks up the relevant information from the auxiliary (aux)
file and will either call xindy or makeindex, depending on the supplied informa-
tion. Therefore, you only need to pass the document’s name without the extension to

49

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1 Introduction

makeglossaries. For example, if your document is called myDoc. tex, type the follow-
ing in your terminal:

$ pdflatex myDoc

$ makeglossaries myDoc
$ pdflatex myDoc

You may need to explicitly load makeglossaries into Perl:

$ perl makeglossaries myDoc

Windows users: TEX Live on Windows has its own internal Perl interpreter and provides
makeglossaries.exe as a convenient wrapper for the makeglossaries Perl script.
MiKTeX also provides a wrapper makeglossaries.exe but doesn’t provide a Perl in-
terpreter, which is still required even if you run MiKTeX’s makeglossaries.exe, SO
with MiKTeX you'll need to install Perl® There’s more information about this at http:
//tex.stackexchange.com/q/158796/19862 on the TeX.SX site.

The makeglossaries script attempts to fork the makeindex/xindy process using
open () on the piped redirection 2>&1 | and parses the processor output to help diagnose
problems. If this method fails makeglossaries will print an “Unable to fork” warning
and will retry without redirection. If you run makeglossaries on an operating system
that doesn’t support this form of redirection, then you can use the —Q switch to suppress
this warning or you can use the —k switch to make makeglossaries automatically use
the fallback method without attempting the redirection. Without this redirection, the —g
(quiet) switch doesn’t work as well.

You can specify in which directory the aux, glo etc files are located using the —d switch.
For example:

$ pdflatex -output-directory myTmpDir myDoc
$ makeglossaries —d myTmpDir myDoc

Note that makeglossaries assumes by default that makeindex/xindy is on your op-
erating system’s path. If this isn’t the case, you can specify the full pathname using -m
(path/to/makeindex) for makeindex or —x (path/to/xindy) for xindy.

As from makeglossaries v2.18, if you are using makeindex, there’s a check for
makeindex’s multiple encap warning. This is where different encap values (location for-
mats) are used on the same location for the same entry. For example:

\documentclass{article}

\usepackage{glossaries}
\makeglossaries

\newglossaryentry{sample}{name={sample},description={an example}}

\begin{document}

8The batch file makeglossaries.bat has been removed since the TgX distributions for Windows provide
makeglossaries.exe.

50

http://tex.stackexchange.com/q/158796/19862
http://tex.stackexchange.com/q/158796/19862

1 Introduction

\gls{sample}, \gls|[format=textbf]{sample}.
\printglossaries
\end{document }

If you explicitly use makeindex, this will cause a warning and the location list will be
“1, 1”7. That is, the page number will be repeated with each format. As from v2.18,
makeglossaries will check for this warning and, if found, will attempt to correct the
problem by removing duplicate locations and retrying. There’s no similar check for xindy
as xindy won’t produce any warning and will simply discard duplicates.

For a complete list of options do makeglossaries —-help.

When upgrading the glossaries package, make sure you also upgrade your version of
makeglossaries. The current version is 4.45.

1.4.2 Using the makeglossaries-lite Lua Script

The Lua alternative to the makeglossaries Perl script requires a Lua interpreter, which
should already be available if you have a modern TgX distribution that includes LuaTgX.
Lua is a light-weight, cross-platform scripting language, but because it’s light-weight it
doesn’t have the full-functionality of heavy-weight scripting languages, such as Perl. The
makeglossaries—lite scriptis therefore limited by this and some of the options avail-
able to themakeglossaries Perlscript aren’t available here. (In particular the —d option.)

Note that TgX Live on Unix-like systems creates a symbolic link called
makeglossaries—lite (without the 1lua extension) to the actual

makeglossaries-lite.lua script, so you may not need to supply the exten-
sion.

Themakeglossaries-1lite scriptcanbeinvoked in the same way asmakeglossaries.
For example, if your document is called myDoc . tex, then do

$ makeglossaries-lite.lua myDoc

or

$ makeglossaries-lite myDoc

Some of the options available with the Perl makeglossaries script are also available
with the Lua makeglossaries—-1lite script. For a complete list of available options, do

$ makeglossaries-lite.lua —--help

1 Introduction

1.4.3 Using xindy explicitly (Option 3)

Xindy comes with TgX Live. It has also been added to MikTgX, but if you don’t have it
installed, see How to use Xindy with MikTeX on TgX on StackExchange’.

If you want to use xindy to process the glossary files, you must make sure you have
used the xindy package option:

\usepackage [xindy] {glossaries}

This is required regardless of whether you use xindy explicitly or whether it’s called im-
plicitly via applications such as makeglossaries. This causes the glossary entries to be
written in raw xindy format, so you need to use -I xindy not -I tex.

To run xindy type the following in your terminal (all on one line):

$ xindy -L (language) -C (encoding) -I xindy -M (style) -t

(base).glg -o (base).gls (base).glo

where (language) is the required language name, (encoding) is the encoding, (base) is the
name of the document without the tex extension and (style) is the name of the xindy
style file without the xdy extension. The default name for this style file is (base)xdy but
can be changed via \setStyleFile{(style)}. You may need to specify the full path name
depending on the current working directory. If any of the file names contain spaces, you
must delimit them using double-quotes.

For example, if your document is called myDoc . tex and you are using UTF8 encoding
in English, then type the following in your terminal:

$ xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.glg -o

myDoc.gls myDoc.glo

Note that this just creates the main glossary. You need to do the same for each of the other
glossaries (including the list of acronyms if you have used the acronym package option),
substituting glg, gls and glo with the relevant extensions. For example, if you have
used the acronym package option, then you would need to do:

$ xindy -L english —-C utf8 -I xindy -M myDoc -t myDoc.alg -o

myDoc.acr myDoc.acn

For additional glossaries, the extensions are those supplied when you created the glossary
with \newglossary.

Note that if you use makeglossaries instead, you can replace all those calls to xindy
with just one call to makeglossaries:

$ makeglossaries myDoc

Note also that some commands and package options have no effect if you use xindy ex-
plicitly instead of using makeglossaries. These are listed in table 1.3.

9http://www.stackexchange.com/

52

http://tex.stackexchange.com/questions/71167/how-to-use-xindy-with-miktex
http://www.stackexchange.com/

1 Introduction

1.4.4 Using makeindex explicitly (Option 2)

If you want to use makeindex explicitly, you must make sure that you haven’t used the
xindy package option or the glossary entries will be written in the wrong format. To run
makeindex, type the following in your terminal:

$ makeindex -s (style).ist -t (base).glg -o (base).gls (base).glo

where (base) is the name of your document without the tex extension and (style) i st is the
name of the makeindex style file. By default, this is (base)ist, but may be changed via
\setStyleFile({(style)}. Note that there are other options, such as -1 (letter ordering).
See the makeindex manual for further details.

For example, if your document is called myDoc. tex, then type the following at the
terminal:

$ makeindex -s myDoc.ist -t myDoc.glg —o myDoc.gls myDoc.glo

Note that this only creates the main glossary. If you have additional glossaries (for ex-
ample, if you have used the acronym package option) then you must call makeindex for
each glossary, substituting glg, gls and glo with the relevant extensions. For example,
if you have used the acronym package option, then you need to type the following in your
terminal:

$ makeindex -s myDoc.ist -t myDoc.alg —o myDoc.acr myDoc.acn

For additional glossaries, the extensions are those supplied when you created the glossary
with \newglossary.

Note that if you use makeglossaries instead, you can replace all those calls to
makeindex with just one call to makeglossaries:

$ makeglossaries myDoc

Note also that some commands and package options have no effect if you use makeindex
explicitly instead of using makeglossaries. These are listed in table 1.3.
1.5 Note to Front-End and Script Developers

The information needed to determine whether to use xindy, makeindex or bib2gls is
stored in the aux file. This information can be gathered by a front-end, editor or script
to make the glossaries where appropriate. This section describes how the information is
stored in the auxiliary file.

1.5.1 Makelndex and Xindy

The file extensions used by each defined (but not ignored) glossary are given by

53

1 Introduction

\@newglossary{(label)}{(log)}{({out-ext)}{(in-ext)}

where (in-ext) is the extension of the indexing application’s input file (the output file from
the glossaries package’s point of view), (out-ext) is the extension of the indexing application’s
output file (the input file from the glossaries package’s point of view) and (log) is the ex-
tension of the indexing application’s transcript file. The label for the glossary is also given.
This isn’t required with makeindex, but with xindy it’s needed to pick up the associated
language and encoding (see below). For example, the information for the default main
glossary is written as:

\@newglossary{main} {glg}{gls}{glo}

If glossaries-exira’s hybrid method has been used (with \makeglossaries [(sub-list)]),
then the sub-list of glossaries that need to be processed will be identified with:

\glsxtr@makeglossaries{{list)}

The indexing application’s style file is specified by

\Q@istfilename{(filename)}

The file extension indicates whether to use makeindex (ist) or xindy (xdy). Note that
the glossary information is formatted differently depending on which indexing application
is supposed to be used, so it’s important to call the correct one.

For example, with arara you can easily determine whether to run makeglossaries:

[o)

% arara: makeglossaries if found("aux", "@istfilename")

It’s more complicated if you want to explicitly run makeindex or xindy

Note that if you choose to explicitly call makeindex or xindy then the user will miss
out on the diagnostic information and the encap-clash fix that makeglossaries also

provides.

Word or letter ordering is specified by:

\@glsorder{(order)}

where (order) can be either word or letter.
If xindy should be used, the language and code page for each glossary is specified by

\@xdylanguage{(label)}{(language)}
\@gls@codepage{(label)} {{code)}

where (label) identifies the glossary, (language) is the root language (e.g. english) and
(code) is the encoding (e.g. ut £8). These commands are omitted if makeindex should be
used.

54

1 Introduction

If Option 1 has been used, the aux file will contain

\@Qgls@reference{(type)}{(label)}{{location)}

for every time an entry has been referenced.

1.5.2 Entry Labels

If you need to gather labels for auto-completion, the writeglslabels package option will create
a file containing the labels of all defined entries (regardless of whether or not the entry has
been used in the document). The glossaries-extra package also provides docdef=atom, which
will create the glsdefs file but will act like docdef=restricted.

1.5.3 Bib2Gils

bib2gls If Option 4 has been used, the aux file will contain one or more instances of
\qlsxtr@resource{<options>}{<basename>}
where (basename) is the basename of the glstex file that needs to be created by bib2gls.
If sce={(bib list)} isn’t presentin (options) then (basename) also indicates the name of
the associated bib file.
For example, with arara you can easily determine whether or not to run bib2gls:

o)

% arara: bib2gls if found("aux", "glsxtr@resource")

(It gets more complicated if both \glsxtr@resource and \@istfilename are present
as that indicates the hybrid record=alsoindex option.)

Remember that with bib2gls, the entries will never be defined on the first IXIEX call
(because their definitions are contained in the glstex file created by bib2gls). You can
also pick up labels from the records in aux file, which will be in the form:

\glsxtr@record{(label)}{(h-prefix)}{{counter)}{(format)}{{loc)}
or (with record=nameref)

\glsxtr@record@nameref{(label)}{(href prefix)}{(counter)}{(format)}{(location)}
{(title>}{(href anchor)}{<href Value)}

or (with \glssee)
\glsxtr@recordsee{(label)}{{xr 1list)}

You can also pick up the commands defined with \glsxtrnewglslike, which are added
to the aux file for bib2gls’s benefit:

\@glsxtr@newglslike{(label-prefix)}{(cs)}

If \GlsXtrSetAltModifier is used, then the modifier is identified with:
\@glsxtr@altmodifier{(character)}

Label prefixes (for the \dgls set of commands) are identified with:
\@glsxtr@prefixlabellist{({list)}

55

glossaries-extra.sty

2 Package Options

This section describes the available glossaries package options. You may omit the =t rue
for boolean options. (For example, acronym is equivalent to acronym=true).

The glossaries-extra package has additional options described in the glossaries-extra man-
ual. The extension package also has some different default settings to the base package.

Those that are available at the time of writing are included here. Future versions of
glossaries-extra may have additional package options or new values for existing settings
that aren’t listed here.

Note that (key)=(value) package options can’t be passed via the document class op-
tions. (This includes options where the (value) part may be omitted, such as acronym.)

This is a general limitation not restricted to the glossaries package. Options that aren’t
(key)=(value) (such as makeindex) may be passed via the document class options.

2.1 General Options

nowarn

This suppresses all warnings generated by the glossaries package. Don’t use this option if
you're new to using glossaries as the warnings are designed to help detect common mis-
takes (such as forgetting to use \makeglossaries). Note that if you use debug with any
value other than false it will override this option.

nolangwarn

This suppresses the warning generated by a missing language module.

noredefwarn

If you load glossaries with a class or another package that already defines glossary related
commands, by default glossaries will warn you that it’s redefining those commands. If
you are aware of the consequences of using glossaries with that class or package and you
don’t want to be warned about it, use this option to suppress those warnings. Other warn-
ings will still be issued unless you use the nowarn option described above. (This option is
automatically switched on by glossaries-extra.)

56

glossaries-extra.sty

2 Package Options

debug={ (value) }

Introduced in version 4.24. The default setting is debug=false. The following values are
available: false, true, showtargets (v4.32+) and showaccsupp (v4.45+). If no value is given,
debug=true is assumed.

The glossaries-extra package provides extra values showwrgloss, that may be used to show

where the indexing is occurring, and all, which switches on all debugging options. See
the glossaries-extra manual for further details.

All values other than debug=false switch on the debug mode (and will automatically
cancel the nowarn option). The debug=showtargets option will additionally use:

\glsshowtarget {(target name)}

to show the hypertarget or hyperlink name when \glsdohypertarget is used by com-
mands like \glstarget and when \glsdohyperlink is used by commands like \gls.
In math mode or inner mode, this puts the target name in square brackets just before the
link or anchor. In outer mode it uses:

\glsshowtargetouter{(label)}

which by default places the target name in the margin. The font is given by:

\glsshowtargetfont

The default definition is \ttfamily\small. This command is included in the defini-
tion of \glsshowtargetouter, so if you want to redefine that command remember to
include the font. For example:

\renewcommandx {\glsshowtargetouter} [1]{%
{\glsshowtargetfont [#1]}}

Similarly, the debug=showaccsupp will add the accessibility support information using;:

\glsshowaccsupp{{options)}{(tag)}{{replacement text)}

This internally uses \glsshowtarget. This option is provided for use with glossaries-
accsupp.

The purpose of the debug mode can be demonstrated with the following example docu-
ment:

\documentclass{article}
\usepackage{glossaries}
\newglossaryentry{samplel}{name={samplel},description={example}}
\newglossaryentry{sample2}{name={sample2},description={example}}

57

2 Package Options

\glsadd{sample2}% <- does nothing here
\makeglossaries

\begin{document}

\gls{samplel}.

\printglossaries

\end{document}

In this case, only the samplel entry has been indexed, even though \glsadd{sample2}
appears in the source code. This is because \glsadd{sample2} has been used before
the associated file is opened by \makeglossaries. Since the file isn’t open yet, the in-
formation can’t be written to it, which is why the sample2 entry doesn’t appear in the
glossary.

Without \makeglossaries the indexing is suppressed with Options 2 and 3 but, other
than that, commands like \ g1s behave as usual.

This situation doesn’t cause any errors or warnings as it’s perfectly legitimate for a user
to want to use glossaries to format the entries (e.g. abbreviation expansion) but not display
any lists of terms, abbreviations, symbols etc (or the user may prefer to use the unsorted
Options 5 or 6). It’s also possible that the user may want to temporarily comment out
\makeglossaries in order to suppress the indexing while working on a draft version to
speed compilation, or the user may prefer to use Options 1 or 4 for indexing, which don’t
use \makeglossaries.

Therefore \makeglossaries can’t be used to enable \newglossaryentry and com-
mands like \gls and \glsadd. These commands must be enabled by default. (It does,
however, enable the see key as that’s a more common problem. See below.)

The debug mode, enabled with the debug option,

\usepackage [debug] {glossaries}

will write information to the log file when the indexing can’t occur because the associated
file isn’t open. The message is written in the form

Package glossaries Info: wrglossary((type))((text)) on input line (line number).

where (type) is the glossary label and (text) is the line of text that would’ve been written
to the associated file if it had been open. So if any entries haven’t appeared in the glossary
but you're sure you used commands like \glsadd or \glsaddall, try switching on the
debug option and see if any information has been written to the log file.

savewrites={ (boolean) }

This is a boolean option to minimise the number of write registers used by the glossaries
package. The default is savewrites=false. With Options 2 and 3, one write register is required
per (non-ignored) glossary and one for the style file.

With all options except Options 1 and 4, another write register is required if the docdefs
file is needed to save document definitions. With both Options 1 and 4, no write registers
are required (document definitions aren’t permitted and indexing information is written

58

2 Package Options

to the aux file). If you really need document definitions but you want to minimise the
number of write registers then consider using docdef=restricted with glossaries-extra.

There are only a limited number of write registers, and if you have a large number of
glossaries or if you are using a class or other packages that create a lot of external files, you
may exceed the maximum number of available registers. If savewrites is set, the glossary
information will be stored in token registers until the end of the document when they will
be written to the external files.

This option can significantly slow document compilation and may cause the indexing
to fail. Page numbers in the number list will be incorrect on page boundaries due to

TEX’s asynchronous output routine. As an alternative, you can use the scrwfile package
(part of the KOMA-Script bundle) and not use this option.

By way of comparison, sample-multi2.tex provided with bib2gls has a total of
15 glossaries. With Options 2 or 3, this would require 46 associated files and 16 write
registers.! With bib2gls, no write registers are required and there are only 10 associated
files for that particular document (9 resource files and 1 transcript file).

If you want to use TgX’s \writel8 mechanism to call makeindex or xindy
from your document and use savewrites, you must create the external files with
\glswritefiles before you call makeindex/xindy. Also set \glswritefiles to
nothing or \relax before the end of the document to avoid rewriting the files. For exam-
ple:
\glswritefiles
\writel8{makeindex —-s \istfilename\space

-t \Jjobname.glg -o \jobname.gls \jobname}
\let\glswritefiles\relax

In general, this package option is best avoided.

translate={ (value) }
This can take the following values:

true If babel has been loaded and the translator package is installed, translator will be loaded
and the translations will be provided by the translator package interface. You can
modify the translations by providing your own dictionary. If the translator package
isn’t installed and babel is loaded, the glossaries-babel package will be loaded and the
translations will be provided using babel’s \addt o\ capt ion(language) mechanism.
If polyglossia has been loaded, glossaries-polyglossia will be loaded.

false Don’t provide translations, even if babel or polyglossia has been loaded. (Note that
babel provides the command \glossaryname so that will still be translated if you
have loaded babel.)

I These figures don’t include standard files and registers provided by the kernel or hyperref, such as aux and
out.

59

glossaries-extra.sty

2 Package Options

babel Don’t load the translator package. Instead load glossaries-babel.

I recommend you use translate=babel if you have any problems with the transla-

tions or with PDF bookmarks, but to maintain backward compatibility, if babel
has been loaded the default is translate=true.

If translate is specified without a value, translate=true is assumed. If translate isn’t speci-
fied, translate=true is assumed if babel, polyglossia or translator have been loaded. Otherwise
translate=false is assumed.

With glossaries-extra, if babel is detected then translate=babel is automatically passed to
the base glossaries package.

See Section 1.3.1 for further details.

notranslate

This is equivalent to translate=false and may be passed via the document class options.

hyperfirst={ (boolean) }

This is a boolean option that specifies whether each term has a hyperlink on first use. The
default is hyperfirst=true (terms on first use have a hyperlink, unless explicitly suppressed
using starred versions of commands such as \glsx* or by identifying the glossary with
nohypertypes, described above). Note that nohypertypes overrides hyperfirst=true. This op-
tion only affects commands that check the first use flag, such as the \ gls-like commands
(for example, \gls or \glsdisp), but not the \glstext-like commands (for example,
\glslink or \glstext).

The hyperfirst setting applies to all glossary types (unless identified by nohypertypes or
defined with \newignoredglossary). It can be overridden on an individual basis by
explicitly setting the hyper key when referencing an entry (or by using the plus or starred
version of the referencing command).

It may be that you only want to apply this to just the acronyms (where the first use
explains the meaning of the acronym) but not for ordinary glossary entries (where the first
use is identical to subsequent uses). In this case, you can use hyperfirst=false and apply
\glsunsetall to all the regular (non-acronym) glossaries. For example:

\usepackage[acronym, hyperfirst=false] {glossaries}

[

% acronym and glossary entry definitions

)

% at the end of the preamble
\glsunsetall [main]

60

bib2gls

2 Package Options

Alternatively you can redefine the hook

\glslinkcheckfirsthyperhook

which is used by the commands that check the first use flag, such as \gls. Within the
definition of this command, you can use \glslabel to reference the entry label and
\glstype to reference the glossary type. You can also use \ifglsused to determine
if the entry has been used. You can test if an entry is an acronym by checking if it has the
long key set using \ifglshaslong. For example, to switch off the hyperlink on first use
just for acronyms:

\renewcommand=*{\glslinkcheckfirsthyperhook}{%
\ifglsused{\glslabel}{}%
{%

\ifglshaslong{\glslabel}{\setkeys{glslink}{hyper=false}}{}%

o\

}
}

Note that this hook isn’t used by the commands that don’t check the first use flag, such
as \glstext. (You can, instead, redefine \glslinkpostsetkeys, which is used by both
the \gls-like and \glstext-like commands.)

The glossaries-extra package provides a method of disabling the first use hyperlink ac-
cording to the entry’s associated category. For example, if you only to switch off the first
use hyperlink for abbreviations and acronyms then you simply need to set the nohyperfirst
attribute for the abbreviation and acronym categories. (Instead of using the nohyperfirst
package option.) See the glossaries-extra manual for further details.

writeglslabels

This is a valueless option that will create a file called \ jobname.glslabels at the end
of the document. This file simply contains a list of all defined entry labels (including those
in any ignored glossaries). It’s provided for the benefit of text editors that need to know
labels for auto-completion. (See also glossaries-extra’s docdef=atom package option.)

Note that with bib2gls the file will only contain the entries that bib2gls has selected
from the bib files.

undefaction={ (value) } (glossaries-extra.sty)
The value may be one of:

error generate an error if a referenced entry is undefined (default, and only available set-
ting with just glossaries);

warn only warn if a referenced entry is undefined (automatically activated with Option 4).

61

2 Package Options

docdef={ (value) } (glossaries-extra.sty)
This option governs the use of \newglossaryentry. Available values:

false \newglossaryentry is not permitted in the document environment (default with
glossaries-extra and for Option 1 with just the base glossaries package);

restricted \newglossaryentry is only permitted in the document environment if it occurs
before \printglossary (not available for some indexing options);

atom as restricted but creates the docdefs file for use by atom (without the limitations of
docdef=true);

true \newglossaryentry is permitted in the document environment where it would nor-
mally be permitted by the base glossaries package. This will create the docdefs file
if \newglossaryentry is found in the document environment.

2.2 Sectioning, Headings and TOC Options

toc={ (boolean) }

Add the glossaries to the table of contents. Note that an extra IXIgX run is required with
this option. Alternatively, you can switch this function on and off using

\glstoctrue

and

\glstocfalse

The default value is toc=false for the base glossaries package and toc=true for glossaries-extra.

numberline={ (boolean) }

When used with the above toc=true option, this will add \numberline{} in the final ar-
gument of \addcontentsline. This will align the table of contents entry with the num-
bered section titles. Note that this option has no effect if the toc option is omitted. If toc is
used without numberline, the title will be aligned with the section numbers rather than the
section titles.

section={ (value) }

This option indicates the sectional unit to use for the glossary. The value should be the
control sequence name without the leading backslash or following star (e.g. just chapter
not \chapter or chapter=x).

62

2 Package Options

The default behaviour is for the glossary heading to use \chapter, if that command
exists, or \section otherwise. The starred or unstarred form is determined by the num-
beredsection option.

Example:

\usepackage[section=subsection] {glossaries}
You can omit the value if you want to use \section,i.e.
\usepackage[section] {glossaries}

is equivalent to

\usepackage[section=section] {glossaries}

You can change this value later in the document using

\setglossarysection{(name)}

where (name) is the sectional unit.
The start of each glossary adds information to the page header via

\glsglossarymark{{glossary title)}

By default this uses \@mkboth? but you may need to redefine it. For example, to only
change the right header:

\renewcommand{\glsglossarymark} [1] {\markright{#1}}
or to prevent it from changing the headers:
\renewcommand{\glsglossarymark} [1]{}

If you want \glsglossarymark to use \MakeUppercase in the header, use the ucmark
option described below.

Occasionally you may find that another package defines \cleardoublepage when it
is not required. This may cause an unwanted blank page to appear before each glossary.
This can be fixed by redefining \glsclearpage:

\renewcommand~*{\glsclearpage}{\clearpage}

2unless memoir is loaded, which case it uses \markboth

63

2 Package Options

ucmark={ (boolean) }

This is a boolean option. The default is ucmark=false, unless memoir has been loaded, in
which case the default is ucmark=true.

If set, \glsglossarymark uses \MakeTextUppercase’. You can test whether this
option has been set or not using

\ifglsucmark (true part)\else (false part)\fi

For example:

\renewcommand{\glsglossarymark} [1]{%

\ifglsucmark
\markright { \MakeTextUppercase{#1}}%
\else
\markright {#1}%
\Nfi}

If memoir has been loaded and ucmark is set, then memoir’s \memUChead is used.

numberedsection={ (value) }

The glossaries are placed in unnumbered sectional units by default, but this can be changed
using numberedsection. This option can take one of the following values:

e false: no number, i.e. use starred form of sectioning command (e.g. \chapter« or
\sectionx);

* nolabel: use a numbered section, i.e. the unstarred form of sectioning command (e.g.
\chapter or \section), but the section not labelled;

¢ autolabel: numbered with automatic labelling. Each glossary uses the unstarred form
of a sectioning command (e.g. \chapter or \section) and is assigned a label (via
\label). The label is formed from

\glsautoprefix (type)

where (fype) is the label identifying that glossary. The default value of \glsautoprefix
is empty. For example, if you load glossaries using:

\usepackage[section, numberedsection=autolabel]
{glossaries}

3Achmﬂyituses\mfirstucMakeUppercaseVvhkhisseth)mxmasds\MakeTextUppercasebythegb&
saries package. This makes it consistent with \makefirstuc. (The textcase package is automatically
loaded by glossaries.)

64

2 Package Options

then each glossary will appear in a numbered section, and can be referenced using
something like:

The main glossary is in section~\ref{main} and
the list of acronyms is in section~\ref{acronym}.

If you can’t decide whether to have the acronyms in the main glossary or a separate
list of acronyms, you can use \acronymtype which is set to main if the acronym
option is not used and is set to acronym if the acronym option is used. For example:

The list of acronyms is in section~\ref{\acronymtype}.

You can redefine the prefix if the default label clashes with another label in your
document. For example:

\renewcommand~* {\glsautoprefix}{glo:}

will add glo: to the automatically generated label, so you can then, for example,
refer to the list of acronyms as follows:

The list of acronyms is in
section~\ref{glo:\acronymtype}.

Or, if you are undecided on a prefix:

The list of acronyms is in
section~\ref{\glsautoprefix\acronymtype}.

nameref: this is like autolabel but uses an unnumbered sectioning command (e.g.
\chapterx or \sectionx). It's designed for use with the nameref package. For
example:

\usepackage{nameref}
\usepackage [numberedsection=nameref] {glossaries}

Now \nameref {main} will display the (TOC) section title associated with themain
glossary. As above, you can redefine \glsautoprefix to provide a prefix for the
label.

2.3 Glossary Appearance Options

savenumberlist={ (boolean) }

This is a boolean option that specifies whether or not to gather and store the number
list for each entry. The default is savenumberlist=false. (See \glsentrynumberlist and
\glsdisplaynumberlist in Section 9.) This is always true if you use Option 1.

65

bib2gls

2 Package Options

If you use the record option (with either no value or record=only or record=nameref) then
this package option has no effect. With bib2gls, the number lists are automatically

saved with the default save-locations=true and save—loclist=true resource
settings.

entrycounter={ (boolean) }

This is a boolean option. (Default is entrycounter=false.) If set, each main (level 0) glossary
entry will be numbered when using the standard glossary styles. This option creates the
counter glossaryentry.

If you use this option, you can reference the entry number within the document using

\glsrefentry{(label)}

where (label) is the label associated with that glossary entry. The labelling systems uses
(prefix) (label), where (label) is the entry’s label and (prefix) is given by

\GlsEntryCounterLabelPrefix

(which defaults to glsentry-).

If you use \glsrefentry, you must run EIEX twice after creating the glossary files

using makeglossaries, makeindex or xindy to ensure the cross-references are up-
to-date.

counterwithin={ (value) }

This is a (key)=(value) option where (value) is the name of a counter. If used, this option
will automatically set entrycounter=true and the glossaryentry counter will be reset every time
(value) is incremented.

The glossaryentry counter isn’t automatically reset at the start of each glossary, except
when glossary section numbering is on and the counter used by counterwithin is the same

as the counter used in the glossary’s sectioning command.

If you want the counter reset at the start of each glossary, you can modify the glossary
preamble (\glossarypreamble) to use

66

2 Package Options

\glsresetentrycounter

which sets glossaryentry to zero:

\renewcommand{\glossarypreamble} {%
\glsresetentrycounter

}

or if you are using \setglossarypreamble, add it to each glossary preamble, as re-
quired. For example:

\setglossarypreamble [acronym] {%
\glsresetentrycounter
The preamble text here for the list of acronyms.

}
\setglossarypreamble{%
\glsresetentrycounter
The preamble text here for the main glossary.

}

subentrycounter={ (boolean) }

This is a boolean option. (Default is subentrycounter=false.) If set, each level 1 glossary entry
will be numbered when using the standard glossary styles. This option creates the counter
glossarysubentry. The counter is reset with each main (level 0) entry. Note that this package
option is independent of entrycounter. You can reference the number within the document
using \glsrefentry { (label) } where (label) is the label associated with the sub-entry.

style={ (value)}

This is a (key)=(value) option. (Default is style=list, unless classicthesis has been loaded, in
which case the default is style=index.) Its value should be the name of the glossary style to
use. This key may only be used for styles defined in glossary-list, glossary-long, glossary-super
or glossary-tree. Alternatively, you can set the style using

\setglossarystyle{(style name)}

(See Section 15 for further details.)

nolong

This prevents the glossaries package from automatically loading glossary-long (which means
that the longtable package also won’t be loaded). This reduces overhead by not defining
unwanted styles and commands. Note that if you use this option, you won't be able to use
any of the glossary styles defined in the glossary-long package (unless you explicitly load
glossary-long).

67

2 Package Options

nosuper

This prevents the glossaries package from automatically loading glossary-super (which
means that the supertabular package also won't be loaded). This reduces overhead by not
defining unwanted styles and commands. Note that if you use this option, you won't
be able to use any of the glossary styles defined in the glossary-super package (unless you
explicitly load glossary-super).

nolist

This prevents the glossaries package from automatically loading glossary-list. This reduces
overhead by not defining unwanted styles. Note that if you use this option, you won't
be able to use any of the glossary styles defined in the glossary-list package (unless you
explicitly load glossary-list). Note that since the default style is list (unless classicthesis has
been loaded), you will also need to use the style option to set the style to something else.

nhotree

This prevents the glossaries package from automatically loading glossary-tree. This reduces
overhead by not defining unwanted styles. Note that if you use this option, you won’t
be able to use any of the glossary styles defined in the glossary-tree package (unless you
explicitly load glossary-tree). Note that if classicthesis has been loaded, the default style is
index, which is provided by glossary-tree.

nostyles

This prevents all the predefined styles from being loaded. If you use this option, you need
to load a glossary style package (such as glossary-mcols). Also if you use this option, you
can’t use the style package option. Instead you must either use \setglossarystyle
{(style)} or the style key in the optional argument to \printglossary. Example:

\usepackage [nostyles] {glossaries}
\usepackage{glossary-mcols}
\setglossarystyle{mcoltree}

nonumberlist

This option will suppress the associated number lists in the glossaries (see also Section 5).
Note that if you use Options 2 or 3 (makeindex or xindy) then the locations must still
be valid. This package option merely prevents the number list from being displayed, but
both makeindex and xindy still require a location or cross-reference for each term that’s
indexed. Remember that number list includes any cross-references, so suppressing the
number list will also hide the cross-references (see below).

68

glossaries-extra.sty

bib2gls

2 Package Options

seeautonumberlist

If you suppress the number lists with nonumberlist, described above, this will also sup-
press any cross-referencing information supplied by the see key in \newglossaryentry
or \glssee. If you use seeautonumberlist, the see key will automatically implement
nonumberlist=false for that entry. (Note this doesn’t affect \glssee.) For further
details see Section 8.

counter={ (value) }

This is a (key)=(value) option. (Default is counter=page.) The value should be the name of
the default counter to use in the number lists (see Section 5).

nopostdot={ (boolean) }

This is a boolean option. If no value is specified, true is assumed. When set to true, this
option suppresses the default post description dot used by some of the predefined styles.

The default setting is nopostdot=false for the base glossaries package and nopostdot=true for
glossaries-extra.

The glossaries-extra package provides postdot, which is equivalent to nopostdot=false, and
also postpunc, which allows you to choose a different punctuation character.

nogroupskip={ (boolean) }

This is a boolean option. If no value is specified, true is assumed. When set to true, this
option suppresses the default vertical gap between letter groups used by some of the pre-
defined styles. The default setting is nogroupskip=false.

If you are using bib2gls without the ——group (or —g) switch then you don’t need to
use nogroupskip=true as there won’t be any letter groups.

stylemods={ (list) } (glossaries-extra.sty)

Load the glossaries-extra-stylemods package and patch the predefined styles. The (list) argu-
ment is optional. If present, this will also load glossary-(element).sty for each (element) in
the comma-separated (list).

69

2 Package Options

2.4 Indexing Options

seenoindex={ (value) }

Introduced in version 4.24, this option may take one of three values: error, warn or ig-
nore. The see key automatically indexes the cross-referenced entry using \glsadd.
This means that if this key is used in an entry definition before the relevant glossary
file has been opened, the indexing can’t be performed. Since this is easy to miss, the
glossaries package by default issues an error message if the see key is used before
\makeglossaries. This option allows you to change the error into just a warning
(seenoindex=warn) or ignore it (seenoindex=ignore) if, for example, you want to temporar-
ily comment out \makeglossaries to speed up the compilation of a draft document by
omitting the indexing.

esclocations={ (boolean) }

This is a boolean option. The default is esclocations=true, which is needed for Options 2
and 3. With Option 1 \makenoidxglossaries changes it to esclocations=false. With Op-
tion 4 (bib2gls), this setting is ignored.

Both makeindex and xindy are fussy about the location formats (makeindex more so
than xindy) so the glossaries package tries to ensure that special characters are escaped
and allows for the location to be substituted for a format that’s more acceptable to the
indexing application. This requires a bit of trickery to circumvent the problem posed by
TEX’s asynchronous output routine, which can go wrong and also adds to the complexity
of the document build.

If you're sure that your locations will always expand to an acceptable format (or you're
prepared to post-process the glossary file before passing it to the relevant indexing appli-
cation) then use esclocations=false to avoid the complex escaping of location values. (See
section 1.14 “Writing information to associated files” in the documented code for further
details.)

This isn’t an issue for Options 1 or 4 as the locations are written to the aux file so no
syntax conversion is required.

indexonlyfirst={ (boolean) }

This is a boolean option that specifies whether to only add information to the external
glossary file on first use. The default is indexonlyfirst=false, which will add a line to the file
every time one of the \ gls-like or \glstext-like commands are used. Note that \glsadd
will always add information to the external glossary file* (since that’s the purpose of that
command).

4bug fix in v4.16 has corrected the code to ensure this.

70

2 Package Options

Resetting the first use flag with commands like \glsreset after an entry has been
indexed will cause that entry to be indexed multiple times if it's used again after the

reset. Likewise unsetting the first use flag before an entry has been indexed will prevent
it from being indexed (unless specifically indexed with \glsadd).

You can customise this by redefining

\glswriteentry{(label)}{(wr—code)}

where (label) is the entry’s label and (wr-code) is the code that writes the entry’s information
to the external file. The default definition of \glswriteentry is:

\newcommandx* {\glswriteentry} [2]{%
\ifglsindexonlyfirst
\ifglsused{#1}{}{#2}%
\else
#2%
\fi
}

This checks the indexonlyfirst package option (using \ifglsindexonlyfirst) and does
(wr-code) if this is false otherwise it only does (wr-code) of the entry hasn’t been used.

For example, suppose you only want to index the first use for entries in the acronym
glossary and not in the main (or any other) glossary:

\renewcommandx* {\glswriteentry} [2]{%
\ifthenelse{\equal{\glsentrytype{#1}}{acronym}}
{\ifglsused{#1}{}{#2}}%

{#21%

}

Here I've used \ifthenelse to ensure the arguments of \equal are fully expanded be-
fore the comparison is made.

With the glossaries-extra package it’s possible to only index first use for particular cate-
gories. For example, if you only want this enabled for abbreviations and acronyms then
you can set the indexonlyfirst attribute for the abbreviation and acronym categories. (In-
stead of using the indexonlyfirst package option.) See the glossaries-extra manual for further
details.

indexcrossrefs={ (boolean)} (glossaries-extra.sty)

If true, this will automatically index any cross-referenced entries that haven’t been marked
as used at the end of the document. Increases document build time. See glossaries-extra
manual for further details.

71

2 Package Options

autoseeindex={ (boolean) } (glossaries-extra.sty)

If true, makes the see and seecalso keys automatically index the cross-reference when the
entry is defined (default, and the only option with just the base glossaries package).

record= { <value> } (glossaries-extra.sty)

If not off, this option indicates that bib2gls is required. If the value is omitted, only is
assumed. Permitted values:

off bib2gls isn’t being used;

only bib2gls is being used to fetch entries from a bib file, to sort the entries and collate
the number lists, where the location information is the same as for Options 1-3;

nameref like only but provides extra information that allows the associated title to be used
instead of the location number;

alsoindex a hybrid approach where bib2gls is begin used to fetch entries from a bib file
but makeindex or xindy are used for the indexing. This requires a more compli-
cated document build and isn’t recommended.

See glossaries-extra manual for further details.

equations={ <boolean) } (glossaries-extra.sty)

If true, this option will cause the default location counter to automatically switch to
equation when inside a numbered equation environment.

floats={ <boolean> } (glossaries-extra.sty)

If true, this option will cause the default location counter to automatically switch to the
corresponding counter when inside a float. (Remember that with floats it’s the \caption
command that increments the counter so the location will be incorrect if an entry is indexed
within the float before the caption.)

indexcounter (glossaries-extra.sty)

This valueless option is primarily intended for use with bib2gls and hyperref allowing the
page location hyperlink to the relevant point in the page (rather than the top of the page).
Unexpected results will occur with other indexing methods. See glossaries-extra manual for
further details.

72

glossaries-extra.sty

2 Package Options

2.5 Sorting Options

This section is mostly for Options 2 and 3. Only the sort and order options are applicable
for Option 1.

With Options 4-6, only sort=none is applicable (and this is automatically implemented
by record=only and record=nameref). With bib2gls, the sort method is provided in

the optional argument of \GlsxtrLoadResources not with the sort package option.
There’s no sorting with Options 5 and 6.

sanitizesort={ (boolean) }

This is a boolean option that determines whether or not to sanitize the sort value when
writing to the external glossary file. For example, suppose you define an entry as follows:

\newglossaryentry{hash} {name={\#}, sort={#},
description={hash symbol}}

The sort value (#) must be sanitized before writing it to the glossary file, otherwise I&TEX
will try to interpret it as a parameter reference. If, on the other hand, you want the sort
value expanded, you need to switch off the sanitization. For example, suppose you do:

\newcommand{\mysortvalue} {AAA}

\newglossaryentry{sample} {%
name={sample},
sort={\mysortvalue},
description={an example}}

and you actually want \mysortvalue expanded, so that the entry is sorted according to
AAR, then use the package option sanitizesort=false.

The default for Options 2 and 3 is sanitizesort=true, and the default for Option 1 is
sanitizesort=false.

sort={ (value) }

If you use Options 2 or 3, this package option is the only way of specifying how to sort the
glossaries. Only Option 1 allows you to specify sort methods for individual glossaries via
the sort key in the optional argument of \printnoidxglossary. If you have multiple
glossaries in your document and you are using Option 1, only use the package options
sort=def or sort=use if you want to set this sort method for all your glossaries.

This is a (key)=(value) option where (value) may be one of the following:

¢ standard : entries are sorted according to the value of the sort key used in
\newglossaryentry (if present) or the name key (if sort key is missing);

73

2 Package Options

e def : entries are sorted in the order in which they were defined (the sort key in
\newglossaryentry is ignored);

* use: entries are sorted according to the order in which they are used in the document
(the sort key in \newglossaryentry is ignored).

Both sort=def and sort=use set the sort key to a six digit number via

\glssortnumberfmt { (number)}

(padded with leading zeros, where necessary). This can be redefined, if required,
before the entries are defined (in the case of sort=def) or before the entries are used (in
the case of sort=use).

* none : this setting is new to version 4.30 and is only for documents that don’t use
\makeglossaries (Options 2 or 3) or \makenoidxglossaries (Option 1). It
omits the code used to sanitize or escape the sort value, since it’s not required. This
can help to improve the document build speed, especially if there are a large number
of entries.

This option can’t be used with \printglossary or \printnoidxglossary (or
the iterative versions \printglossaries or \printnoidxglossaries). It may
be used with glossaries-extra’s \printunsrtglossary (Option 5).

Note that the group styles (such as listgroup) are incompatible with the sort=use and sort=def
options.

The default is sort=standard. When the standard sort option is in use, you can hook into
the sort mechanism by redefining:

\glsprestandardsort{(sort cs)}{(type)}{(label)}

where (sort cs) is a temporary control sequence that stores the sort value (which was either
explicitly set via the sort key or implicitly set via the name key) before any escaping of the
makeindex/xindy special characters is performed. By default \glsprestandardsort
just does:

\glsdosanitizesort

which sanitizes (sort cs) if the sanitizesort package option is set (or does nothing if the pack-
age option sanitizesort=false is used).

The other arguments, (type) and (label), are the glossary type and the entry label for the
current entry. Note that (type) will always be a control sequence, but (label) will be in the
form used in the first argument of \newglossaryentry.

74

2 Package Options

Redefining \glsprestandardsort won't affect any entries that have already been

defined and will have no effect at all if you are using sort=def or sort=use.

Example 1 (Mixing Alphabetical and Order of Definition Sorting)

Suppose I have three glossaries: main, acronym and notation, and let’s suppose I
want the main and acronym glossaries to be sorted alphabetically, but the notation
type should be sorted in order of definition.

For Option 1, the sort option can be used in \printnoidxglossary:

\printnoidxglossary[sort=word]
\printnoidxglossary[type=acronym, sort=word]
\printnoidxglossary|[type=notation, sort=def]

For Options 2 or 3, I can set the sort to standard (which is the default, but can be
explicitly set via the package option sort=standard), and I can either define all my main
and acronym entries, then redefine \glsprestandardsort to set (sort cs) to an incre-
mented integer, and then define all my notation entries. Alternatively, I can redefine
\glsprestandardsort to check for the glossary type and only modify (sort cs) if (type)
isnotation.

The first option can be achieved as follows:

\newcounter{sortcount}

\renewcommand{\glsprestandardsort} [3]{%
\stepcounter{sortcount}$%
\edef#l{\glssortnumberfmt {\arabic{sortcount}}}%

}

The second option can be achieved as follows:

\newcounter{sortcount}

\renewcommand{\glsprestandardsort} [3]{%
\ifdefstring{#2}{notation}%
{%
\stepcounter{sortcount}%
\edef#l{\glssortnumberfmt{\arabic{sortcount}}}$%

o\°

o\

—_~— e

\glsdosanitizesort

-
o\

}

(\ifdefstring is defined by the etoolbox package.) For a complete document, see the
sample file sampleSort.tex.

75

2 Package Options

Example 2 (Customizing Standard Sort (Options 2 or 3))

Suppose you want a glossary of people and you want the names listed as (first-name)
(surname) in the glossary, but you want the names sorted by (surname), (first-name). You
can do this by defining a command called, say, \name { (first-name) } { (surname) } that you
can use in the name key when you define the entry, but hook into the standard sort mech-
anism to temporarily redefine \name while the sort value is being set.

First, define two commands to set the person’s name:

\newcommand{\sortname} [2] {#2, #1}
\newcommand{\textname} [2] {#1 #2}

and \name needs to be initialised to \textname:

\let\name\textname

Now redefine \glsprestandardsort so that it temporarily sets \name to \sortname
and expands the sort value, then sets \name to \textname so that the person’s name
appears as (first-name) (surname) in the text:

\renewcommand{\glsprestandardsort} [3]{%
\let\name\sortname
\edef#l{\expandafter\expandonce\expandafter{#1}}%
\let\name\textname
\glsdosanitizesort

}

(The somewhat complicate use of \expandafter etc helps to protect fragile commands,
but care is still needed.)
Now the entries can be defined:

\newglossaryentry{joebloggs} {name={\name{Joe} {Bloggs}},
description={some information about Joe Bloggs}}
\newglossaryentry{johnsmith} {name={\name{John} {Smith}},

description={some information about John Smith}}

For a complete document, see the sample file samplePeople.tex.

order={ (value) }

This may take two values: word or letter. The default is word ordering.

Note that with Options 2 and 3, the order option has no effect if you don’t use
makeglossaries.

If you use Option 1, this setting will be used if you use sort=standard in the optional
argument of \printnoidxglossary:

\printnoidxglossary[sort=standard]

76

bib2gls

2 Package Options

Alternatively, you can specify the order for individual glossaries:

\printnoidxglossary[sort=word]
\printnoidxglossary|[type=acronym, sort=letter]

Withbib2gls, usethe break-at optionin \GlsXtrLoadResources instead of order.

makeindex

(Option 2) The glossary information and indexing style file will be written in makeindex
format. If you use makeglossaries, it will automatically detect that it needs to
call makeindex. If you don’t use makeglossaries, you need to remember to use
makeindex not xindy. The indexing style file will been given a ist extension.

You may omit this package option if you are using Option 2 as this is the default. It’s
available in case you need to override the effect of an earlier occurrence of xindy in the
package option list.

xindy

(Option 3) The glossary information and indexing style file will be written in xindy for-
mat. If you use makeglossaries, it will automatically detect that it needs to call xindy.
If you don’t use makeglossaries, you need to remember to use xindy not makeindex.
The indexing style file will been given a xdy extension.

This package option may additionally have a value that is a (key)=(value) comma-
separated list to override the language and codepage. For example:

\usepackage [xindy={language=english, codepage=utf8}]
{glossaries}

You can also specify whether you want a number group in the glossary. This defaults to
true, but can be suppressed. For example:

\usepackage [xindy={glsnumbers=false}] {glossaries}

If no value is supplied to this package option (either simply writing xindy or writing
xindy={}) then the language, codepage and number group settings are unchanged. See
Section 11 for further details on using xindy with the glossaries package.

xindygloss

(Option 3) This is equivalent to xindy={} (that is, the xindy option without any value
supplied) and may be used as a document class option. The language and code page can
be set via \GlsSetXdyLanguage and \GlsSetXdyCodePage (see Section 11.1.)

77

2 Package Options

xindynoglsnumbers

(Option 3) This is equivalent to xindy={glsnumbers=false} and may be used as a
document class option.

automake={ (value) }

This is option was introduced to version 4.08 as a boolean option. As from version 4.42 it
may now take three values: false (default), t rue or immediate. If no option is supplied,
immediate is assumed. The option automake=true will attempt to run makeindex or
xindy using TEX’s \writel8 mechanism at the end of the document. The option automake
=immediate will attempt to run makeindex or xindy at the start of \makeglossaries
using \ immediate (before the glossary files have been opened).

In the case of automake=true, the associated files are created at the end of the document
ready for the next KTEX run. Since there is a possibility of commands such as \gls oc-
curring on the last page of the document, it’s not possible to use \ immediate to close the
associated file or with \writel8 since the writing of the final indexing lines may have
been delayed. In certain situations this can mean that the \write18 fails. In such cases,
you will need to use automake=immediate instead.

With automake=immediate, you will get a warning on the first IXIEX run as the associated
glossary files don’t exist yet.

Since this mechanism can be a security risk, some TgX distributions disable it completely,
in which case this option won’t have an effect. (If this option doesn’t appear to work, search
the log file for “runsystem” and see if it is followed by “enabled” or “disabled”.)

Some distributions allow \writel8 in a restricted mode. This mode has a limited
number of trusted applications, which usually includes makeindex but may not include
xindy. So if you have the restricted mode on, automake should work with makeindex but
may not work with xindy.

However even in unrestricted mode this option may not work with xindy as xindy
uses language names that don’t always correspond with \babel’s language names. (The
makeglossaries script applies mappings to assist you.) Note that you still need at least
two IXTEX runs to ensure the document is up-to-date with this setting.

Since this package option attempts to run the indexing application on every IIEX run,
its use should be considered a last resort for those who can’t work out how to incorporate
the indexing application into their document build. The default value for this option is
automake=false.

disablemakegloss

This valueless option indicates that \makeglossaries and \makenoidxglossaries
should be disabled. This option is provided in the event that you have to use a
class or package that disregards the advice in Section 1.1 and automatically performs
\makeglossaries or \makenoidxglossaries but you don’t want this. (For exam-
ple, you want to use a different indexing method or you want to disable indexing while

78

2 Package Options

working on a draft document.)

This option may be passed in the standard document class option list or passed us-
ing \PassOptionsToPackage before glossaries is loaded. Note that this does nothing if
\makeglossaries or \makenoidxglossaries has already been used whilst enabled.

restoremakegloss

Cancels the effect of disablemakegloss. This option may be used in \setupglossaries.
It issues a warning if \makeglossaries or \makenoidxglossaries has already been
used whilst enabled. For example, suppose the class customclass.cls automatically loads
glossaries and does \makeglossaries but you need an extra glossary, which has to be
defined before \makeglossaries, then you can do:

\documentclass[disablemakegloss] {customclass}
\newglossary=*{functions} {Functions}
\setupglossaries{restoremakegloss}
\makeglossaries

or

\PassOptionsToPackage{disablemakegloss}{glossaries}
\documentclass{customclass}
\newglossary*{functions} {Functions}
\setupglossaries{restoremakegloss}

\makeglossaries

Note that restoring these commands doesn’t necessarily mean that they can be used. It
just means that their normal behaviour given the current settings will apply. For example,
if you use the record=only or record=nameref options with glossaries-extra then you can’t use
\makeglossaries or \makenoidxglossaries regardless of restoremakegloss.

2.6 Glossary Type Options

nohypertypes={ (list) }

Use this option if you have multiple glossaries and you want to suppress the entry hyper-
links for a particular glossary or glossaries. The value of this option should be a comma-
separated list of glossary types where \gls etc shouldn’t have hyperlinks by default.
Make sure you enclose the value in braces if it contains any commas. Example:

\usepackage [acronym, nohypertypes={acronym, notation}]
{glossaries}
\newglossary[nlg] {notation}{not}{ntn}{Notation}

The values must be fully expanded, so don’t try nohypertypes=\acronymtype. You
may also use

79

2 Package Options

\GlsDeclareNoHyperList {{list)}

instead or additionally. See Section 6 for further details.

nomain

This suppresses the creation of the main glossary and associated glo file, if unrequired.
Note that if you use this option, you must create another glossary in which to put all
your entries (either via the acronym (or acronyms) package option described in Section 2.7
or via the symbols, numbers or index options described in Section 2.8 or via \newglossary
described in Section 12).

If you don’t use the main glossary and you don’t use this option, makeglossaries
will produce a warning.

Warning: File 'filename.glo' 1is empty.

Have you used any entries defined in glossary
'main'?

Remember to use package option 'nomain' if
you don't want to use the main glossary.

If you did actually want to use the main glossary and you see this warning, check that you
have referenced the entries in that glossary via commands such as \gls.

symbols

This valueless option defines a new glossary type with the label symbols via
\newglossary[slg] {symbols}{sls}{slo}{\glssymbolsgroupname}

It also defines

\printsymbols[{options)]

which is a synonym for
\printglossary[type=symbols, (options)]
If you use Option 1, you need to use:

\printnoidxglossary[type=symbols,(optionsﬂ

to display the list of symbols.

Remember to use the nomain package option if you're only interested in using this
symbols glossary and don’t intend to use the main glossary.

80

glossaries-extra.sty

glossaries-extra.sty

2 Package Options

The glossaries-extra package has a slightly modified version of this option which addi-
tionally provides \glsxtrnewsymbol as a convenient shortcut method for defining

symbols. See the glossaries-extra manual for further details.

numbers
This valueless option defines a new glossary type with the label numbers via
\newglossary[nlg] {numbers}{nls}{nlo}{\glsnumbersgroupname}

It also defines

\printnumbers[(options)]

which is a synonym for
\printglossary[type=numbers,<thionsﬂ

If you use Option 1, you need to use:
\printnoidxglossary[type=numbers,(optionsﬂ

to display the list of numbers.

Remember to use the nomain package option if you're only interested in using this
numbers glossary and don’t intend to use the main glossary.

The glossaries-extra package has a slightly modified version of this option which addi-
tionally provides \glsxtrnewnumber as a convenient shortcut method for defining
numbers. See the glossaries-extra manual for further details.

index
This valueless option defines a new glossary type with the label index via
\newglossary[ilg] {index} {ind} {idx}{\indexname}$%

It also defines

\newterm[{options)] {(term)}

which is a synonym for

\newglossaryentry{<term>}[type=index,name={(term>},%
description=\nopostdesc,(optionsﬂ

81

2 Package Options

and

\printindex[{options)]

which is a synonym for
\printglossary[type=index, (options)]
If you use Option 1, you need to use:
\printnoidxglossary[type=index, (options)]
to display this glossary.
Remember to use the nomain package option if you're only interested in using this

index glossary and don’t intend to use the main glossary. Note that you can’t mix
this option with \index. Either use glossaries for the indexing or use a custom index-

ing package, such as makeidx, index or imakeidx. (You can, of course, load one of those
packages and load glossaries without the index package option.)

Since the index isn’t designed for terms with descriptions, you might also want to dis-
able the hyperlinks for this glossary using the package option nohypertypes=index or the
command

\GlsDeclareNoHyperList {index}
The example file sample-index. tex illustrates the use of the index package option.

noglossaryindex

This valueless option switches off index if index has been passed implicitly (for example,
through global document options). This option can’t be used in \setupglossaries.

2.7 Acronym and Abbreviation Options

acronym={ (boolean) }
If true, this creates a new glossary with the label acronym. This is equivalent to:

\newglossaryl[alg] {acronym}{acr}{acn} {\acronymname}

It will also define

\printacronyms [{(options)]

that’s equivalent to

82

2 Package Options

\printglossary[type=acronym, <options>]

(unless that command is already defined before the beginning of the document or the pack-
age option compatible-3.07 is used).
If you are using Option 1, you need to use

\printnoidxglossary[type=acronym, (options)]

to display the list of acronyms.

If the acronym package option is used, \acronymtype is set to acronym otherwise it
is set to main.” Entries that are defined using \newacronym are placed in the glossary
whose label is given by \acronymtype, unless another glossary is explicitly specified.

Remember to use the nomain package option if you're only interested in using this
acronym glossary. (That is, you don’t intend to use the main glossary:.)

glossaries-extra.sty The glossaries-extra extension package comes with an analogous abbreviations option,
which creates a new glossary with the label abbreviations and sets the com-

mand \glsxtrabbrvtype to this. If the acronym option hasn’t also been used, then
\acronymtype will be set to \glsxtrabbrvtype. This enables both \newacronym
and \newabbreviation to use the same glossary.

Make sure you have at least v1.42 of glossaries-extra if you use the acronym (or acronyms)
package option with the extension package to avoid a bug that interferes with the ab-
breviation style.

acronyms

This is equivalent to acronym=true and may be used in the document class option list.

abbreviations (glossaries-extra.sty)
This valueless option creates a new glossary type using;:

\newglossary[glg—abr] {abbreviations}{gls—abr}{glo-abr}{\abbreviationsname}

The label can be accessed with \glsxtrabbrvtype, whichis analogous to \acronymtype.
See glossaries-extra manual for further details.

5Acnmﬂyitsem \acronymtype to \glsdefaulttype if the acronym package option is not used, but
\glsdefaulttype usually has the value main unless the nomain option has been used.

83

glossaries-extra.sty

glossaries-extra.sty

2 Package Options

acronymlists={ (value) }

By default, only the \acronymtype glossary is considered to be a list of acronyms. If you
have other lists of acronyms, you can specify them as a comma-separated list in the value
of acronymlists. For example, if you use the acronym package option but you also want the
main glossary to also contain a list of acronyms, you can do:

\usepackage [acronym, acronymlists={main}] {glossaries}

No check is performed to determine if the listed glossaries exist, so you can add glossaries
you haven’t defined yet. For example:

\usepackage [acronym, acronymlists={main, acronym?2}]
{glossaries}

\newglossary[alg2] {acronym2}{acr2}{acn2}%
{Statistical Acronyms}

You can use

\DeclareAcronymList{<list>}

instead of or in addition to the acronymlists option. This will add the glossaries given in
(list) to the list of glossaries that are identified as lists of acronyms. To replace the list of
acronym lists with a new list use:

\SetAcronymLists{(list)}

You can determine if a glossary has been identified as being a list of acronyms using:

\glsIfListOfAcronyms{(label)}{(true part)}{(false part)}

This option is incompatible with glossaries-extra’s abbreviation mechanism.

shortcuts

This option provides shortcut commands for acronyms. See Section 13 for further details.
Alternatively you can use:

\DefineAcronymSynonyms

The glossaries-extra package provides additional shortcuts.

84

2 Package Options

2.7.1 Deprecated Acronym Style Options

The package options listed in this section are now deprecated but are kept for backward-
compatibility. Use \setacronymstyle instead. See Section 13 for further details.
description

This option changes the definition of \newacronym to allow a description. This option
may be replaced by

\setacronymstyle{long-short-desc}

or (with smallcaps)
\setacronymstyle{long-sc-short-desc}
or (with smaller)
\setacronymstyle{long-sm-short-desc}
or (with footnote)
\setacronymstyle{footnote-desc}

or (with footnote and smallcaps)
\setacronymstyle{footnote-sc—-desc}
or (with footnote and smaller)
\setacronymstyle{footnote-sm-desc}
or (with dua)

\setacronymstyle{dua-desc}

smallcaps

This option changes the definition of \newacronym and the way that acronyms are dis-
played. This option may be replaced by:

\setacronymstyle{long-sc—-short}

or (with description)
\setacronymstyle{long-sc—-short-desc}
or (with description and footnote)

\setacronymstyle{footnote-sc-desc}

85

2 Package Options

smaller

This option changes the definition of \newacronym and the way that acronyms are dis-
played.

If you use this option, you will need to include the relsize package or otherwise define
\textsmaller or redefine \acronymfont.

This option may be replaced by:

\setacronymstyle{long—sm—-short}

or (with description)
\setacronymstyle{long-sm-short-desc}
or (with description and footnote)

\setacronymstyle{footnote-sm-desc}

footnote

This option changes the definition of \newacronym and the way that acronyms are dis-
played. This option may be replaced by:

\setacronymstyle{footnote}

or (with smallcaps)
\setacronymstyle{footnote-sc}

or (with smaller)
\setacronymstyle{footnote—-sm}

or (with description)
\setacronymstyle{footnote-desc}

or (with smallcaps and description)
\setacronymstyle{footnote-sc—-desc}
or (with smaller and description)

\setacronymstyle{footnote-sm-desc}

dua

This option changes the definition of \newacronym so that acronyms are always ex-
panded. This option may be replaced by:

\setacronymstyle{dua}
or (with description)

\setacronymstyle{dua—-desc}

86

2 Package Options

2.8 Other Options

Other available options that don’t fit any of the above categories are described below.

accsupp (glossaries-extra.sty)

Load the glossaries-accsupp package.

prefix (glossaries-extra.sty)

Load the glossaries-prefix package.

nomissingglstext={ (boolean) } (glossaries-extra.sty)

This option may be used to suppress the boilerplate text generated by \printglossary
if the glossary file is missing.

compatible-2.07={ (boolean) }

Compatibility mode for old documents created using version 2.07 or below.

compatible-3.07={ (boolean) }

Compatibility mode for old documents created using version 3.07 or below.

kernelglossredefs={ (value) }

As a legacy from the precursor glossary package, the standard glossary commands pro-
vided by the IXTEX kernel (\makeglossary and \glossary) are redefined in terms of
the glossaries package’s commands. However, they were never documented in this user
manual, and the conversion guide (“Upgrading from the glossary package to the glossaries
package”) explicitly discourages their use.

The use of those kernel commands (instead of the appropriate commands documented
in this user guide) are deprecated, and you will now get a warning if you try using them.

In the event that you require the original form of these kernel commands, for example,
if you need to use the glossaries package with another class or package that also performs
glossary-style indexing, then you can restore these commands to their previous definition
(that is, their definitions prior to loading the glossaries package) with the package option
kernelglossredefs=false. You may also need to use the nomain option in the event of file ex-
tension conflicts. (In which case, you must provide a new default glossary for use with the
glossaries package.)

This option may take one of three values: true (redefine with warnings, default), false
(restore previous definitions) or nowarn (redefine without warnings, not recommended).

87

2 Package Options

The only glossary-related commands provided by the IXTEX kernel are \makeglossary
and \glossary. Other packages or classes may provide additional glossary-related com-
mands or environments that conflict with glossaries (such as \printglossary and the-
glossary). These non-kernel commands aren’t affected by this package option, and you will
have to find some way to resolve the conflict if you require both glossary mechanisms.
(The glossaries package will override the existing definitions of \printglossary and the-
glossary.)

In general, if possible, it’s best to stick with just one package that provides a glos-
sary mechanism. (The glossaries package does check for the doc package and patches
\PrintChanges.)

2.9 Setting Options After the Package is Loaded

Some of the options described above may also be set after the glossaries package has been
loaded using

\setupglossaries{(key-val list)}

The following package options can’t be used in \setupglossaries: xindy, xindygloss,
xindynoglsnumbers, makeindex, nolong, nosuper, nolist, notree, nostyles, nomain, compatible-
2.07, translate, notranslate, acronym. These options have to be set while the package
is loading, except for the xindy sub-options which can be set using commands like
\GlsSetXdyLanguage (see Section 11 for further details).

If you need to use this command, use it as soon as possible after loading glossaries oth-
erwise you might end up using it too late for the change to take effect. For example, if

you try changing the acronym styles (such as smallcaps) after you have started defining
your acronyms, you are likely to get unexpected results. If you try changing the sort
option after you have started to define entries, you may get unexpected results.

88

glossaries-extra.sty

3 Setting Up

In the preamble you need to indicate whether you want to use Option 1, Option 2 or Op-
tion 3. It’s not possible to mix these options within a document, although some com-
binations are possible with glossaries-extra. (For Options 4 and 5 see the bib2gls and
glossaries-extra manuals.)

3.1 Option 1

The command

\makenoidxglossaries

must be placed in the preamble. This sets up the internal commands required to make
Option 1 work. If you omit \makenoidxglossaries none of the glossaries will be
displayed.

3.2 Options 2 and 3

The command

\makeglossaries

must be placed in the preamble in order to create the customised makeindex (ist) or
xindy (xdy) style file (for Options 2 or 3, respectively) and to ensure that glossary entries
are written to the appropriate output files. If you omit \makeglossaries none of the
glossary files will be created.

If you are using glossaries-extra, \makeglossaries has an optional argument that al-

lows you to have a hybrid of Options 1 or 2 or Options 1 or 3. See glossaries-extra manual
for further details.

Note that some of the commands provided by the glossaries package must not be
used after \makeglossaries as they are required when creating the customised
style file. If you attempt to use those commands after \makeglossaries you
will generate an error. Similarly, there are some commands that must not be used before
\makeglossaries.
You can suppress the creation of the customised xindy or makeindex style file using

89

3 Setting Up

\noist

That this command must not be used after \makeglossaries.

Note that if you have a custom xdy file created when using glossaries version 2.07 or

below, you will need to use the compatible-2.07 package option with it.

The default name for the customised style file is given by \ jobnameist (Option 2) or
\ jobnamexdy (Option 3). This name may be changed using;:

\setStyleFile{(name)}

where (name) is the name of the style file without the extension. Note that this command
must not be used after \makeglossaries

Each glossary entry is assigned a number list that lists all the locations in the document
where that entry was used. By default, the location refers to the page number but this may
be overridden using the counter package option. The default form of the location num-
ber assumes a full stop compositor (e.g. 1.2), but if your location numbers use a different
compositor (e.g. 1-2) you need to set this using

\glsSetCompositor{{symbol)}

For example:

\glsSetCompositor{-}

This command must not be used after \makeglossaries.
If you use Option 3, you can have a different compositor for page numbers starting with
an upper case alphabetical character using:

\glsSetAlphaCompositor{{symbol)}

This command has no effect if you use Option 2. For example, if you want number lists
containing a mixture of A-1 and 2.3 style formats, then do:

\glsSetCompositor{.}\glsSetAlphaCompositor{—-}

See Section 5 for further information about number lists.

90

4 Defining Glossary Entries

All glossary entries must be defined before they are used, so it is better to define them in the
preamble to ensure this. In fact, some commands such as \1ongnewglossaryentry may
only be used in the preamble. See Section 4.8 for a discussion of the problems with defining
entries within the document instead of in the preamble. (The glossaries-extra package has
an option that provides a restricted form of document definitions that avoids some of the
issues discussed in Section 4.8.)

Option 1 enforces the preamble-only restriction on \newglossaryentry. Option 4

requires that definitions are provided in bib format. Option 5 requires either preamble-
only definitions or the use of the glossaries-extra package option docdef=restricted.

Only those entries that are indexed in the document (using any of the commands de-
scribed in Section 6, Section 7 or Section 8) will appear in the glossary. See Section 10 to
find out how to display the glossary.

New glossary entries are defined using the command:

\newglossaryentry{(label)} {(key=value 1list)}

This is a short command, so values in (key-val list) can’t contain any paragraph breaks.
Take care to enclose values containing any commas (,) or equal signs (=) with braces to
hide them from the key=value list parser.

If you have a long description that needs to span multiple paragraphs, use

\longnewglossaryentry{(label)}{(key=value list)}{(long
description)}

instead. Note that this command may only be used in the preamble. Be careful of
unwanted spaces. \longnewglossaryentry will remove trailing spaces in the de-
scription (via \unskip) but won’t remove leading spaces. This command also appends
\nopostdesc to the end of the description, which suppresses the post-description hook.
The glossaries-extra package provides a starred version of \ longnewglossaryentry that
doesn’t append either \unskip or \nopostdesc.

There are also commands that will only define the entry if it hasn’t already been defined:

91

4 Defining Glossary Entries

\provideglossaryentry{(label)}{(key=value list)}

and

\longprovideglossaryentry{(label)}{(key=value list)}{(long
description)}

(These are both preamble-only commands.)

For all the above commands, the first argument, (label), must be a unique label with
which to identify this entry. This can’t contain any non-expandable commands or active
characters. The reason for this restriction is that the label is used to construct internal
commands that store the associated information (similarly to commands like \ 1abel) and
therefore must be able to expand to a valid control sequence name.

Note that although an extended Latin character or other non-Latin character, such as
é or 3, looks like a plain character in your .tex file, it’s actually a macro (an active
character) and therefore can’t be used in the label. (This applies to IXIgX rather than

XgIATEX.) Also be careful of babel’s options that change certain punctuation characters
(such as : or -) to active characters.

The second argument, (key=value list), is a (key)=(value) list that supplies the relevant in-
formation about this entry. There are two required fields: description and either name
or parent. The description is set in the third argument of \longnewglossaryentry
and \longprovideglossaryentry. With the other commands it’s set via the description
key. As is typical with (key)=(value) lists, values that contain a comma or equal sign must
be enclosed in braces. Available fields are listed below. Additional fields are provided by
the supplementary packages glossaries-prefix (Section 17) and glossaries-accsupp (Section 18)
and also by glossaries-extra. You can also define your own custom keys (see Section 4.3).

name The name of the entry (as it will appear in the glossary). If this key is omitted and
the parent key is supplied, this value will be the same as the parent’s name.

If the name key contains any commands, you must also use the sort key (de-
scribed below) if you intend sorting the entries alphabetically, otherwise the en-

tries can’t be sorted correctly.

description A brief description of this term (to appear in the glossary). Within this
value, you can use:

\nopostdesc

to suppress the description terminator for this entry. For example, if this entry

92

glossaries-extra.sty

4 Defining Glossary Entries

is a parent entry that doesn’t require a description, you can do description=
{\nopostdesc}. If you want a paragraph break in the description use:

\glspar

or, better, use \ longnewglossaryentry. However, note that not all glossary styles
support multi-line descriptions. If you are using one of the tabular-like glossary
styles that permit multi-line descriptions, use \newline not \\ if you want to force
a line break.

With glossaries-extra, use \glsxtrnopostpunc instead of \nopostdesc to sup-
press the post-description punctuation.

parent The label of the parent entry. Note that the parent entry must be defined before
its sub-entries. See Section 4.5 for further details.

descriptionplural The plural form of the description, if required. If omitted, the
value is set to the same as the description key.

text How this entry will appear in the document text when using \gls (or one of its
upper case variants). If this field is omitted, the value of the name key is used.

first How the entry will appear in the document text on first use with \gls (or one of
its upper case variants). If this field is omitted, the value of the text key is used.
Note that if you use \glspl, \Glspl, \GLSpl, \glsdisp before using \gls, the
firstplural value won't be used with \gls.

plural How the entry will appear in the document text when using \glspl (or one
of its upper case variants). If this field is omitted, the value is obtained by ap-
pending \glspluralsuffix to the value of the text field. The default value of
\glspluralsuffix is the letter “s”.

firstplural How the entry will appear in the document text on first use with \glspl
(or one of its upper case variants). If this field is omitted, the value is obtained from
the plural key, if the first key is omitted, or by appending \glspluralsuffix
to the value of the first field, if the first field is present. Note that if you use
\gls, \Gls, \GLS, \glsdisp before using \glspl, the firstplural value won't
be used with \glspl.

Note: prior to version 1.13, the default value of firstplural was always taken by
A appending “s” to the first key, which meant that you had to specify both plural
and firstplural, evenif you hadn’t used the first key.

symbol This field is provided to allow the user to specify an associated symbol. If omit-
ted, the value is set to \relax. Note that not all glossary styles display the symbol.

93

4 Defining Glossary Entries

symbolplural This is the plural form of the symbol (as passed to \glsdisplay and
\glsdisplayfirst by \glspl, \Glspl and \GLSpl). If omitted, the value is set
to the same as the symbo1l key.

sort This value indicates how this entry should be sorted. If omitted, the value is given
by the name field unless one of the package options sort=def and sort=use have been
used. In general, it’s best to use the sort key if the name contains commands
(e.g. \ensuremath{\alpha}). You can also override the sort key by redefining
\glsprestandardsort (see Section 2.5).

bib2gls The sort key shouldn’t be used with bib2gls. It has a system of fallbacks that
allow different types of entries to obtain the sort value from the most relevant

field. See the bib2gls manual for further details and see also bib2gls gallery:
sorting.

Option 1 by default strips the standard IXIEX accents (that is, accents generated by
core IfTEX commands) from the name key when it sets the sort key. So with Op-
tion 1:

\newglossaryentry{elite}{%
name={{\'e}lite},
description={select group of people}

}
This is equivalent to:

\newglossaryentry{elite}{%
name={{\'e}lite},
description={select group of people},
sort={elite}

}
Unless you use the package option sanitizesort=true, in which case it’s equivalent to:

\newglossaryentry{elite}{%
name={{\'e}lite},
description={select group of people},
sort={\'elite}

}

This will place the entry before the “A” letter group since the sort value starts with a
symbol.

Similarly if you use the inputenc package:

94

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

4 Defining Glossary Entries

\newglossaryentry{elite}{%
name={{é}lite},
description={select group of people}

}
This is equivalent to

\newglossaryentry{elite}{%
name=1i{{é}lite},
description={select group of people},
sort=elite

}
Unless you use the package option sanitizesort=true, in which case it’s equivalent to:

\newglossaryentry{elite}{%
name={{é}lite},
description={select group of people},
sort=élite

}

Again, this will place the entry before the “A” group.

With Options 2 and 3, the default value of sort will either be set to the name key (if
sanitizesort=true) or it will set it to the expansion of the name key (if sanitizesort=false).

Take care with xindy (Option 3): if you have entries with the same sort value
they will be treated as the same entry. If you use xindy and aren’t using the def
or use sort methods, always use the sort key for entries where the name just

consists of a control sequence (for example name={\alpha}).

Take care if you use Option 1 and the name contains fragile commands. You
will either need to explicitly set the sort key or use the sanitizesort=true package
option (unless you use the def or use sort methods).

type This specifies the label of the glossary in which this entry belongs. If omitted, the
default glossary is assumed unless \newacronymis used (see Section 13).

userl,...,user6 Six keys provided for any additional information the user may want to
specify. (For example, an associated dimension or an alternative plural or some other
grammatical construct.) Alternatively, you can add new keys using \glsaddkey or
\glsaddstoragekey (see Section 4.3).

nonumberlist A boolean key. If the value is missing or is true, this will sup-
press the number list just for this entry. Conversely, if you have used the pack-
age option nonumberlist, you can activate the number list just for this entry with
nonumberlist=false. (See Section 5.)

95

4 Defining Glossary Entries

see Cross-reference another entry. Using the see key will automatically add this entry to
the glossary, but will not automatically add the cross-referenced entry. The referenced
entry should be supplied as the value to this key. If you want to override the “see”
tag, you can supply the new tag in square brackets before the label. For example
see=[see also]{anotherlabel}. Note that if you have suppressed the num-
ber list, the cross-referencing information won’t appear in the glossary, as it forms
part of the number list. You can override this for individual glossary entries using
nonumberlist=false (see above). Alternatively, you can use the seeautonumberlist
package option. For further details, see Section 8.

This key essentially provides a convenient shortcut that performs
\glssee[(tag)] {(label)} {(xr-label list)}

after the entry has been defined.

For Options 2 and 3, \makeglossaries must be used before any occurrence of

\newglossaryentry that contains the see key. This key should not be used
with entries defined in the document environment.

Since it’s useful to suppress the indexing while working on a draft document, con-
sider using the seenoindex package option to warn or ignore the see key while
\makeglossaries is commented out.

If you use the see key, you may want to consider using the glossaries-extra package
which additionally provides a seealso and alias key. If you want to avoid the
automatic indexing triggered by the see key, consider using Option 4.

seealso This key is only available with glossaries-extra and is similar to see but it doesn’t
allow for the optional tag. The glossaries-extra package provides \secalsoname and
seealso={(list)} is essentially like see=[\seealsoname](list) (Options 3
and 4 may treat these differently).

alias This key is only available with glossaries-extra and is another form of cross-
referencing. An entry can be aliased to another entry with alias={(label)}. This
behaves like see={(label)} but also alters the behaviour of commands like \gls
so that they index the entry given by (label) instead of the original entry. More varia-
tions with the key are available with bib2gls.

category This key is only available with glossaries-extra and is used to assign a category
to the entry. The value should be a label that can be used to identify the category. See
glossaries-extra manual for further details.

The following keys are reserved for \newacronym (see Section 13) and also for
\newabbreviation (see the glossaries-extra manual): long, longplural, short and
shortplural.

96

bib2gls

4 Defining Glossary Entries

There are also special internal field names used by bib2gls. See the bib2gls manual
for further details.

The supplementary packages glossaries-prefix (Section 17) and glossaries-accsupp (Sec-
tion 18) provide additional keys.

Avoid using any of the \gls-like or \glstext-like commands within the text,
first, short or long keys (or their plural equivalent) or any other key that you plan
to access through those commands. (For example, the symbol key if you intend to use
\glssymbol.) Otherwise you end up with nested links, which can cause complica-

tions and they won’t work with the case-changing commands. You can use them within
the value of keys that won’t be accessed through those commands. For example, the
description key if you don’t use \glsdesc. Additionally, they’ll confuse the entry
formatting commands, such as \glslabel.

Note that if the name starts with non-Latin character, you must group the character,
otherwise it will cause a problem for commands like \G1s and \G1lspl. For example:

\newglossaryentry{elite}{name={{\'e}lite},
description={select group or class}}

Note that the same applies if you are using the inputenc package:

\newglossaryentry{elite} {name={{é}lite},
description={select group or class}}

(This doesn’t apply for XgI&TEX documents using the fontspec package. For further details,
see the “UTF-8” section in the mfirstuc user manual.)

Note that in both of the above examples, you will also need to supply the sort key if you
are using Option 2 whereas xindy (Option 3) is usually able to sort non-Latin characters
correctly. Option 1 discards accents from standard IXIEX extended Latin characters unless
you use the sanitizesort=true.

4.1 Plurals

You may have noticed from above that you can specify the plural form when you define a
term. If you omit this, the plural will be obtained by appending

\glspluralsuffix

£“_ 7
S

to the singular form. This command defaults to the letter “s”. For example:

\newglossaryentry{cow} {name=cow,description={a fully grown
female of any bovine animal}}

97

4 Defining Glossary Entries

defines a new entry whose singular form is “cow” and plural form is “cows”. However,
if you are writing in archaic English, you may want to use “kine” as the plural form, in
which case you would have to do:

\newglossaryentry{cow} {name=cow, plural=kine,
description={a fully grown female of any bovine animal}}

If you are writing in a language that supports multiple plurals (for a given term) then
use the plural key for one of them and one of the user keys to specify the other plural
form. For example:

\newglossaryentry{cow} {%
name=cow, %
description={a fully grown female of any bovine animal
(plural cows, archaic plural kine)}, %
userl={kine}}

You can then use \glspl{cow} to produce “cows” and \glsuseri{cow} to produce
“kine”. You can, of course, define an easy to remember synonym. For example:

\let\glsaltpl\glsuseri

Then you don’t have to remember which key you used to store the second plural. Alterna-
tively, you can define your own keys using \glsaddkey, described in Section 4.3.

If you are using a language that usually forms plurals by appending a different letter,
or sequence of letters, you can redefine \glspluralsuffix as required. However, this
must be done before the entries are defined. For languages that don’t form plurals by simply
appending a suffix, all the plural forms must be specified using the plural key (and the
firstplural key where necessary).

4.2 Other Grammatical Constructs

You can use the six user keys to provide alternatives, such as participles. For example:

\let\glsing\glsuseri
\let\glsd\glsuserii

\newcommandx { \ingkey} {userl}
\newcommandx* { \edkey} {user2}

\newcommandx* { \newword} [3] []{%
\newglossaryentry{#2}{%
name={#2}, %
description={#3},%
\edkey={#2ed}, %
\ingkey={#2ing}, #1%

1%

98

4 Defining Glossary Entries

With the above definitions, I can now define terms like this:

\newword{play}{to take part in activities for enjoyment}
\newword[\edkey={ran}, \ingkey={running}] {run}{to move fast using
the legs}

and use them in the text:

Peter is \glsing{play} in the park today.
Jane \glsd{play} in the park yesterday.
Peter and Jane \glsd{run} in the park last week.

Alternatively, you can define your own keys using \glsaddkey, described below in
Section 4.3.

4.3 Additional Keys

You can now also define your own custom keys using the commands described in this
section. There are two types of keys: those for use within the document and those to store
information used behind the scenes by other commands.

For example, if you want to add a key that indicates the associated unit for a term,
you might want to reference this unit in your document. In this case use \glsaddkey
described in Section 4.3.1. If, on the other hand, you want to add a key to indicate to
a glossary style or acronym style that this entry should be formatted differently to other
entries, then you can use \glsaddstoragekey described in Section 4.3.2.

In both cases, a new command (no link cs) will be defined that can be used to access the
value of this key (analogous to commands such as \glsentrytext). This can be used
in an expandable context (provided any fragile commands stored in the key have been
protected). The new keys must be added using \glsaddkey or \glsaddstoragekey
before glossary entries are defined.

4.3.1 Document Keys

A custom key that can be used in the document is defined using:

\glsaddkey{(key)}{{(default value)}{(no link cs)}{{(no link ucfirst
cs)}{(link cs)}{(link ucfirst cs)}{{(link allcaps cs)}

where:

(key) is the new key to use in \newglossaryentry (or similar commands such as
\longnewglossaryentry);

99

4 Defining Glossary Entries

(default value) is the default value to use if this key isn’t used in an entry definition (this
may reference the current entry label via \glslabel, but you will have to switch on
expansion via the starred version of \glsaddkey and protect fragile commands);

no link cs) is the control sequence to use analogous to commands like \glsentrytext;

no link ucfirst cs) is the control sequence to use analogous to commands like \Glsentrytext;

(link cs) is the control sequence to use analogous to commands like \glstext;
(link ucfirst cs) is the control sequence to use analogous to commands like \Glstext;

link allcaps cs) is the control sequence to use analogous to commands like \GLStext.

The starred version of \glsaddkey switches on expansion for this key. The unstarred
version doesn’t override the current expansion setting.

Example 3 (Defining Custom Keys)

Suppose I want to define two new keys, ed and ing, that default to the entry text fol-
lowed by “ed” and “ing”, respectively. The default value will need expanding in both
cases, so I need to use the starred form:

% Define "ed" key:

\glsaddkey=*
{ed}% key
{\glsentrytext{\glslabel}ed}% default value
{\glsentryed}% command analogous to \glsentrytext
{\Glsentryed}% command analogous to \Glsentrytext
{\glsed}% command analogous to \glstext
{\Glsed}% command analogous to \Glstext
{\GLSed}% command analogous to \GLStext

% Define "ing" key:

\glsaddkey=*
{ing}% key
{\glsentrytext{\glslabel}ling}% default value
{\glsentrying}% command analogous to \glsentrytext
{\Glsentrying}% command analogous to \Glsentrytext
{\glsing}% command analogous to \glstext
{\Glsing}% command analogous to \Glstext
{\GLSing}% command analogous to \GLStext

Now I can define some entries:

% No need to override defaults for this entry:
\newglossaryentry{jump} {name={jump},description={}}

% Need to override defaults on these entries:

100

4 Defining Glossary Entries

\newglossaryentry{run} {name={run}, %
ed={ran}, %
ing={running}, %
description={}}

\newglossaryentry{waddle} {name={waddle}, %
ed={waddled}, %
ing={waddling}, %
description={}}
These entries can later be used in the document:
The dog \glsed{jump} over the duck.
The duck was \glsing{waddle} round the dog.

The dog \glsed{run} away from the duck.

For a complete document, see the sample file sample-newkeys.tex.

4.3.2 Storage Keys

A custom key that can be used for simply storing information is defined using:

\glsaddstoragekey{(key)}{(default value)}{{no link cs)}

where the arguments are as the first three arguments of \glsaddkey, described above in
Section 4.3.1.

This is essentially the same as \glsaddkey except that it doesn’t define the additional
commands. You can access or update the value of your new field using the commands
described in Section 16.3.

Example 4 (Defining Custom Storage Key (Acronyms and Initialisms))

Suppose I want to define acronyms and other forms of abbreviations, such as initialisms,
but I want them all in the same glossary and I want the acronyms on first use to be dis-
played with the short form followed by the long form in parentheses, but the opposite
way round for other forms of abbreviations. (The glossaries-extra package provides a sim-
pler way of achieving this.)

Here I can define a new key that determines whether the term is actually an acronym
rather than some other form of abbreviation. I'm going to call this key abbrtype (since
type already exists):

\glsaddstoragekey
{abbrtypel}% key/field name

101

4 Defining Glossary Entries

{word}% default value if not explicitly set
{\abbrtypel}% custom command to access the value if required

Now I can define a style that looks up the value of this new key to determine how to
display the full form:

\newacronymstyle
{mystyle}% style name
{% Use the generic display
\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentryfmt}%

}
{% Put the long form in the description

\renewcommand*{ \GenericAcronymFields} {%

description={\the\glslongtok}}%
For the full format, test the value of the "abbrtype" key.
If it's set to "word" put the short form first with
the long form in brackets.
\renewcommand*{\genacrfullformat} [2]{%
\ifglsfieldeqg{##1}{abbrtype} {word}

{$ is a proper acronym

\protect\firstacronymfont {\glsentryshort{##1}}##2\space
(\glsentrylong{##1})%

o° o° oo

}

{%$ is another form of abbreviation

\glsentrylong{##1}##2\space
(\protect\firstacronymfont{\glsentryshort {##1}})%

}

first letter upper case version:
\renewcommand+* {\Genacrfullformat} [2]{$%
\ifglsfieldeqg{##1}{abbrtype}{word}

{%$ is a proper acronym

\protect\firstacronymfont {\Glsentryshort {##1}}##2\space
(\glsentrylong{##1})%

}
{$ is another form of abbreviation
\Glsentrylong{##1}##2\space
(\protect\firstacronymfont {\glsentryshort {##1}})%

}
%

plural
\renewcommand+* {\genplacrfullformat} [2]{%
\ifglsfieldeq{##1} {abbrtype} {word}
{% is a proper acronym
\protect\firstacronymfont {\glsentryshortpl{##1}}##2\space
(\glsentrylong{##1})%
}
{%$ is another form of abbreviation
\glsentrylongpl{##1}##2\space
(\protect\firstacronymfont{\glsentryshortpl{##1}})%

102

4 Defining Glossary Entries

o\

}
1%
% plural and first letter upper case
\renewcommand+* {\Genplacrfullformat} [2]{%
\ifglsfieldeq{##1} {abbrtype} {word}
{% is a proper acronym
\protect\firstacronymfont {\Glsentryshortpl{##1}}##2\space
(\glsentrylong{##1})%
}
{$ is another form of abbreviation
\Glsentrylongpl {##1}##2\space
(\protect\firstacronymfont{\glsentryshortpl{##1}})%

}
% Just use the short form as the name part in the glossary:
\renewcommand~* {\acronymentry} [1]{$%
\acronymfont {\glsentryshort {##1}}1}%

% Sort by the short form:
renewcommandx { \acronymsort} [2] {##1}%

Just use the surrounding font for the short form:
renewcommandx { \acronymfont} [1] {##1}%

Same for first use:

\renewcommand~* {\firstacronymfont} [1] {\acronymfont {##1}}%
% Default plural suffix if the plural isn't explicitly set
\renewcommand+*{\acrpluralsuffix}{\glspluralsuffix}%

}

—~

oo~ oo

Remember that the new style needs to be set before defining any terms:

\setacronymstyle{mystyle}

Since it’s a bit confusing to use \newacronym for something that’s not technically an
acronym, let’s define a new command for initialisms:

\newcommandx* {\newinitialism} [4][]{%
\newacronym[abbrtype=initialism, #1]1{#2} {#3}{#4}%
}

Now the entries can all be defined:

\newacronym{radar} {radar}{radio detecting and ranging}
\newacronym{laser}{laser}{light amplification by stimulated
emission of radiation}

\newacronym{scuba} {scuba}{self-contained underwater breathing
apparatus}

\newinitialism{dsp}{DSP}{digital signal processing}
\newinitialism{atm}{ATM} {automated teller machine}

On first use, \gls{radar} will produce “radar (radio detecting and ranging)” but
\gls{dsp} will produce “DSP (digital signal processing)”.
For a complete document, see the sample file sample-storage-abbr.tex.

103

4 Defining Glossary Entries

In the above example, if \newglossaryentry is explicitly used (instead of through
\newacronym) the abbrtype key will be set to its default value of “word” but the
\ifglshaslong testin the custom acronym style will be false (since the 1ong key hasn’t
been set) so the display style will switch to that given by \glsgenentryfmt and they’ll
be no test performed on the abbrtype field.

Example 5 (Defining Custom Storage Key (Acronyms and Non-Acronyms with
Descriptions))

The previous example can be modified if the description also needs to be provided.
Here I've changed “word” to “acronym™:

\glsaddstoragekey
{abbrtypel}% key/field name
{acronym}% default value if not explicitly set
{\abbrtypel}% custom command to access the value if required

This may seem a little odd for non-abbreviated entries defined using \newglossaryentry
directly, but \ifglshaslong can be used to determine whether or not to reference the
value of this new abbrtype field.

The new acronym style has a minor modification that forces the user to specify a de-
scription. In the previous example, the line:

\renewcommand+* { \GenericAcronymFields} {%
description={\the\glslongtok}}%

needs to be changed to:
\renewcommandx* {\GenericAcronymFields}{}%

Additionally, to accommodate the change in the default value of the abbrtype key, all
instances of

\ifglsfieldeqg{##1}{abbrtype} {word}
need to be changed to:
\ifglsfieldeqg{##1}{abbrtype}{acronym}

Once this new style has been set, the new acronyms can be defined using the optional
argument to set the description:

\newacronym[description={system for detecting the position and
speed of aircraft, ships, etc}]l{radar}{radar}{radio detecting
and ranging}

No change is required for the definition of \newinitialism but again the optional
argument is required to set the description:

\newinitialism[description={mathematical manipulation of an
information signal}]{dsp} {DSP}{digital signal processing}

104

4 Defining Glossary Entries

We can also accommodate contractions in a similar manner to the initialisms:

\newcommandx* { \newcontraction} [4][]{%
\newacronym[abbrtype=contraction, #1] {#2} {#3}{#4}%
}

The contractions can similarly been defined using this new command:

\newcontraction[description={front part of a ship below the
deck}]{focsle}{fo'c's'le}{forecastle}

Since the custom acronym style just checks if abbrtype is acronym, the contractions
will be treated the same as the initialisms, but the style could be modified by a further test
of the abbrtype value if required.

To test regular non-abbreviated entries, I've also defined a simple word:

\newglossaryentry{apple} {name={apple},description={a fruit}}

Now for a new glossary style that provides information about the abbreviation (in addi-
tion to the description):

\newglossarystyle
{mystyle}% style name
{% base it on the "list" style
\setglossarystyle{list}%
\renewcommand*{\glossentry} [2]{%
\item[\glsentryitem{##1}%
\glstarget {##1}{\glossentryname {##1}}]
\ifglshaslong{##1}%
{ (\abbrtype{##1}: \glsentrylong{##1}) \space}{}%
\glossentrydesc{##1}\glspostdescription\space ##2}%
}

This uses \ifglshaslong to determine whether or not the term is an abbreviation. If it
has an abbreviation, the full form is supplied in parentheses and \abbrtype (defined by
\glsaddstoragekey earlier) is used to indicate the type of abbreviation.

With this style set, the apple entry is simply displayed in the glossary as

apple a fruit.
but the abbreviations are displayed in the form

laser (acronym: light amplification by stimulated emission of radiation) device that creates
a narrow beam of intense light.

(for acronyms) or

DSP (initialism: digital signal processing) mathematical manipulation of an information
signal.

(for initalisms) or

105

4 Defining Glossary Entries

fo’c’s’le (contraction: forecastle) front part of a ship below the deck.

(for contractions).
For a complete document, see sample-storage-abbr-desc.tex.

4.4 Expansion

When you define new glossary entries expansion is performed by default, except for the
name, description, descriptionplural, symbol, symbolplural and sort keys
(these keys all have expansion suppressed via \glssetnoexpandfield).

You can switch expansion on or off for individual keys using

\glssetexpandfield{(field)}

or

\glssetnoexpandfield{(field)}

respectively, where (field) is the field tag corresponding to the key. In most cases, this is the
same as the name of the key except for those listed in table 4.1.

Table 4.1: Key to Field Mappings

Key Field

sort sortvalue
firstplural firstpl
description desc
descriptionplural descplural
userl useri
user? userii
user3 useriii
user4 useriv
userb userv
usero6 uservi
longplural longpl
shortplural shortpl

Any keys that haven’t had the expansion explicitly set using \glssetexpandfield or
\glssetnoexpandfield are governed by

\glsexpandfields

and

106

4 Defining Glossary Entries

\glsnoexpandfields

If your entries contain any fragile commands, I recommend you switch off expansion
via \glsnoexpandfields. (This should be used before you define the entries.)

4.5 Sub-Entries

As from version 1.17, it is possible to specify sub-entries. These may be used to order
the glossary into categories, in which case the sub-entry will have a different name to its
parent entry, or it may be used to distinguish different definitions for the same word, in
which case the sub-entries will have the same name as the parent entry. Note that not all
glossary styles support hierarchical entries and may display all the entries in a flat format.
Of the styles that support sub-entries, some display the sub-entry’s name whilst others
don’t. Therefore you need to ensure that you use a suitable style. (See Section 15 for a list
of predefined styles.) As from version 3.0, level 1 sub-entries are automatically numbered
in the predefined styles if you use the subentrycounter package option (see Section 2.3 for
further details).

Note that the parent entry will automatically be added to the glossary if any of its child
entries are used in the document. If the parent entry is not referenced in the document, it
will not have a number list. Note also that makeindex has a restriction on the maximum
sub-entry depth.

4.5.1 Hierarchical Categories

To arrange a glossary with hierarchical categories, you need to first define the category and
then define the sub-entries using the relevant category entry as the value of the parent
key.

Example 6 (Hierarchical Categories—Greek and Roman Mathematical Symbols)

Suppose I want a glossary of mathematical symbols that are divided into Greek letters
and Roman letters. Then I can define the categories as follows:

\newglossaryentry{greekletter}{name={Greek letters},
description={\nopostdesc}}

\newglossaryentry{romanletter} {name={Roman letters},
description={\nopostdesc}}

Note that in this example, the category entries don’t need a description so I have set the
descriptions to \nopostdesc. This gives a blank description and suppresses the descrip-
tion terminator.

I can now define my sub-entries as follows:

\newglossaryentry{pi} {name={\ensuremath{\pi}}, sort={pi},
description={ratio of the circumference of a circle to

107

4 Defining Glossary Entries

the diameter},
parent=greekletter}

\newglossaryentry{C}{name={\ensuremath{C}}, sort={C},
description={Euler's constant},
parent=romanletter}

For a complete document, see the sample file sampletree.tex.

4.5.2 Homographs

Sub-entries that have the same name as the parent entry, don’t need to have the name key.
For example, the word “glossary” can mean a list of technical words or a collection of
glosses. In both cases the plural is “glossaries”. So first define the parent entry:

\newglossaryentry{glossary}{name=glossary,
description={\nopostdesc},
plural={glossaries}}

Again, the parent entry has no description, so the description terminator needs to be sup-
pressed using \nopostdesc.
Now define the two different meanings of the word:

\newglossaryentry{glossarylist}{
description={list of technical words},
sort={1},

parent={glossary}}

\newglossaryentry{glossarycol}{
description={collection of glosses},
sort={2},

parent={glossary}}

Note that if I reference the parent entry, the location will be added to the parent’s number
list, whereas if I reference any of the child entries, the location will be added to the child
entry’s number list. Note also that since the sub-entries have the same name, the sort key
is required unless you are using the sort=use or sort=def package options (see Section 2.5).
You can use the subentrycounter package option to automatically number the first-level child
entries. See Section 2.3 for further details.

In the above example, the plural form for both of the child entries is the same as the
parent entry, so the plural key was not required for the child entries. However, if the
sub-entries have different plurals, they will need to be specified. For example:

\newglossaryentry{bravo} {name={bravo},
description={\nopostdesc}}

\newglossaryentry{bravocry}{description={cry of approval

108

4 Defining Glossary Entries

(pl.\ bravos)},
sort={1},
plural={bravos},
parent=bravo}

\newglossaryentry{bravoruffian}{description={hired
ruffian or killer (pl.\ bravoes)},

sort={2},

plural={bravoes},

parent=bravo}

4.6 Loading Entries From a File

You can store all your glossary entry definitions in another file and use:

\loadglsentries[(type)] {(filename)}

where (filename) is the name of the file containing all the \newglossaryentry or
\longnewglossaryentry commands. The optional argument (type) is the name of the
glossary to which those entries should belong, for those entries where the type key has
been omitted (or, more specifically, for those entries whose type has been specified by
\glsdefaulttype, which is what \newglossaryentry uses by default).

This is a preamble-only command. You may also use \input to load the file but don’t
use \include. If you find that your file is becoming unmanageably large, you may want
to consider switching to bib2gls and use an application such as JabRef to manage the
entry definitions.

If you want to use \AtBeginDocument to \input all your entries automatically at
the start of the document, add the \AtBeginDocument command before you load the

glossaries package (and babel, if you are also loading that) to avoid the creation of the
glsdefs file and any associated problems that are caused by defining commands in
the document environment. (See Section 4.8.)

Example 7 (Loading Entries from Another File)

Suppose I have a file called myentries.tex which contains:

\newglossaryentry{perl} {type=main,
name={Perl},
description={A scripting language}}

\newglossaryentry{tex} {name={\TeX},
description={A typesetting language}, sort={TeX}}

109

4 Defining Glossary Entries

\newglossaryentry{html} {type=\glsdefaulttype,
name={html},
description={A mark up language}}

and suppose in my document preamble I use the command:
\loadglsentries[languages] {myentries}

then this will add the entries tex and html to the glossary whose type is given by
languages, but the entry perl will be added to the main glossary, since it explicitly
sets the type tomain.

Note: if you use \newacronym (see Section 13) the typeis setas t ype=\acronymtype
A unless you explicitly override it. For example, if my file myacronyms . tex contains:

\newacronym{aca}{aca}{a contrived acronym}
then (supposing I have defined a new glossary type called altacronym)

\loadglsentries[altacronym] {myacronyms}

will add aca to the glossary type acronym, if the package option acronym has been
specified, or will add aca to the glossary type altacronym, if the package option
acronym is not specified.!
If you have used the acronym package option, there are two possible solutions to this
problem:

1. Change myacronyms.tex so that entries are defined in the form:

\newacronym[type=\glsdefaulttype] {aca}{aca}{a
contrived acronym}

and do:
\loadglsentries[altacronym] {myacronyms }

2. Temporarily change \acronymtype to the target glossary:

\let\orgacronymtype\acronymtype
\renewcommand{\acronymtype}{altacronym}
\loadglsentries{myacronyms}
\let\acronymtype\orgacronymtype

1Thisisbecause\acronymtypeissetto\glsdefaulttypeiftheacronympackageoptionisnotused.

110

4 Defining Glossary Entries

Note that only those entries that have been used in the text will appear in the relevant
glossaries. Note also that \1oadglsentries may only be used in the preamble.

Remember that you can use \provideglossaryentry rather than \newglossaryentry.
Suppose you want to maintain a large database of acronyms or terms that you're likely to
use in your documents, but you may want to use a modified version of some of those
entries. (Suppose, for example, one document may require a more detailed description.)
Then if you define the entries using \provideglossaryentry in your database file, you
can override the definition by simply using \newglossaryentry before loading the file.
For example, suppose your file (called, say, terms . tex) contains:

\provideglossaryentry{mallard}{name=mallard,
description={a type of duck}}

but suppose your document requires a more detailed description, you can do:

\usepackage{glossaries}
\makeglossaries

\newglossaryentry{mallard} {name=mallard,
description={a dabbling duck where the male has a green head}}

\loadglsentries{terms}

Now the mallard definition in the terms. tex file will be ignored.

4.7 Moving Entries to Another Glossary

As from version 3.02, you can move an entry from one glossary to another using;:

\glsmoveentry{(label)}{(target glossary label)}

where (label) is the unique label identifying the required entry and (target glossary label) is
the unique label identifying the glossary in which to put the entry.

Note that no check is performed to determine the existence of the target glossary. If you
want to move an entry to a glossary that’s skipped by \printglossaries, then define
an ignored glossary with \newignoredglossary. (See Section 12.)

Unpredictable results may occur if you move an entry to a different glossary from its
parent or children.

4.8 Drawbacks With Defining Entries in the Document Environment
Originally, \newglossaryentry (and \newacronym) could only be used in the pream-

ble. I reluctantly removed this restriction in version 1.13, but there are issues with defin-
ing commands in the document environment instead of the preamble, which is why the

111

4 Defining Glossary Entries

restriction is maintained for newer commands. This restriction is also reimposed for
\newglossaryentry by the new Option 1. (The glossaries-extra package automatically
reimposes this restriction for Options 2 and 3 but provides a package option to allow doc-
ument definitions.)

4.8.1 Technical Issues

1. If you define an entry mid-way through your document, but subsequently shuffle
sections around, you could end up using an entry before it has been defined.

2. Entry information is required when displaying the glossary. If this occurs at the start
of the document, but the entries aren’t defined until later, then the entry details are
being looked up before the entry has been defined.

3. If you use a package, such as babel, that makes certain characters active at the start of
the document environment, there will be a problem if those characters have a special
significance when defining glossary entries. These characters include the double-
quote " character, the exclamation mark ! character, the question mark ? character,
and the pipe | character. They must not be active when defining a glossary entry
where they occur in the sort key (and they should be avoided in the label if they
may be active at any point in the document). Additionally, the comma , character
and the equals = character should not be active when using commands that have
(key)=(value) arguments.

To overcome the first two problems, as from version 4.0 the glossaries package modifies
the definition of \newglossaryentry at the beginning of the document environment so
that the definitions are written to an external file (\ jobnameglsdefs) which is then read
in at the start of the document on the next run. The entry will then only be defined in
the document environment if it doesn’t already exist. This means that the entry can now be
looked up in the glossary, even if the glossary occurs at the beginning of the document.

There are drawbacks to this mechanism: if you modify an entry definition, you need
a second run to see the effect of your modification; this method requires an extra
\newwrite, which may exceed TgX’s maximum allocation; unexpected expansion issues
could occur; the see key isn’t stored, which means it can’t be added to the glsdefs file
when it’s created at the end of the document (and therefore won’t be present on subsequent
runs).

The glossaries-extra package provides a setting (but only for Options 2 and 3) that al-
lows \newglossaryentry to occur in the document environment but doesn’t create the
glsdefs file. This circumvents some problems but it means that you can’t display any of
the glossaries before all the entries have been defined (so it’s all right if all the glossaries
are at the end of the document but not if any occur in the front matter).

112

4 Defining Glossary Entries

4.8.2 Good Practice Issues

The above section covers technical issues that can cause your document to have compi-
lation errors or produce incorrect output. This section focuses on good writing practice.
The main reason cited by users wanting to define entries within the document environment
rather than in the preamble is that they want to write the definition as they type in their
document text. This suggests a “stream of consciousness” style of writing that may be
acceptable in certain literary genres but is inappropriate for factual documents.

When you write technical documents, regardless of whether it’s a PhD thesis or an article
for a journal or proceedings, you must plan what you write in advance. If you plan in
advance, you should have a fairly good idea of the type of terminology that your document
will contain, so while you are planning, create a new file with all your entry definitions.
If, while you're writing your document, you remember another term you need, then you
can switch over to your definition file and add it. Most text editors have the ability to
have more than one file open at a time. The other advantage to this approach is that if you
forget the label, you can look it up in the definition file rather than searching through your
document text to find the definition.

113

5 Number lists

Each entry in the glossary has an associated number list. By default, these numbers refer to
the pages on which that entry has been indexed (using any of the commands described in
Section 6 and Section 7). The number list can be suppressed using the nonumberlist package
option, or an alternative counter can be set as the default using the counter package option.
The number list is also referred to as the location list.

Number lists are more common with indexes rather than glossaries (although you can
use the glossaries package for indexes as well). However, the glossaries package makes
use of makeindex or xindy to hierarchically sort and collate the entries since they are
readily available with most modern TgX distributions. Since these are both designed as
indexing applications they both require that terms either have a valid location or a cross-
reference. Even if you use nonumberlist, the locations must still be provided and acceptable
to the indexing application or they will cause an error during the indexing stage, which
will interrupt the document build. However, if you're not interested in the locations, each
entry only needs to be indexed once, so consider using indexonlyfirst, which can improve the
document build time by only indexing the first use of each term.

The \glsaddall command (see Section 7), which is used to automatically index all
entries, iterates over all defined entries and does \glsadd{(label)} for each entry (where
(label) is that entry’s label). This means that \glsaddall automatically adds the same
location to every entry’s number list, which looks weird if the number list hasn’t been
suppressed.

With Option 4, the indexing is performed by bib2gls, which was specifically de-
signed for the glossaries-extra package. So it will allow any location format, and its
selection=all option will select all entries without adding an unwanted location to
the number list. If bib2gls can deduce a numerical value for a location, it will attempt
to form a range over consecutive locations, otherwise it won't try to form a range and the
location will just form an individual item in the list. Option 1 also allows any location but
it doesn’t form ranges.

5.1 Encap Values

Each location in the number list is encapsulated with a command formed from the encap
value. By default this is the \glsnumberformat command, which corresponds to the en-
cap glsnumberformat, but this may be overridden using the format key in the optional
argument to commands like \gls. (See Section 6.) For example, you may want the loca-
tion to appear in bold to indicate the principle use of a term or symbol. If the encap starts
with an open parenthesis (this signifies the start of a range and if the encap starts with

114

5 Number lists

close parenthesis) this signifies the end of a range. These must always occur in matching
pairs.

The glossaries package provides the command \glsignore which ignores its argument.
This is the format used by \glsaddallunused to suppress the location, which works
fine as long as no other locations are added to the number list. For example, if you use
\gls{sample} on page 2 then reset the first use flag and then use \glsaddallunused
on page 10, the number list for sample willbe 2, \glsignore{10} which will result in
“2,” which has a spurious comma.

This isn’t a problem with bib2gls because you'd use selection=all instead of
\glsaddallunused, butevenif you explicitly had, for example, \gls [format=glsignore]
{ (label) } for some reason, bib2gls will recognise glsignore as a special encap indicat-
ing an ignored location, so it will select the entry but not add that location to the number
list. It's a problem for all the other options (except Option 5, which doesn’t perform any
indexing).

Complications can arise if you use different encap values for the same location. For
example, suppose on page 10 you have both the default gl snumberformat and textbf
encaps. While it may seem apparent that textbf should override glsnumberformat in
this situation, the indexing application may not know it. This is therefore something you
need to be careful about if you use the format key or if you use a command that implicitly
sets it.

In the case of xindy, it only accepts one encap (according to the order of precedence
given in the xindy module) and discards the others for identical locations (for the same
entry). This can cause a problem if a discarded location forms the start or end of a range.

In the case of makeindex, it accepts different encaps for the same location, but warns
about it. This leads to a number list with the same location repeated in different formats. If
you use the makeglossaries Perl script with Option 2 it will detect makeindex’s warn-
ing and attempt to fix the problem, ensuring that the glsnumberformat encap always
has the least precedence unless it includes a range identifier. Other conflicting encaps will
have the last one override earlier ones for the same location with range identifiers taking
priority.

No discard occurs with Option 1 so again you get the same location repeated in different
formats. With Option 4, bib2gls will discard according to order of precedence, giving
priority to start and end range encaps. (See the bib2gls manual for further details.)

5.2 Locations

Neither Option 1 nor Option 4 care about the location syntax as long as it’s valid I£TEX
code (and doesn’t contain fragile commands). In both cases, the indexing is performed
by writing a line to the aux file. The write operation is deferred to avoid the problems
associated with TeX’s asynchronous output routine. (See, for example, Finding if you're on
an odd or an even page for more details on this issue.) Unfortunately Options 2 and 3 are
far more problematic and need some complex code to deal with awkward locations.

115

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=oddpage
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=oddpage

5 Number lists

If you know that your locations will always expand to a format acceptable to your cho-
sen indexing application then use the package option esclocations=false to bypass this oper-
ation. This setting only affects Options 2 and 3 as the problem doesn’t arise with the other
indexing options.

Both makeindex and xindy are fussy about the syntax of the locations. In the case
of makeindex, only the numbering system obtained with \arabic, \roman, \Roman,
\alph and \Alph or composites formed from them with the same separator (set with
\glsSetCompositor{(char)}) are accepted. (makeindex won't accept an empty loca-
tion.) In the case of xindy, you can define your own location classes, but if the location
contains a robust command then the leading backslash must be escaped. The glossaries
package tries to do this, but it’s caught between two conflicting requirements:

1. The location must be fully expanded before \ can be converted to \\ (there’s no point
converting \thepage to \\thepage);

2. The page number can’t be expanded until the deferred write operation (so \c@page
mustn’t expand in the previous step but \the\c@page mustn’t be converted to
\\the\\c@page and \number\clpage mustn’t be converted to \ \number\\c@page
etc).

There’s a certain amount of trickery needed to deal with this conflict and the code requires
the location to be in a form that doesn’t embed the counter’s internal register in commands
like \value. For example, suppose you have a robust command called \tallynum that
takes a number as the argument and an expandable command called \tally that converts
a counter name into the associated register or number to pass to \tallynum. Let’s suppose
that this command is used to represent the page number:

\renewcommand{\thepage}{\tally{page}}

Now let’s suppose that a term is indexed at the beginning of page 2 at the end of a para-
graph that started on page 1. With xindy, the location \tally{page} needs to be written
to the fileas \\tallynum{2}. If it's written as \tallynum{2} then xindy will interpret
\t as the character “t” (which means the location would appear as “tallynum2”). So glos-
saries tries to expand \thepage without expanding \c@page and then escapes all the
backslashes, except for the page counter’s internal command. The following definitions of
\tally will work:

¢ Inthe following, \arabic works as its internal command \c@arabic is temporarily
redefined to check for \c@page:

\newcommand{\tally} [1]{\tallynum{\arabic{#1}}}

* The form \expandafter\the\csname c@(counter)\endcsname also works (pro-
vided \the is allowed to be temporarily redefined, see below):

\newcommand{\tally}[1]{%
\tallynum{\expandafter\the\csname c@#1l\endcsname}}

116

5 Number lists

* \expandafter\the\value{ (counter)} now also works (with the same condition
as above):

\newcommand{\tally}[1]{\tallynum{\expandafter\the\value{#1}}}
¢ Another variation that will work:

\newcommand{\tally}[1]{%
\expandafter\tallynum\expandafter{\the\csname c@#1l\endcsname}}

¢ and also:
\newcommand{\tally}[1l]{\tallynum{\the\csname c@#l\endcsname}}

The following don't work:

¢ This definition leads to the premature expansion of \c@page to “1” when, in this
case, it should be “2”:

\newcommand{\tally}[1l]{\tallynum{\the\value{#1}}}
¢ This definition leads to \ \c@page in the glossary file:
\newcommand{\tally}[1l]{\tallynum{\csname c@#l\endcsname}}

If you have a numbering system where \(cs name){page} expands to \(internal cs
name)\c@page (for example, if \tally{page} expands to \tallynum\c@page) then
you need to use:

\glsaddprotectedpagefmt { <internal cs name) }

Note that the backslash must be omitted from (internal cs name) and the corresponding
command must be able to process a count register as the (sole) argument.
For example, suppose you have a style samplenum that is implemented as follows:

\newcommand~*{\samplenum} [1]{%
\expandafter\@samplenum\csname c@#1\endcsname}
\newcommandx* { \@samplenum} [1] {\two@digits{#1}}

(That is, it displays the value of the counter as a two-digit number.) Then to ensure the
location is correct for entries in page-spanning paragraphs, you need to do:

\glsaddprotectedpagefmt {@samplenum}

(If you are using a different counter for the location, such as section or equation, you
don’t need to worry about this provided the inner command is expandable.)

If the inner macro (as given by \ (internal cs name)) contains non-expandable commands
then you may need to redefine \g1s(internal cs name)page after using

117

5 Number lists

\glsaddprotectedpagefmt{<internal cs name)}

This command doesn’t take any arguments as the location is assumed to be given by \ c@page
because that’s the only occasion this command should be used. For example, suppose now
my page counter format uses small caps Roman numerals:

\newcommandx* { \samplenum} [1]{%
\expandafter\@samplenum\csname c@#1l\endcsname}
\newcommand* {\@samplenum} [1] {\textsc{\romannumeral#l}}

Again, the inner macro needs to be identified using:
\glsaddprotectedpagefmt {@samplenum}

However, since \textsc isn’t fully expandable, the location is written to the file as
\textsc {i} (for page 1), \textsc {ii} (for page 2), etc. This format may cause
a problem for the indexing application (particularly for makeindex). To compensate for
this, the \gls(internal cs name)page command may be redefined so that it expands to a
format that’s acceptable to the indexing application. For example:

\renewcommandx {\gls@samplenumpage} { \romannumeral\c@page}

While this modification means that the number list in the glossary won’t exactly match
the format of the page numbers (displaying lower case Roman numbers instead of small
cap Roman numerals) this method will at least work correctly for both makeindex and
xindy. If you are using xindy, the following definition:

\renewcommand*{\gls@samplenumpage} {%
\glsbackslash\string\textsc{\romannumeral\c@page}}

combined with

\GlsAddXdyLocation{romansc}{:sep "\string\textsc\glsopenbrace"
"roman-numbers-lowercase" :sep "\glsclosebrace"}

will now have lowercase Roman numerals in the location list (see Section 11.2 for fur-
ther details on that command). Take care of the backslashes. The location (which
ends up in the :locref attribute) needs \\ but the location class (identified with
\GlsAddXdyLocation) just has a single backslash. Note that this example will cause
problems if your locations should be hyperlinks.

Another possibility that may work with both makeindex and xindy is to redefine
\gls(internal cs name)page (\gls@samplenumpage in this example) to just expand to the
decimal page number (\number\c@page) and redefine \glsnumberformat to change
the displayed format:

\renewcommandx {\gls@samplenumpage} { \number\c@page}
\renewcommand=* { \glsnumberformat} [1] {\textsc{\romannumeral#l}}

118

5 Number lists

If you redefine \gls/(internal cs name)page, you must make sure that \c@page is ex-

panded when it’s written to the file. (So don’t, for example, hide \c@page inside a
robust command.)

The mechanism that allows this to work temporarily redefines \the and \number while
it processes the location. If this causes a problem you can disallow it using

\glswrallowprimitivemodsfalse

but you will need to find some other way to ensure the location expands correctly.

5.3 Range Formations

Both makeindex and xindy (Options 2 and 3) concatenate a sequence of 3 or more con-
secutive pages into a range. With xindy (Option 3) you can vary the minimum sequence
length using \GlsSetxdyMinRangeLength{(n)} where (n) is either an integer or the
keyword none which indicates that there should be no range formation (see Section 11.2
for further details).

Note that \GlsSetXdyMinRangeLength must be used before \makeglossaries
and has no effect if \noist is used.

With both makeindex and xindy (Options 2 and 3), you can replace the separator and
the closing number in the range using:

\glsSetSuffixF{(suffix)}

\glsSetSuffixFF{(suffix)}

where the former command specifies the suffix to use for a 2 page list and the latter speci-
ties the suffix to use for longer lists. For example:

\glsSetSuffixF{f.}
\glsSetSuffixFF{ff.}

Note that if you use xindy (Option 3), you will also need to set the minimum range length
to 1 if you want to change these suffixes:

\GlsSetXdyMinRangeLength{1l}

Note that if you use the hyperref package, you will need to use \nohyperpage in the suffix
to ensure that the hyperlinks work correctly. For example:

\glsSetSuffixF{\nohyperpage{f.}}
\glsSetSuffixFF {\nohyperpage{ff.}}

119

5 Number lists

Note that \glsSetSuffixF and \glsSetSuffixFF must be used before
\makeglossaries and have no effect if \noist is used.

It’s also possible to concatenate a sequence of consecutive locations into a range or have
suffixes with Option 4, but with bib2gls these implicit ranges can’t be merged with ex-
plicit ranges (created with the (and) encaps). See the bib2gls manual for further details.

Option 1 doesn’t form ranges. However, with this option you can iterate over an entry’s
number list using:

\glsnumberlistloop{{label)}{(handler cs)}{(xr handler cs)}

where (label) is the entry’s label and (handler cs) is a handler control sequence of the form:

(handler cs){{(prefix)}{{counter)}{{(format)}{(location)}

where (prefix) is the hyperref prefix, (counter) is the name of the counter used for the loca-
tion, (format) is the format used to display the location (e.g. textbf) and (location) is the
location. The third argument is the control sequence to use for any cross-references in the
list. This handler should have the syntax:

(xr handler cs)[(tag)]{(xr list)}

where (tag) is the cross-referenced text (e.g. “see”) and (xr list) is a comma-separated list of
labels. (This actually has a third argument but it’s always empty when used with Option 1.)
For example, if on page 12 I have used

\gls[format=textbf] {apple}

and on page 18 I have used
\gls[format=emph] {apple}

then
\glsnumberlistloop{apple}{\myhandler}
will be equivalent to:

\myhandler{} {page} {textbf}{12}%
\myhandler{}{page} {emph}{18}%

There is a predefined handler that’s used to display the number list in the glossary:

\glsnoidxdisplayloc{{prefix)}{(counter)}{{format)}{{(location)}

The predefined handler used for the cross-references in the glossary is:

120

5 Number lists

\glsseeformat [(tag)] {{xr list)}{(location)}

which is described in Section 8.1.

\glsnumberlistloop is not available for Options 2 and 3.

5.4 Style Hook

As from version 4.24, there’s a hook that’s used near the end of \writeist before the file
is closed. You can set the code to be performed then using;:

\GlsSetWriteIstHook{{code)}

If you want the (code) to write any information to the file, you need to use

\write\glswrite{(style information)}

Make sure you use the correct format within (style information). For example, if you are
using makeindex:

\GlsSetWriteIstHook{%
\write\glswrite{page_precedence "arnAR"}%
\write\glswrite{line_max 80}%

}

This changes the page type precedence and the maximum line length used by makeindex.
Remember that if you switch to xindy, this will no longer be valid code.

121

6 Links to Glossary Entries

Once you have defined a glossary entry using \newglossaryentry (Section 4) or
\newacronym (see Section 13), you can refer to that entry in the document using one
of the commands listed in Section 6.1 or Section 6.2. The text which appears at that point
in the document when using one of these commands is referred to as the link text (even if
there are no hyperlinks). These commands also add a line to an external file that is used
to generate the relevant entry in the glossary. This information includes an associated lo-
cation that is added to the number list for that entry. By default, the location refers to the
page number. For further information on number lists, see Section 5. These external files
need to be post-processed by makeindex or xindy unless you have chosen Options 1 or 4.
If you don’t use \makeglossaries these external files won’t be created. (Options 1 and 4
write the information to the aux file.)

Note that repeated use of these commands for the same entry can cause the number list
to become quite long, which may not be particular helpful to the reader. In this case, you
can use the non-indexing commands described in Section 9 or you can use the supplemen-
tal glossaries-extra package, which provides a means to suppress the automated indexing of
the commands listed in this chapter.

I strongly recommend that you don’t use the commands defined in this chapter in the
arguments of sectioning or caption commands or any other command that has a moving
argument.

Aside from problems with expansion issues, PDF bookmarks and possible nested hy-
perlinks in the table of contents (or list of whatever) any use of the commands described
in Section 6.1 will have their first use flag unset when they appear in the table of contents
(or list of whatever).

The above warning is particularly important if you are using the glossaries package in
conjunction with the hyperref package. Instead, use one of the expandable commands listed
in Section 9 (such as \glsentrytext but not the non-expandable case changing versions
like \Glsentrytext). Alternatively, provide an alternative via the optional argument to
the sectioning/caption command or use hyperref's \texorpdfstring. Examples:

\chapter{An overview of \glsentrytext{perl}}
\chapter [An overview of Perl]{An overview of \gls{perl}}
\chapter{An overview of \texorpdfstring{\gls{perl}}{Perl}}

If you want to retain the formatting that’s available through commands like \acrshort
(for example, if you are using one of the small caps styles), then you might want to consider
the glossaries-extra package which provides commands for this purpose.

122

6 Links to Glossary Entries

If you want the link text to produce a hyperlink to the corresponding entry details in the
glossary, you should load the hyperref package before the glossaries package. That’s what
I've done in this document, so if you see a hyperlinked term, such as link text, you can
click on the word or phrase and it will take you to a brief description in this document’s
glossary.

If you use the hyperref package, I strongly recommend you use pdflatex rather than
latex to compile your document, if possible. The DVI format of IXTEX has limitations
with the hyperlinks that can cause a problem when used with the glossaries package.
Firstly, the DVI format can’t break a hyperlink across a line whereas PDFITEX can. This
means that long glossary entries (for example, the full form of an acronym) won’t be able

to break across a line with the DVI format. Secondly, the DVI format doesn’t correctly
size hyperlinks in subscripts or superscripts. This means that if you define a term that
may be used as a subscript or superscript, if you use the DVI format, it won’t come out
the correct size.

These are limitations of the DVI format not of the glossaries package.

It may be that you only want terms in certain glossaries to have hyperlinks, but not for
other glossaries. In this case, you can use the package option nohypertypes to identify the
glossary lists that shouldn’t have hyperlinked link text. See Section 2.1 for further details.

The way the link text is displayed depends on

\glstextformat {(text)}

For example, to make all link text appear in a sans-serif font, do:

\renewcommandx* {\glstextformat} [1] {\textsf{#1}}

Further customisation can be done via \defglsentryfmt or by redefining \glsentryfmt.
See Section 6.3 for further details.

Each entry has an associated conditional referred to as the first use flag. Some of the
commands described in this chapter automatically unset this flag and can also use it to
determine what text should be displayed. These types of commands are the \gls-like
commands and are described in Section 6.1. The commands that don’t reference or change
the first use flag are \glstext-like commands and are described in Section 6.2. See Sec-
tion 14 for commands that unset (mark the entry as having been used) or reset (mark the
entry as not used) the first use flag without referencing the entries.

The \gls-like and \glstext-like commands all take a first optional argument that is
a comma-separated list of (key)=(value) options, described below. They also have a star-
variant, which inserts hyper=false at the start of the list of options and a plus-variant,
which inserts hyper=t rue at the start of the list of options. For example \glsx { sample}
is the same as \gls[hyper=false] {sample} and \gls+{sample} is the same as
\gls[hyper=true] {sample}, whereas just \gls{sample} will use the default hy-
perlink setting which depends on a number of factors (such as whether the entry is in a

123

6 Links to Glossary Entries

glossary that has been identified in the nohypertypes list). You can override the hyper key
in the variant’s optional argument, for example, \gls«* [hyper=true] { sample} but this
creates redundancy and is best avoided. The glossaries-extra package provides the option
to add a third custom variant.

Avoid nesting these commands. For example don’t do \glslink{(label)} {\gls
{(label2)}} as this is likely to cause problems. By implication, this means that you

should avoid using any of these commands within the text, first, short or long
keys (or their plural equivalent) or any other key that you plan to access through these
commands. (For example, the symbol key if you intend to use \glssymbol.)

The keys listed below are available for the optional argument. The glossaries-extra pack-
age provides additional keys. (See the glossaries-extra manual for further details.)

hyper This is a boolean key which can be used to enable/disable the hyperlink to the rel-
evant entry in the glossary. If this key is omitted, the value is determined by current
settings, as indicated above. For example, when used with a \gls-like command,
if this is the first use and the hyperfirst=false package option has been used, then the
default value is hyper=false. The hyperlink can be forced on using hyper=true
unless the hyperlinks have been suppressed using \glsdisablehyper. You must
load the hyperref package before the glossaries package to ensure the hyperlinks work.

format This specifies how to format the associated location number for this entry in the
glossary. This value is equivalent to the makeindex encap value, and (as with
\index) the value needs to be the name of a command without the initial back-
slash. As with \index, the characters (and) can also be used to specify the be-
ginning and ending of a number range and they must be in matching pairs. (For
example, \gls[format={ (}] {sample} on one page to start the range and later
\gls[format={) }] {sample} to close the range.) Again as with \ index, the com-
mand should be the name of a command which takes an argument (which will be the
associated location). Be careful not to use a declaration (such as bfseries) instead
of a text block command (such as textbf) as the effect is not guaranteed to be lo-
calised. If you want to apply more than one style to a given entry (e.g. bold and italic)
you will need to create a command that applies both formats, e.g.

\newcommandx { \textbfem} [1] {\textbf{\emph{#1}}}

and use that command.

In this document, the standard formats refer to the standard text block commands
such as \textbf or \emph or any of the commands listed in table 6.1. You can
combine a range and format using ((format) to start the range and) (format) to
end the range. The (format) part must match. For example, format={ (emph} and
format={)emph}.

124

6 Links to Glossary Entries

If you use xindy instead of makeindex, you must specify any non-standard for-
mats that you want to use with the format key using \GlsAddXdyAttribute
{ (name)}. So if you use xindy with the above example, you would need to add:

\GlsAddXdyAttribute{textbfem}

See Section 11 for further details.

If you are using hyperlinks and you want to change the font of the hyperlinked loca-
tion, don’t use \hyperpage (provided by the hyperref package) as the locations may
not refer to a page number. Instead, the glossaries package provides number formats
listed in table 6.1. These commands are designed to work with the particular location
formats created by makeindex and xindy and shouldn’t be used in other contexts.

Table 6.1: Predefined Hyperlinked Location Formats

hyperrm serif hyperlink

hypersf sans-serif hyperlink
hypertt monospaced hyperlink
hyperbf bold hyperlink

hypermd medium weight hyperlink
hyperit italic hyperlink

hypersl slanted hyperlink
hyperup upright hyperlink
hypersc small caps hyperlink
hyperemph emphasized hyperlink

Note that if the \hyperlink command hasn’t been defined, the hyper(xx) formats
are equivalent to the analogous text (xx) font commands (and hyperemph is equiv-
alent to emph). If you want to make a new format, you will need to define a command
which takes one argument and use that. For example, if you want the location num-
ber to be in a bold sans-serif font, you can define a command called, say, \hyperbs f:

\newcommand{\hyperbsf} [1] {\textbf{\hypersf{#1}}}

and then use hyperbsf as the value for the format key.1

When defining a custom location format command that uses one of the
\hyper(xx) commands, make sure that the argument of \hyper(xx) is just

the location. Any formatting must be outside of \hyper(xx) (as in the above
\hyperbfsf example).

ISee also section 1.16 “Displaying the glossary” in the documented code, glossaries-code.pdf.

125

6 Links to Glossary Entries

Remember that if you use xindy, you will need to add this to the list of location
attributes:

\GlsAddXdyAttribute{hyperbsf}

counter This specifies which counter to use for this location. This overrides the default
counter used by this entry. (See also Section 5.)

local Thisis a boolean key that only makes a difference when used with \ g1s-like com-
mands that change the entry’s first use flag. If local=true, the change to the first
use flag will be localised to the current scope. The defaultis local=false.

noindex This is a boolean key that suppresses the indexing. Only available with
glossaries-extra.

hyperoutside This is a boolean key that determines whether to put the hyperlink out-
side of \glstextformat. Only available with glossaries-extra.

wrgloss This key determines whether to index before (wrgloss=before) or after
(wrgloss=after) the link text. Only available with glossaries-extra.

textformat This key identifies the name of the control sequence to encapsulate the link
text instead of the default \glstextformat. Only available with glossaries-extra.

prefix This key locally redefines \glolinkprefix to the given value. Only available
with glossaries-extra.

thevalue This key explicitly sets the location. Only available with glossaries-extra.

theHvalue This key explicitly sets the hyperlink location. Only available with glossaries-
extra.

The link text isn’t scoped by default with just the base glossaries package. Any unscoped
declarations in the link text may affect subsequent text.

6.1 The \gls-Like Commands (First Use Flag Queried)

This section describes the commands that unset (mark as used) the first use flag on comple-
tion, and in most cases they use the current state of the flag to determine the text to be dis-
played. As described above, these commands all have a star-variant (hyper=false) and
a plus-variant (hyper=true) and have an optional first argument that is a (key)=(value)
list. These commands use \glsentryfmt or the equivalent definition provided by
\defglsentryfmt to determine the automatically generated text and its format (see Sec-
tion 6.3).

126

6 Links to Glossary Entries

Apart from \glsdisp, the commands described in this section also have a final optional
argument (insert) which may be used to insert material into the automatically generated
text.

Since the commands have a final optional argument, take care if you actually want to
display an open square bracket after the command when the final optional argument is
absent. Insert an empty set of braces { } immediately before the opening square bracket
to prevent it from being interpreted as the final argument. For example:

\gls{sample} {}[Editor's comment]

Don't use any of the \ gls-like or \glstext-like commands in the (insert) argument.

Take care using these commands within commands or environments that are processed
multiple times as this can confuse the first use flag query and state change. This includes
frames with overlays in beamer and the tabularx environment provided by tabularx. The glos-
saries package automatically deals with this issue in amsmath’s align environment. You can
apply a patch to tabularx by placing the following command (new to v4.28) in the preamble:

\glspatchtabularx

This does nothing if tabularx hasn’t been loaded. There’s no patch available for beamer. See
Section 14 for more details.

\gls[{options)]{(label)} [(insert)]

This command typically determines the link text from the values of the text or first
keys supplied when the entry was defined using \newglossaryentry. However, if the
entry was defined using \newacronymand \setacronymstyle was used, then the link
text will usually be determined from the 1ong or short keys.

There are two upper case variants:

\Gls[{options)]{(label)} [{insert)]

and

\GLS [{options)] {{label)} [{insert)]

which make the first letter of the link text or all the link text upper case, respectively. For
the former, the uppercasing of the first letter is performed by \makefirstuc.

The first letter uppercasing command \makefirstuc has limitations which must be
taken into account if you use \G1s or any of the other commands that convert the first

letter to uppercase.

127

6 Links to Glossary Entries

The upper casing is performed as follows:

¢ If the first thing in the link text is a command follow by a group, the upper casing is
performed on the first object of the group. For example, if an entry has been defined
as

\newglossaryentry{sample} {
name={\emph{sample} phrase},
sort={sample phrase},
description={an example}}

Then \Gls {sample} will set the link text to”

\emph { \MakeUppercase sample} phrase

which will appear as Sample phrase.

e If the first thing in the link text isn’t a command or is a command but isn’t followed
by a group, then the upper casing will be performed on that first thing. For example,
if an entry has been defined as:

\newglossaryentry{sample} {
name={\oe-ligature},
sort={oe-ligature},
description={an example}

}
Then \Gls{sample} will set the link text to
\MakeUppercase \oe-ligature

which will appear as (E-ligature.

¢ If you have mfirstuc v2.01 or above, an extra case is added. If the first thing is
\protect it will be discarded and the above rules will then be tried.

(Note the use of the sort key in the above examples.)

There are hundreds of IETEX packages that altogether define thousands of commands
with various syntax and it’s impossible for mfirstuc to take them all into account. The above
rules are quite simplistic and are designed for link text that starts with a text-block com-
mand (such as \emph) or a command that produces a character (such as \oe). This means
that if your link text starts with something that doesn’t adhere to mfirstuc’s assumptions
then things are likely to go wrong.

For example, starting with a math-shift symbol:

2I've used \MakeUppercase in all the examples for clarity, but it will actually use
\mfirstucMakeUppercase.

128

6 Links to Glossary Entries

\newglossaryentry{sample} {
name={$as},
sort={a},
description={an example}

}
This falls into case 2 above, so the link text will be set to
\MakeUppercase a

This attempts to uppercase the math-shift $, which will go wrong. In this case it’s not
appropriate to perform any case-changing, but it may be that you want to use \G1s pro-
grammatically without checking if the text contains any maths. In this case, the simplest
solution is to insert an empty brace at the start:

\newglossaryentry{sample}{
name={{}a},
sort={a},
description={an example}

}
Now the link text will be set to
\MakeUppercase{}Sa

and the \uppercase becomes harmless.

Another issue occurs when the link text starts with a command followed by an argument
(case 1) but the argument is a label, identifier or something else that shouldn’t have a
case-change. A common example is when the link text starts with one of the commands
described in this chapter. (But you haven’t done that, have you? What with the warning
not to do it at the beginning of the chapter.) Or when the link text starts with one of the
non-linking commands described in Section 9. For example:

\newglossaryentry{sample} {name={sample},description={an example}}
\newglossaryentry{sample2}{

name={\glsentrytext{sample} two},

sort={sample two},

description={another example}

}
Now the link text will be set to:
\glsentrytext {\MakeUppercase sample} two

This will generate an error because there’s no entry with the label “\MakeUppercase
sample”. The best solution here is to write the term out in the text field and use the
command in the name field. If you don’t use \glsname anywhere in your document, you
can use \gls in the name field:

\newglossaryentry{sample} {name={sample},description={an example}}

129

6 Links to Glossary Entries

\newglossaryentry{sample2} {
name={\gls{sample} two},
sort={sample two},
text={sample two},
description={another example}

}

If the link text starts with a command that has an optional argument or with multiple
arguments where the actual text isn’t in the first argument, then \makefirstuc will also
fail. For example:

\newglossaryentry{sample} {
name={\textcolor{blue} {sample} phrase},
sort={sample phrase},
description={an example}}

Now the link text will be set to:
\textcolor{\MakeUppercase blue}{sample} phrase

This won’t work because \MakeUppercase blue isn’t a recognised colour name. In this
case you will have to define a helper command where the first argument is the text. For
example:

\newglossaryentry{sample}{
\newcommandx* {\blue} [1] {\textcolor{blue} {#1}}
name={\blue{sample} phrase},

sort={sample phrase},

description={an example}}

In fact, since the whole design ethos of ETEX is the separation of content and style, it’s
better to use a semantic command. For example:

\newglossaryentry{sample} {

\newcommand=* { \keyword} [1] {\textcolor{blue} {#1}}
name={\keyword{sample} phrase},

sort={sample phrase},

description={an example}}

For further details see the mfirstuc user manual.
There are plural forms that are analogous to \gls:

\glspl[{options)] {{label)}[{insert)]

\Glspl[{options)]{(label)}[{insert)]

\GLSpl[{options)]{({label)} [{insert)]

These typically determine the link text from the plural or firstplural keys supplied

130

6 Links to Glossary Entries

when the entry was defined using \newglossaryentry or, if the entry is an abbreviation
and \setacronymstyle was used, from the longplural or shortplural keys.

Be careful when you use glossary entries in math mode especially if you are using hy-
perref as it can affect the spacing of subscripts and superscripts. For example, suppose
you have defined the following entry:

\newglossaryentry{Falpha} {name={F_\alpha},
description=sample}

and later you use it in math mode:
$\gls{Falpha}"2$

This will result in F,? instead of F2. In this situation it’s best to bring the superscript into
the hyperlink using the final (insert) optional argument:

S\gls{Falpha}["2]$

\glsdisp[{options)] {{label)}{{link text)}

This behaves in the same way as the above commands, except that the (link text) is explic-
itly set. There’s no final optional argument as any inserted material can be added to the
(link text) argument.

Don’t use any of the \gls-like or \glstext-like commands in the (link text) argument

of \glsdisp.

6.2 The \glstext-Like Commands (First Use Flag Not Queried)

This section describes the commands that don’t change or reference the first use flag. As
described above, these commands all have a star-variant (hyper=false) and a plus-
variant (hyper=true) and have an optional first argument that is a (key)=(value) list.
These commands also don’t use \glsentryfmt or the equivalent definition provided
by \defglsentryfmt (see Section 6.3). Additional commands for abbreviations are de-
scribed in Section 13.

Apart from \glslink, the commands described in this section also have a final optional
argument (insert) which may be used to insert material into the automatically generated
text. See the caveat above in Section 6.1.

\glslink[{options)]{{label)}{(link text)}

This command explicitly sets the link text as given in the final argument.

131

6 Links to Glossary Entries

Don’t use any of the \gls-like or \glstext-like commands in the argument of

\glslink. By extension, this means that you can’t use them in the value of fields
that are used to form link text.

\glstext [(options)] {(label)} [{insert)]

This command always uses the value of the text key as the link text.
There are also analogous commands:

\Glstext [{options)] {{text)} [{insert)]

\GLStext [{options)] {{text)} [{insert)]

These convert the first character or all the characters to uppercase, respectively. See the
note on \G1ls above for details on the limitations of converting the first letter to upper
case.

There’s no equivalent command for title-casing, but you can use the more generic com-
mand \glsentrytitlecase in combination with \glslink. For example:

\glslink{sample} {\glsentrytitlecase{sample}{text}}

(See Section 9.)

\glsfirst[(options)]{(label)} [(insert)]

This command always uses the value of the first key as the link text.
There are also analogous uppercasing commands:

\Glsfirst [(options)] {(text)} [(insert)]

\GLSfirst [(options)] {(text)} [(insert)]

The value of the first key (and firstplural key) doesn’t necessarily match the
text produced by \gls (or \glspl) on first use as the link text used by \gls may be
modified through commands like \defglsentry. (Similarly, the value of the text

and plural keys don’t necessarily match the link text used by \gls or \glspl on
subsequent use.)

132

6 Links to Glossary Entries

\glsplural[{(options)] {{label)} [{(insert)]

This command always uses the value of the plural key as the link text.
There are also analogous uppercasing commands:

\Glsplural[{(options)] {(text)} [{insert)]

\GLSplural [(options)] {(text)} [{insert)]

\glsfirstplural[{options)]{(label)}[(insert)]

This command always uses the value of the firstplural key as the link text.
There are also analogous uppercasing commands:

\Glsfirstplural[{options)]{(text)} [(insert)]

\GLSfirstplural [{options)]{(text)} [(insert)]

\glsname [(options)] {(label)} [{insert)]

This command always uses the value of the name key as the link text. Note that this may be
different from the values of the text or first keys. In general it’s better to use \glstext
or \glsfirst instead of \glsname.

There are also analogous uppercasing commands:

\Glsname [(options)] {{text)} [{insert)]

\GLSname [(options)] {{text)} [{insert)]

In general it’s best to avoid \Glsname with acronyms. Instead, consider using
\Acrlong, \Acrshort or \Acrfull.

\glssymbol [(options)] {{label)} [{insert)]

This command always uses the value of the symbo1l key as the link text.

133

6 Links to Glossary Entries

There are also analogous uppercasing commands:

\Glssymbol [(options)] {(text)} [(insert)]

\GLSsymbol [(options)] {(text)} [{insert)]

\glsdesc[{options)] {(label)} [{insert)]

This command always uses the value of the description key as the link text.
There are also analogous uppercasing commands:

\Glsdesc[{options)] {{text)} [{insert)]

\GLSdesc[{options)] {{text)} [{insert)]

If you want the title case version you can use

\glslink{sample} {\glsentrytitlecase{sample}{desc}}

\glsuseri[(options)] {(label)} [{insert)]

This command always uses the value of the user1 key as the link text.
There are also analogous uppercasing commands:

\Glsuseri[(options)] {(text)} [{insert)]

\GLSuseri [(options)] {(text)} [{insert)]

\glsuserii[(options)]{(text)}[(insert)]

This command always uses the value of the user2 key as the link text.
There are also analogous uppercasing commands:

134

6 Links to Glossary Entries

\Glsuserii[(options)]{(text)}[{insert)]

\GLSuserii[(options)] {(text)} [{insert)]

\glsuseriii[(options)]{(text)}[(insert)]

This command always uses the value of the user3 key as the link text.
There are also analogous uppercasing commands:

\Glsuseriii[(options)]{(text)}[{insert)]

\GLSuseriii[(options)]{(text)}[{insert)]

\glsuseriv[(options)] {(text)} [(insert)]

This command always uses the value of the user4 key as the link text.
There are also analogous uppercasing commands:

\Glsuseriv[(options)] {(text)} [{(insert)]

\GLSuseriv[(options)] {(text)} [{insert)]

\glsuserv[(options)] {(text)} [{insert)]

This command always uses the value of the user5 key as the link text.
There are also analogous uppercasing commands:

\Glsuserv[(options)] {(text)} [{insert)]

\GLSuserv[(options)] {(text)} [{insert)]

\glsuservi[(options)] {(text)} [(insert)]

This command always uses the value of the user6 key as the link text.

135

6 Links to Glossary Entries

There are also analogous uppercasing commands:

\Glsuservi[(options)] {(text)} [(insert)]

\GLSuservi [(options)] {(text)} [{insert)]

6.3 Changing the format of the link text

glossaries-extra.sty The glossaries-extra package provides ways of altering the format according to the cate-
gory. See the glossaries-extra manual for further details.

The default format of the link text for the \ g1s-like commands is governed by®:

\glsentryfmt

This may be redefined but if you only want the change the display style for a given glos-
sary, then you need to use

\defglsentryfmt [(type)] {{definition)}

instead of redefining \glsentryfmt. The optional first argument (type) is the glossary
type. This defaults to \glsdefaulttype if omitted. The second argument is the entry
format definition.

Note that \glsentryfmt is the default display format for entries. Once the dis-
play format has been changed for an individual glossary using \defglsentryfmt,
redefining \glsentryfmt won’t have an effect on that glossary, you must in-
stead use \defglsentryfmt again. Note that glossaries that have been iden-

tified as lists of acronyms (via the package option acronymlists or the command
\DeclareAcronymList, see Section 2.7) use \defglsentryfmt to set their display

style.

Within the (definition) argument of \defglsentryfmt, or if you want to redefine
\glsentryfmt, you may use the following commands:

3\glsdisplayfirst and \glsdisplay are now deprecated. Backwards compatibility should be pre-
served but you may need to use the compatible-3.07 option

136

6 Links to Glossary Entries

\glslabel

This is the label of the entry being referenced. As from version 4.08, you can also access
the glossary entry type using;:

\glstype

This is defined using \edef so the replacement text is the actual glossary type rather than
\glsentrytype{\glslabel}.

\glscustomtext

This is the custom text supplied in \glsdisp. It’s always empty for \gls, \glspl
and their upper case variants. (You can use etoolbox’s \ifdefempty to determine if
\glscustomtext is empty.)

\glsinsert

The custom text supplied in the final optional argument to \gls, \glspl and their upper
case variants.

\glsifplural{(true text)}{(false text)}

If \glspl, \Glspl or \GLSpl was used, this command does (true text) otherwise it does
(false text).

\glscapscase{(no case)}{(first uc)}{(all caps)}

If \gls, \glspl or \glsdisp were used, this does (no case). If \G1ls or \Glspl were
used, this does (first uc). If \GLS or \GLSp1l were used, this does (all caps).

\glsifhyperon{(hyper true)}{(hyper false)}

This will do (hyper true) if the hyperlinks are on for the current reference, otherwise it will
do (hyper false). The hyperlink may be off even if it wasn’t explicitly switched off with the
hyper key or the use of a starred command. It may be off because the hyperref package
hasn’t been loaded or because \glsdisablehyper has been used or because the entry
is in a glossary type that’s had the hyperlinks switched off (using nohypertypes) or because
it’s the first use and the hyperlinks have been suppressed on first use.

The \glsifhyperon command should be used instead of \glsifhyper, which is

now deprecated (and no longer documented).

137

6 Links to Glossary Entries

If you want to know if the command used to reference this entry was used with the star
or plus variant, you can use:

\glslinkvar{{unmodified)}{(star)}{(plus)}

This will do (unmodified) if the unmodified version was used, or will do (star) if the starred
version was used, or will do (plus) if the plus version was used. Note that this doesn’t take
into account if the hyper key was used to override the default setting, so this command
shouldn’t be used to guess whether or not the hyperlink is on for this reference.

Note that you can also use commands such as \ifglsused within the definition of
\glsentryfmt (see Section 14).

The commands \glslabel, \glstype, \glsifplural, \glscapscase, \glsinsert
and \glscustomtext are typically updated at the start of the \gls-like and \glstext-
like commands so they can usually be accessed in the hook user commands, such as
\glspostlinkhook and \glslinkpostsetkeys.

This means that using commands like \gls within the fields that are accessed
using the \gls-like or \glstext-like commands (such as the first, text,
long or short keys) will cause a problem. The entry formatting performed by

\glsentryfmt and related commands isn’t scoped (otherwise if would cause prob-
lems for \glspostlinkhook which may need to look ahead as well as look behind).
This means that any nested commands will, at the very least, change the label stored in
\glslabel.

If you only want to make minor modifications to \glsentryfmt, you can use

\glsgenentryfmt

This uses the above commands to display just the first, text,plural or firstplural
keys (or the custom text) with the insert text appended.

Alternatively, if you want to change the entry format for abbreviations (defined via
\newacronym) you can use:

\glsgenacfmt

This uses the values from the 1ong, short, longplural and shortplural keys, rather
than using the text, plural, first and firstplural keys. The first use singular text
is obtained via:

\genacrfullformat{(label)}{(insert)}

instead of from the first key, and the first use plural text is obtained via:

138

6 Links to Glossary Entries

\genplacrfullformat{(label)}{(insert)}

instead of from the firstplural key. In both cases, (label) is the entry’s label and (insert)
is the insert text provided in the final optional argument of commands like \gls. The
default behaviour is to do the long form (or plural long form) followed by (insert) and
a space and the short form (or plural short form) in parentheses, where the short form is in
the argument of \firstacronymfont. There are also first letter upper case versions:

\Genacrfullformat {(label)}{(insert)}

and

\Genplacrfullformat{({label)}{(insert)}

By default these perform a protected expansion on their no-case-change equivalents and
then use \makefirstuc to convert the first character to upper case. If there are is-
sues caused by this expansion, you will need to redefine those commands to explic-
itly use commands like \Glsentrylong (which is what the predefined acronym styles,
such as long-short, do). Otherwise, you only need to redefine \genacrfullformat and
\genplacrfullformat to change the behaviour of \glsgenacfmt. See Section 13 for
further details on changing the style of acronyms.

Note that \glsentryfmt (or the formatting given by \defglsentryfmt) is not used

by the \glstext-like commands.

As from version 4.16, both the \ gls-like and \ glstext-like commands use

\glslinkpostsetkeys

after the (options) are set. This macro does nothing by default but can be redefined. (For
example, to switch off the hyperlink under certain conditions.) This version also introduces

\glspostlinkhook

which is done after the link text has been displayed and also after the first use flag has been
unset (see example 25).

Example 8 (Custom Entry Display in Text)

Suppose you want a glossary of measurements and units, you can use the symbol key
to store the unit:

\newglossaryentry{distance} {name=distance,
description={The length between two points},
symbol={km} }

139

6 Links to Glossary Entries

and now suppose you want \gls{distance} to produce “distance (km)” on first use,
then you can redefine \glsentryfmt as follows:

\renewcommand+*{\glsentryfmt}{%

\glsgenentryfmt

\ifglsused{\glslabel}{}{\space (\glsentrysymbol{\glslabel})}%
}

(Note that I've used \glsentrysymbol rather than \glssymbol to avoid nested hy-
perlinks.)

Note also that all of the link text will be formatted according to \glstextformat (de-
scribed earlier). So if you do, say:

\renewcommand{\glstextformat} [1]{\textbf{#1}}
\renewcommandx {\glsentryfmt}{%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\space(\glsentrysymbol{\glslabel}) }%
}

then \gls{distance} will produce “distance (km)”.
For a complete document, see the sample file sample-entryfmt.tex.

Example 9 (Custom Format for Particular Glossary)

Suppose you have created a new glossary called notation and you want to change the
way the entry is displayed on first use so that it includes the symbol, you can do:

\defglsentryfmt [notation] {\glsgenentryfmt
\ifglsused{\glslabel}{}{\space
(denoted \glsentrysymbol{\glslabel}) }}

Now suppose you have defined an entry as follows:

\newglossaryentry{set} {type=notation,
name=set,
description={A collection of obijects},
symbol={S}

}

The first time you reference this entry it will be displayed as: “set (denoted S)” (assuming
\gls was used).
Alternatively, if you expect all the symbols to be set in math mode, you can do:

\defglsentryfmt [notation] {\glsgenentryfmt
\ifglsused{\glslabel}{}{\space
(denoted $\glsentrysymbol{\glslabel}$)}}

140

6 Links to Glossary Entries

and define entries like this:

\newglossaryentry{set} {type=notation,
name=set,
description={A collection of objects},
symbol={S}

}

Remember that if you use the symbo1l key, you need to use a glossary style that displays
the symbol, as many of the styles ignore it.

6.4 Enabling and disabling hyperlinks to glossary entries

If you load the hyperref or html packages prior to loading the glossaries package, the \g1s-
like and \glstext-like commands will automatically have hyperlinks to the relevant
glossary entry, unless the hyper option has been switched off (either explicitly or through
implicit means, such as via the nohypertypes package option).

You can disable or enable links using:

\glsdisablehyper

and

\glsenablehyper

respectively. The effect can be localised by placing the commands within a group.
Note that you should only use \glsenablehyper if the commands \hyperlink and
\hypertarget have been defined (for example, by the hyperref package).

You can disable just the first use links using the package option hyperfirst=false. Note that
this option only affects the \ g1s-like commands that recognise the first use flag.

Example 10 (First Use With Hyperlinked Footnote Description)

Suppose I want the first use to have a hyperlink to the description in a footnote instead
of hyperlinking to the relevant place in the glossary. First I need to disable the hyperlinks
on first use via the package option hyperfirst=false:

\usepackage [hyperfirst=false] {glossaries}
Now I need to redefine \glsentryfmt (see Section 6.3):

\renewcommandx {\glsentryfmt}{%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\footnote{\glsentrydesc{\glslabel}}}%
}

141

6 Links to Glossary Entries

Now the first use won’t have hyperlinked text, but will be followed by a footnote. See
the sample file sample-FnDesc.tex for a complete document.

Note that the hyperfirst option applies to all defined glossaries. It may be that you only
want to disable the hyperlinks on first use for glossaries that have a different form on first
use. This can be achieved by noting that since the entries that require hyperlinking for all
instances have identical first and subsequent text, they can be unset via \glsunsetall
(see Section 14) so that the hyperfirst option doesn’t get applied.

Example 11 (Suppressing Hyperlinks on First Use Just For Acronyms)

Suppose I want to suppress the hyperlink on first use for acronyms but not for entries in
the main glossary. I can load the glossaries package using:

\usepackage [hyperfirst=false,acronym] {glossaries}
Once all glossary entries have been defined I then do:

\glsunsetall [main]

For more complex requirements, you might find it easier to switch off all hyperlinks
via \glsdisablehyper and put the hyperlinks (where required) within the definition of
\glsentryfmt (see Section 6.3) via \glshyperlink (see Section 9).

Example 12 (Only Hyperlink in Text Mode Not Math Mode)

This is a bit of a contrived example, but suppose, for some reason, I only want the \gls-
like commands to have hyperlinks when used in text mode, but not in math mode. I can
do this by adding the glossary to the list of nohypertypes and redefining \glsentryfmt:

\GlsDeclareNoHyperList {main}

\renewcommandx {\glsentryfmt}{%
\ifmmode
\glsgenentryfmt
\else
\glsifhyperon
{\glsgenentryfmt}% hyperlink already on
{\glshyperlink[\glsgenentryfmt] {\glslabel}}$%
\fi
}

Note that this doesn’t affect the \ g1stext-like commands, which will have the hyperlinks
off unless they're forced on using the plus variant.
See the sample file sample-nomathhyper.tex for a complete document.

142

6 Links to Glossary Entries

Example 13 (One Hyper Link Per Entry Per Chapter)

Here’s a more complicated example that will only have the hyperlink on the first time an
entry is used per chapter. This doesn’t involve resetting the first use flag. Instead it adds
a new key using \glsaddstoragekey (see Section 4.3.2) that keeps track of the chapter
number that the entry was last used in:

\glsaddstoragekey{chapter} {0} {\glschapnum}

This creates a new user command called \ gl schapnum that’s analogous to \glsentrytext.
The default value for this key is 0. I then define my glossary entries as usual.

Next I redefine the hook \glslinkpostsetkeys (see Section 6.3) so that it determines
the current chapter number (which is stored in \currentchap using \edef). This value
is then compared with the value of the entry’s chapter key that I defined earlier. If
they're the same, this entry has already been used in this chapter so the hyperlink is
switched off using xkeyval’s \setkeys command. If the chapter number isn’t the same,
then this entry hasn’t been used in the current chapter. The chapter field is updated us-
ing \glsfieldxdef (Section 16.3) provided the user hasn’t switched off the hyperlink.
(This test is performed using \glsifhyperon.

\renewcommand=*{\glslinkpostsetkeys}{%
\edef\currentchap{\arabic{chapter}}%
\ifnum\currentchap=\glschapnum{\glslabel}\relax

\setkeys{glslink}{hyper=false}$%

\else

\glsifhyperon{\glsfieldxdef{\glslabel} {chapter}{\currentchap}}{}%
\fi
}

Note that this will be confused if you use \gls etc when the chapter counter is 0. (That is,
before the first \chapter.)
See the sample file sample-chap-hyperfirst.tex for a complete document.

143

7 Adding an Entry to the Glossary Without
Generating Text

It is possible to add a line to the glossary file without generating any text at that point in
the document using;:

\glsadd[{options)]{{label)}

This is similar to the \glstext-like commands, only it doesn’t produce any text (so there-
fore, there is no hyper key available in (options) but all the other options that can be used
with \glstext-like commands can be passed to \glsadd). For example, to add a page
range to the glossary number list for the entry whose label is given by set:

\glsadd[format=(] {set}
Lots of text about sets spanning many pages.
\glsadd[format=)] {set}

To add all entries that have been defined, use:

\glsaddall [{options)]

The optional argument is the same as for \glsadd, except there is also a key t ypes which
can be used to specify which glossaries to use. This should be a comma-separated list. For
example, if you only want to add all the entries belonging to the list of acronyms (specified
by the glossary type \acronymtype) and a list of notation (specified by the glossary type
notation) then you can do:

\glsaddall [types={\acronymtype, notation}]
If you are using bib2gls with glossaries-extra, you can’t use \glsaddall. Instead use the

selection=all resource option to select all entries in the given bib files.

Note that \glsadd and \glsaddall add the current location to the number list. In
the case of \glsaddall, all entries in the glossary will have the same location in the

number list. If you want to use \glsaddall, it’s best to suppress the number list with
the nonumberlist package option. (See sections 2.3 and 5.)

There is now a variation of \glsaddall that skips any entries that have already been
used:

144

7 Adding an Entry to the Glossary Without Generating Text

\glsaddallunused[(list)]

This command uses \glsadd[format=glsignore] which will ignore this location in
the number list. The optional argument (list) is a comma-separated list of glossary types.
If omitted, it defaults to the list of all defined glossaries.

If you want to use \glsaddallunused, it’s best to place the command at the end of the
document to ensure that all the commands you intend to use have already been used.

Otherwise you could end up with a spurious comma or dash in the location list.

With glossaries-extra and bib2gls, glsignore indicates an “ignored location” which
influences selection but isn’t added to the location list. In this case, if you use selection=all
then only those entries that have been explicitly indexed in the document will have location
lists. The other entries that were selected as a result of selection=all won’t have location lists.

Base glossaries package only:

\documentclass{article}

\usepackage{glossaries}

\makeglossaries
\newglossaryentry{cat}{name={cat},description={feline}}
\newglossaryentry{dog} {name={dog},description={canine}}
\begin{document}

\gls{cat}.

\printglossaries

\glsaddallunused % <- make sure dog is also listed
\end{document}

Corresponding glossaries-extra and bib2gls document code:

\documentclass{article}
\usepackage [record] {glossaries—-extra}
\GlsXtrLoadResources[src={entries}, selection=all]
\begin{document }

\gls{cat}.

\printunsrtglossaries

\end{document }

With the file entries.bib:

@entry{cat,name={cat},description={feline}}
@entry{dog, name={dog},description={canine}}

Example 14 (Dual Entries)

The example file sample-dual.tex makes use of \glsadd to allow for an entry that
should appear both in the main glossary and in the list of acronyms. This example sets up
the list of acronyms using the acronym package option:

\usepackage [acronym] {glossaries}

145

7 Adding an Entry to the Glossary Without Generating Text

A new command is then defined to make it easier to define dual entries:

\newcommandx* { \newdualentry} [5] []{%
\newglossaryentry{main—-#2} {name={#4}, %
text={#3\glsadd{#2}}, %
description={#5},%

#1
1%
\newacronym{#2} {#3\glsadd{main—-#2}}{#4}%

}

This has the following syntax:
\newdualentry[(options)]{<label>}{<abbrv>}{(long>}{<description>}
You can then define a new dual entry:

\newdualentry{svm}% label
{SVM}% abbreviation
{support vector machine}% long form
{Statistical pattern recognition technique}$% description

Now you can reference the acronym with \gls { svm} or you can reference the entry in the
main glossary with \gls{main-svm}.

Note that with bib2gls, there are special dual entry types that implement this be-
haviour. That is, if an entry is referenced then its corresponding dual entry will auto-
matically be selected as well. So there is less need for \glsadd with bib2gls. (Although
it can still be useful, as shown in Option 6.)

146

8 Cross-Referencing Entries

You must use \makeglossaries (Options 2 or 3) or \makenoidxglossaries (Op-
tion 1) before defining any terms that cross-reference entries. If any of the terms

that you have cross-referenced don’t appear in the glossary, check that you have
put \makeglossaries/\makenoidxglossaries before all entry definitions. The
glossaries-extra package provides better cross-reference handling.

There are several ways of cross-referencing entries in the glossary:
1. You can use commands such as \gls in the entries description. For example:

\newglossaryentry{apple} {name=apple,
description={firm, round fruit. See also \gls{pear}}}

Note that with this method, if you don’t use the cross-referenced term in the main
part of the document, you will need two runs of makeglossaries:

pdflatex filename
makeglossaries filename

pdflatex filename
makeglossaries filename
pdflatex filename

2. As described in Section 4, you can use the see key when you define the entry. For
example:

\newglossaryentry{MaclaurinSeries} {name={Maclaurin
series},

description={Series expansion},
see={TaylorsTheorem}}

Note that in this case, the entry with the see key will automatically be added to the
glossary, but the cross-referenced entry won’t. You therefore need to ensure that you
use the cross-referenced term with the commands described in Section 6 or Section 7.

The “see” tag is produce using \ seename, but can be overridden in specific instances
using square brackets at the start of the see value. For example:

147

8 Cross-Referencing Entries

\newglossaryentry{MaclaurinSeries} {name={Maclaurin
series},

description={Series expansion},

see=[see also] {TaylorsTheorem}}

Take care if you want to use the optional argument of commands such as \newacronym
or \newterm as the value will need to be grouped. For example:

\newterm{seal}
\newterm[see={[see also]seal}]{sea lion}

Similarly if the value contains a list. For example:

\glossaryentry{lemon} {
name={lemon},
description={Yellow citrus fruit}
}
\glossaryentry{lime}
{
name={lime},
description={Green citrus fruit}
}
\glossaryentry{citrus}
{
name={citrus},
description={Plant in the Rutaceae family},
see={lemon, lime}

}
3. After you have defined the entry, use

\glssee[(tag)]{{label)}{(xr label list)}

where (xr label list) is a comma-separated list of entry labels to be cross-referenced,
(label) is the label of the entry doing the cross-referencing and (tag) is the “see” tag.
(The default value of (tag) is \ seename.) For example:

\glssee[see also]{series}{FourierSeries, TaylorsTheorem}

Note that this automatically adds the entry given by (label) to the glossary but doesn’t
add the cross-referenced entries (specified by (xr label list)) to the glossary.

In both cases 2 and 3 above, the cross-referenced information appears in the number list,
whereas in case 1, the cross-referenced information appears in the description. (See the
sample-crossref.tex example file that comes with this package.) This means that in
cases 2 and 3, the cross-referencing information won’t appear if you have suppressed the
number list. In this case, you will need to activate the number list for the given entries us-
ing nonumberlist=false. Alternatively, if you just use the see key instead of \glssee,
you can automatically activate the number list using the seeautonumberlist package option.

148

8 Cross-Referencing Entries

8.1 Customising Cross-reference Text

When you use either the see key or the command \glssee, the cross-referencing infor-
mation will be typeset in the glossary according to:

\glsseeformat [(tag)] {(label-1ist)}{{location)}

The default definition of \glsseeformat is:
\emph{(tag)} \glsseelist {(label-list)}

Note that the location is always ignored.! For example, if you want the tag to appear in
bold, you can do:2

\renewcommandx {\glsseeformat} [3] [\seename] { \textbf{#1}
\glsseelist{#2}}

The list of labels is dealt with by \glsseelist, which iterates through the list and
typesets each entry in the label. The entries are separated by

\glsseesep

or (for the last pair)

\glsseelastsep

These default to “, \space” and “\ space\andname\space” respectively. The list entry
text is displayed using:

\glsseeitemformat {(label)}

This defaults to \glsent rytext { (label) } > For example, to make the cross-referenced list
use small caps:

\renewcommand{\glsseeitemformat} [1]{%
\textsc{\glsentrytext{#1}}}

Imakeindex will always assign a location number, even if it's not needed, so it needs to be discarded.

hfyouredeﬁne\glsseeformat,keepthedeﬁuﬂtvahw(ﬁtheopﬁonalargunwntas\seenameasboﬂlsee
and \glssee explicitly write [\seename] in the output file if no optional argument is given.

3In versions before 3.0, \glsent ryname was used, but this could cause problems when the name key was
sanitized.

149

8 Cross-Referencing Entries

You can use \glsseeformat and \glsseelist in the main body of the text, but they

won’t automatically add the cross-referenced entries to the glossary. If you want them
added with that location, you can do:

Some information (see also
\glsseelist{FourierSeries, TaylorsTheorem}$%
\glsadd{FourierSeries}\glsadd{TaylorsTheorem}) .

150

9 Using Glossary Terms Without Links

The commands described in this section display entry details without adding any infor-
mation to the glossary. They don’t use \glstextformat, they don’t have any optional
arguments, they don’t affect the first use flag and, apart from \glshyperlink, they don’t
produce hyperlinks.

Commands that aren’t expandable will be ignored by PDF bookmarks, so you will need
to provide an alternative via hyperref’'s \texorpdfstring if you want to use them in
sectioning commands. (This isn’t specific to the glossaries package.) See the hyperref doc-

umentation for further details. All the commands that convert the first letter to upper
case aren’t expandable. The other commands depend on whether their corresponding
keys were assigned non-expandable values.

If you want to title case a field, you can use:

\glsentrytitlecase{(label)}{(field)}

where (label) is the label identifying the glossary entry, (field) is the field label (see table 4.1).
For example:

\glsentrytitlecase{sample}{desc}

(If you want title-casing in your glossary style, you might want to investigate the glossaries-
extra package.) This command will trigger an error if the entry is undefined.

Note that this command has the same limitations as \makefirstuc which is used by
commands like \G1s and \Glsentryname to upper-case the first letter (see the notes
about \G1ls in Section 6.1).

\glsentryname{(label)}

\Glsentryname{(label)}

These commands display the name of the glossary entry given by (label), as specified by
the name key. \Glsentryname makes the first letter upper case. Neither of these com-
mands check for the existence of (label). The first form \glsentryname is expandable
(unless the name contains unexpandable commands). Note that this may be different from

151

9 Using Glossary Terms Without Links

the values of the text or first keys. In general it’s better to use \glsentrytext or
\glsentryfirst instead of \glsentryname.

In general it’s best to avoid \Glsentryname with abbreviations. Instead, consider
using \Glsentrylong, \Glsentryshort or \Glsentryfull.

\glossentryname{(label)}

This is like \glsnamefont{\glsentryname{(label)}}butalso checks for the existence
of (label). This command is not expandable. It's used in the predefined glossary styles, so
if you want to change the way the name is formatted in the glossary, you can redefine
\glsnamefont to use the required fonts. For example:

\renewcommand=*{\glsnamefont} [1] {\textmd{\sffamily #1}}

\Glossentryname{(label)}

This is like \glossentryname but makes the first letter of the name upper case.

\glsentrytext{(label)}

\Glsentrytext{(label)}

These commands display the subsequent use text for the glossary entry given by (label),
as specified by the text key. \Glsentrytext makes the first letter upper case. The first
form is expandable (unless the text contains unexpandable commands). The second form
is not expandable. Neither checks for the existence of (label).

\glsentryplural{(label)}

\Glsentryplural{(label)}

These commands display the subsequent use plural text for the glossary entry given by
(label), as specified by the plural key. \Glsentryplural makes the first letter upper
case. The first form is expandable (unless the value of that key contains unexpandable
commands). The second form is not expandable. Neither checks for the existence of (label).

152

9 Using Glossary Terms Without Links

\glsentryfirst{(label)}

\Glsentryfirst{(label)}

These commands display the first use text for the glossary entry given by (label), as speci-
fied by the first key. \Glsentryfirst makes the first letter upper case. The first form
is expandable (unless the value of that key contains unexpandable commands). The second
form is not expandable. Neither checks for the existence of (label).

\glsentryfirstplural{(label)}

\Glsentryfirstplural{(label)}

These commands display the plural form of the first use text for the glossary entry given
by (label), as specified by the firstplural key. \Glsentryfirstplural makes the
tirst letter upper case. The first form is expandable (unless the value of that key contains
unexpandable commands). The second form is not expandable. Neither checks for the
existence of (label).

\glsentrydesc{(label)}

\Glsentrydesc{(label)}

These commands display the description for the glossary entry given by (label).

\Glsentrydesc makes the first letter upper case. The first form is expandable (unless
the value of that key contains unexpandable commands). The second form is not expand-
able. Neither checks for the existence of (label).

\glossentrydesc{(label)}

This is like \glsentrydesc{(label)} but also checks for the existence of (label). This
command is not expandable. It’s used in the predefined glossary styles to display the
description.

\Glossentrydesc{(label)}

This is like \glossentrydesc but converts the first letter to upper case. This command
is not expandable.

153

9 Using Glossary Terms Without Links

\glsentrydescplural{(label)}

\Glsentrydescplural{(label)}

These commands display the plural description for the glossary entry given by (label).
\Glsentrydescplural makes the first letter upper case. The first form is expandable
(unless the value of that key contains unexpandable commands). The second form is not
expandable. Neither checks for the existence of (label).

\glsentrysymbol{(label)}

\Glsentrysymbol{(label)}

These commands display the symbol for the glossary entry given by (label).

\Glsentrysymbol makes the first letter upper case. The first form is expandable (un-
less the value of that key contains unexpandable commands). The second form is not
expandable. Neither checks for the existence of (label).

\glsletentryfield{(cs)}{{label)}{(field)}

This command doesn’t display anything. It merely fetches the value associated with the
given field (where the available field names are listed in table 4.1) and stores the result in
the control sequence (cs). For example, to store the description for the entry whose label is
“apple” in the control sequence \ tmp:

\glsletentryfield{\tmp} {apple}{desc}

\glossentrysymbol{(label)}

This is like \glsentrysymbol {(label)} but also checks for the existence of (label). This
command is not expandable. It’s used in some of the predefined glossary styles to display
the symbol.

\Glossentrysymbol{(label)}

This is like \glossentrysymbol but converts the first letter to upper case. This com-
mand is not expandable.

154

9 Using Glossary Terms Without Links

\glsentrysymbolplural {{label)}

\Glsentrysymbolplural{<label>}

These commands display the plural symbol for the glossary entry given by (label).
\Glsentrysymbolplural makes the first letter upper case. The first form is expand-
able (unless the value of that key contains unexpandable commands). The second form is
not expandable. Neither checks for the existence of (label).

155

9 Using Glossary Terms Without Links

\glsentryuseri{(label)}

\Glsentryuseri{(label)}

\glsentryuserii{(label)}

\Glsentryuserii{(label)}

\glsentryuseriii{(label)}

\Glsentryuseriii{(label)}

\glsentryuseriv{(label)}

\Glsentryuseriv{(label)}

\glsentryuserv{(label)}

\Glsentryuserv{(label)}

\glsentryuservi{(label)}

\Glsentryuservi{(label)}

These commands display the value of the user keys for the glossary entry given by (label).
The lower case forms are expandable (unless the value of the key contains unexpandable
commands). The commands beginning with an upper case letter convert the first letter of
the required value to upper case and are not expandable. None of these commands check
for the existence of (label).

156

9 Using Glossary Terms Without Links

\glshyperlink [(link text>] { (label> }

This command provides a hyperlink to the glossary entry given by (label) but does not add
any information to the glossary file. The link text is given by \glsentrytext { (label)}
by default!, but can be overridden using the optional argument. Note that the hyperlink
will be suppressed if you have used \glsdisablehyper or if you haven’t loaded the
hyperref package.

If you use \glshyperlink, youneed to ensure that the relevant entry has been added

to the glossary using any of the commands described in Section 6 or Section 7 otherwise
you will end up with an undefined link.

The next two commands are only available with Option 1 or with the savenumberlist pack-
age option:

\glsentrynumberlist{(label)}

\glsdisplaynumberlist{{label)}

Both display the number list for the entry given by (label). When used with Option 1
a rerun is required to ensure this list is up-to-date, when used with Options 2 or 3 a run
of makeglossaries (or makeindex/xindy) followed by one or two runs of IXIgX is
required.

The first command, \glsent rynumberlist, simply displays the number list as is. The
second command, \glsdisplaynumberlist, formats the list using:

\glsnumlistsep

as the separator between all but the last two elements and

\glsnumlistlastsep

between the final two elements. The defaults are , , and _\&_, respectively.

\glsdisplaynumberlist is fairly experimental. It works with Option 1, but for Op-
tions 2 or 3 it only works when the default counter format is used (that is, when the

format key is set to glsnumberformat). This command will only work with hyperref
if you choose Option 1. If you try using this command with Options 2 or 3 and hyperref,
\glsentrynumberlist will be used instead.

Lyersions before 3.0 used \glsentryname as the default, but this could cause problems when name had

been sanitized.

157

9 Using Glossary Terms Without Links

For further information see section 1.11 “Displaying entry details without adding infor-
mation to the glossary” in the documented code (glossaries-code.pdf).

158

10 Displaying a glossary

All defined glossaries may be displayed using:

Option 1: (Must be used with \makenoidxglossaries in the preamble.)

\printnoidxglossaries

Options 2 and 3: (Must be used with \makeglossaries in the preamble.)

\printglossaries

These commands will display all the glossaries in the order in which they were defined.

Note that, in the case of Options 2 and 3, no glossaries will appear until you have either
used the Perl script makeglossaries or Lua script makeglossaries—1lite or have
directly used makeindex or xindy (as described in Section 1.4).

While the external files are missing, \printglossary will just do \null for each
missing glossary to assist dictionary style documents that just use \glsaddall without
inserting any text. This use of \null ensures that all indexing information is written
before the final page is shipped out. Once the external files are present \null will no
longer be used. This can cause a spurious blank page on the first IXIEX run before the
glossary files have been created. Once these files are present, \null will no longer be

used and so shouldn’t cause interference for the final document.

glossaries-extra.sty If you use glossaries-extra, it will insert a heading and boilerplate text when the external
files are missing. The extension package also provides \printunsrtglossaries as
an alternative. See the glossaries-extra manual for further details.

If the glossary still does not appear after you re-IXTEX your document, check the
makeindex/xindy log files to see if there is a problem. With Option 1, you just need
two IETEX runs to make the glossaries appear, but you may need further runs to make the
number lists up-to-date.

An individual glossary can be displayed using:

Option 1:

159

10 Displaying a glossary

\printnoidxglossary[{options)]

(Must be used with \makenoidxglossaries in the preamble.)

Options 2 and 3:

\printglossary[{(options)]

(Must be used with \makeglossaries in the preamble.)

where (options) is a (key)=(value) list of options. (Again, when the associated external file
is missing, \null is inserted into the document.)
The following keys are available:

type The value of this key specifies which glossary to print. If omitted, the default glos-
sary is assumed. For example, to print the list of acronyms:

\printglossary[type=\acronymtype]

Note that you can’t display an ignored glossary, so don’t try setting type to the
name of a glossary that was defined using \newignoredglossary, described in
Section 12. (You can display an ignored glossary with \printunsrtglossary pro-
vided by glossaries-extra.)

title This is the glossary’s title (overriding the title specified when the glossary was
defined).

toctitle This is the title to use for the table of contents (if the toc package option has
been used). It may also be used for the page header, depending on the page style. If
omitted, the value of title is used.

style This specifies which glossary style to use for this glossary, overriding the effect of
the style package Option or \glossarystyle.

numberedsection This specifies whether to use a numbered section for this glossary,
overriding the effect of the numberedsection package option. This key has the same
syntax as the numberedsection package option, described in Section 2.2.

nonumberlist This is a boolean key. If true (nonumberlist=true) the numberlist is
suppressed for this glossary. If false (nonumberlist=false) the numberlist is dis-
played for this glossary.

nogroupskip This is a boolean key. If true the vertical gap between groups is suppressed
for this glossary.

nopostdot This is a boolean key. If true the full stop after the description is suppressed
for this glossary.

160

10 Displaying a glossary

entrycounter This is a boolean key. Behaves similar to the package option of the same
name. The corresponding package option must be used to make \glsrefentry
work correctly.

subentrycounter This is a boolean key. Behaves similar to the package option of the
same name. If you want to set both entrycounter and subentrycounter, make
sure you specify entrycounter first. The corresponding package option must be
used to make \glsrefentry work correctly.

sort This key is only available for Option 1. Possible values are: word (word order),
letter (letter order), standard (word or letter ordering taken from the order pack-
age option), use (order of use), de f (order of definition) nocase (case-insensitive) or
case (case-sensitive). Note that the word and letter comparisons (that is, everything
other than sort=use and sort=def) just use a simple character code comparison.
For a locale-sensitive sort, you must use either xindy (Option 3) or bib2gls (Op-
tion 4). Note that bib2gls provides many other sort options.

If you use the use or def values make sure that you select a glossary style that
doesn’t have a visual indicator between groups, as the grouping no longer makes

sense. Consider using the nogroupskip option.

The word and letter order sort methods use datatool’s \dt lwordindexcompare
and \dtlletterindexcompare handlers. The case-insensitive sort method uses
datatool’s \dt 1icompare handler. The case-sensitive sort method uses datatool’s
\dt lcompare handler. See the datatool documentation for further details.

If you don’t get an error with sort=use and sort=def but you do get an error
with one of the other sort options, then you probably need to use the sanitizesort=
true package option or make sure none of the entries have fragile commands in their
sort field.

label={(label)} This key is only available with glossaries-extra and labels the glossary
with \label { (label) }. This is an alternative to the package option numberedsection=
autolabel

target This is a boolean key only available with glossaries-extra, which can be used to
switch off the automatic hypertarget for each entry. (This refers to the target used by
commands like \gls and \glslink.)

This option is useful with \printunsrtglossary as it allows the same list (of sub-
list) of entries to be displayed multiple times without causing duplicate hypertarget
names.

prefix={(prefix)} This key is only available with glossaries-extra and provides an-
other way of avoiding duplicate hypertarget names is to use a different prefix for

161

10 Displaying a glossary

those names. This locally redefines \glolinkprefix but note this will also affect
the target for any entry referenced within the glossary with commands like \gls,
\glslink or \glshypertarget.

targetnameprefix={(prefix)} This key is only available with glossaries-extra. This is
similar to the prefix option, but it alters the prefix of the hypertarget anchors with-
out changing \glslinkprefix (so it won't change the hyperlinks for any entries
referenced in the glossary).

By default, the glossary is started either by \chapter* or by \sectionx, depending
on whether or not \chapter is defined. This can be overridden by the section package
option or the \setglossarysection command. Numbered sectional units can be ob-
tained using the numberedsection package option. Each glossary sets the page header via
the command

\glsglossarymark{(title)}

If this mechanism is unsuitable for your chosen class file or page style package, you will
need to redefine \glsglossarymark. Further information about these options and com-
mands is given in Section 2.2.

Information can be added to the start of the glossary (after the title and before the main
body of the glossary) by redefining

\glossarypreamble

For example:

\renewcommand{\glossarypreamble} {Numbers in italic
indicate primary definitions.}

This needs to be done before the glossary is displayed.
If you want a different preamble per glossary you can use

\setglossarypreamble[{type)] {(preamble text)}

If (type) is omitted, \glsdefaulttype is used.
For example:

\setglossarypreamble{Numbers in italic
indicate primary definitions.}

This will print the given preamble text for the main glossary, but not have any preamble
text for any other glossaries.
There is an analogous command to \glossarypreamble called

\glossarypostamble

which is placed at the end of each glossary.

162

10 Displaying a glossary

Example 15 (Switch to Two Column Mode for Glossary)

Suppose you are using the superheaderborder style!, and you want the glossary to be in

two columns, but after the glossary you want to switch back to one column mode, you
could do:

\renewcommand=* {\glossarysection} [2] []{%
\twocolumn[{\chapter*{#2}}1%
\setlength\glsdescwidth{0.6\1linewidth}$%
\glsglossarymark{\glossarytoctitle}%

}

\renewcommand= {\glossarypostamble} { \onecolumn}

Within each glossary, each entry name is formatted according to

\glsnamefont { {name)}

which takes one argument: the entry name. This command is always used regardless of
the glossary style. By default, \glsnamefont simply displays its argument in whatever
the surrounding font happens to be. This means that in the list-like glossary styles (defined
in the glossary-list style file) the name will appear in bold, since the name is placed in the
optional argument of \ item, whereas in the tabular styles (defined in the glossary-long and
glossary-super style files) the name will appear in the normal font. The hierarchical glossary
styles (defined in the glossary-tree style file) also set the name in bold.

If you want to change the font for the description, or if you only want to change the
name font for some types of entries but not others, you might want to consider using the
glossaries-extra package.

Example 16 (Changing the Font Used to Display Entry Names in the Glossary)

Suppose you want all the entry names to appear in medium weight small caps in your
glossaries, then you can do:

\renewcommand{\glsnamefont} [1]{\textsc{\mdseries #1}}

lyou can’t use the longheaderborder style for this example as you can’t use the longtable environment in two
column mode.

163

11 Xindy (Option 3)

If you want to use xindy to sort the glossary, you must use the package option xindy:
\usepackage[xindy] {glossaries}

This ensures that the glossary information is written in xindy syntax.

Section 1.4 covers how to use the external indexing application, and Section 5.2 covers
the issues involved in the location syntax. This section covers the commands provided by
the glossaries package that allow you to adjust the xindy style file (xdy) and parameters.

To assist writing information to the xindy style file, the glossaries package provides the
following commands:

\glsopenbrace

\glsclosebrace

which produce an open and closing brace. (This is needed because \ { and \ } don’t expand
to a simple brace character when written to a file.) Similarly, you can write a percent
character using;:

\glspercentchar

and a tilde character using;:

\glstildechar

For example, a newline character is specified in a xindy style file using ~n so you can use
\glstildechar n to write this correctly (or you can do \string~n). A backslash can
be written to a file using

\glsbackslash

In addition, if you are using a package that makes the double quote character active (e.g.
ngerman) you can use:

\glsquote{(text)}

which will produce "(text)". Alternatively, you can use \string" to write the double-
quote character. This document assumes that the double quote character has not been

164

11 Xindy (Option 3)

made active, so the examples just use " for clarity.

If you want greater control over the xindy style file than is available through the I£TEX
commands provided by the glossaries package, you will need to edit the xindy style file.
In which case, you must use \noist to prevent the style file from being overwritten by
the glossaries package. For additional information about xindy, read the xindy documen-
tation. I'm sorry I can’t provide any assistance with writing xindy style files. If you need
help, I recommend you ask on the xindy mailing list (http://xindy.sourceforge.
net/mailing—1list.html).

11.1 Language and Encodings

When you use xindy, you need to specify the language and encoding used (unless you
have written your own custom xindy style file that defines the relevant alphabet and sort
rules). If you use makeglossaries, this information is obtained from the document’s
auxiliary (aux) file. The makeglossaries script attempts to find the root language given
your document settings, but in the event that it gets it wrong or if xindy doesn’t support
that language, then you can specify the required language using:

\GlsSetXdyLanguage[{glossary type)l{{language)}

where (language) is the name of the language. The optional argument can be used if you
have multiple glossaries in different languages. If (glossary type) is omitted, it will be ap-
plied to all glossaries, otherwise the language setting will only be applied to the glossary
given by (glossary type).

If the inputenc package is used, the encoding will be obtained from the value of
\inputencodingname. Alternatively, you can specify the encoding using;:

\GlsSetXdyCodePage{{code)}

where (code) is the name of the encoding. For example:
\GlsSetXdyCodePage{utf8}

Note that you can also specify the language and encoding using the package option
xindy={language=(lang), codepage=(code) }. For example:

\usepackage [xindy={language=english, codepage=utf8}] {glossaries}

If you write your own custom xindy style file that includes the language settings, you
need to set the language to nothing;:

\GlsSetXdyLanguage{}

(and remember to use \noist to prevent the style file from being overwritten).

165

http://xindy.sourceforge.net/mailing-list.html
http://xindy.sourceforge.net/mailing-list.html

11 Xindy (Option 3)

The commands \GlsSetXdyLanguage and \GlsSetXdyCodePage have no effect if

you don’t use makeglossaries. If you call xindy without makeglossaries you
need to remember to set the language and encoding using the -1 and -C switches.

11.2 Locations and Number lists

If you use xindy, the glossaries package needs to know which counters you will be using in
the number list in order to correctly format the xindy style file. Counters specified using
the counter package option or the (counter) option of \newglossary are automatically
taken care of, but if you plan to use a different counter in the counter key for commands
like \glslink, then you need to identify these counters before \makeglossaries using:

\GlsAddxXdyCounters{{counter 1list)}

where (counter list) is a comma-separated list of counter names.

The most likely attributes used in the format key (textrm, hyperrm etc) are automat-
ically added to the xindy style file, but if you want to use another attribute, you need to
add it using:

\GlsAddXdyAttribute{({name)}

where (name) is the name of the attribute, as used in the format key.

Take care if you have multiple instances of the same location with different formats. The
duplicate locations will be discarded according to the order in which the attributes are
listed. Consider defining semantic commands to use for primary references. For example:

\newcommandx {\primary} [1] {\textbf{#1}}
\GlsAddxdyAttribute{primary}

Then in the document:

A \gls[format=primary] {duck} is an aquatic bird.
There are lots of different types of \gls{duck}.

This will give the format=primary instance preference over the next use that doesn’t use
the format key.

Example 17 (Custom Font for Displaying a Location)

Suppose I want a bold, italic, hyperlinked location. I first need to define a command that
will do this:

\newcommandx { \hyperbfit} [1] {\textit{\hyperbf{#1}}}

166

11 Xindy (Option 3)

but with xindy, I also need to add this as an allowed attribute:
\GlsAddXdyAttribute{hyperbfit}

Now I can use it in the optional argument of commands like \gls:
Here is a \gls[format=hyperbfit] {sample} entry.

(where sample is the label of the required entry).

Note that \GlsAddXdyAttribute has no effect if \noist is used or if
\makeglossaries is omitted. \GlsAddxdyAttribute must be used before

\makeglossaries. Additionally, \GlsAddXdyCounters must come before
\GlsAddXdyAttribute.

If the location numbers include formatting commands, then you need to add a location
style in the appropriate format using

\GlsAddxdyLocation[({prefix—-location)] {{name)}{(definition)}

where (name) is the name of the format and (definition) is the xindy definition. The op-
tional argument (prefix-location) is needed if \theH(counter) either isn’t defined or is dif-
ferent from \the (counter). Be sure to also read Section 5.2 for some issues that you may
encounter.

Note that \GlsAddxdyLocation has no effect if \noist is used or if

\makeglossaries is omitted. \GlsAddXdyLocation must be used before
\makeglossaries.

Example 18 (Custom Numbering System for Locations)
Suppose I decide to use a somewhat eccentric numbering system for sections where I
redefine \thesection as follows:

\renewcommandx* {\thesection}{ [\thechapter]\arabic{section}}

If I haven’t done counter=section in the package option, I need to specify that the
counter will be used as a location number:

\GlsAddXdyCounters{section}

Next I need to add the location style (\thechapter is assumed to be the standard
\arabic{chapter}):

\GlsAddXdyLocation{section}{:sep "[" "arabic-numbers" :sep "]"
"arabic-numbers"

}

167

11 Xindy (Option 3)
Note that if I have further decided to use the hyperref package and want to redefine
\theHsection as:

\renewcommand+ { \theHsection} {\thepart.\thesection}
\renewcommandx { \thepart} {\Roman{part}}

then I need to modify the \G1sAddXdyLocation code above to:

\GlsAddXdyLocation["roman—-numbers—uppercase"] {section}{:sep "["
"arabic-numbers" :sep "]" "arabic-numbers"

}

Since \Roman will result in an empty string if the counter is zero, it’s a good idea to add
an extra location to catch this:

\GlsAddXdyLocation{zero.section}{:sep "["
"arabic-numbers" :sep "]" "arabic-numbers"

}

This example is illustrated in the sample file samplexdy2.tex.

Example 19 (Locations as Dice)

Suppose I want a rather eccentric page numbering system that’s represented by the num-
ber of dots on dice. The stix package provides \dicei, ..., \dicevi that represent the
six sides of a die. I can define a command that takes a number as its argument. If the
number is less than seven, the appropriate \dice(n) command is used otherwise it does
\dicevi the required number of times with the leftover in a final \dice(n). For example,
the number 16 is represented by \dicevi\dicevi\diceiv (6 + 6 +4 = 16). I've called
this command \tallynum to match the example given earlier in Section 5.2:

\newrobustcmd{\tallynum} [1]{%
\ifnum\number#1<7
S\csname dice\romannumeral#l\endcsname$$
\else
S\dicevis$$
\expandafter\tallynum\expandafter{\numexpr#1-6}%
\fi
}

Here’s the counter command:
newcommand{\tally}[1]{\tallynum{\arabic{#1}}}

The page counter representation (\thepage) needs to be changed to use this command:

\renewcommand« { \thepage} {\tally{page}}

168

11 Xindy (Option 3)

The \tally command expands to \tallynum {(number)} so this needs a location class
that matches this format:

\GlsAddXdyLocation{tally}{%
:sep "\string\tallynum\space\glsopenbrace"
"arabic-numbers"
:sep "\glsclosebrace"

}

The space between \tallynum and {(number)} is significant to xindy so \space is re-
quired.

Note that \GlsAddXdyLocation{ (name)} { (definition) } will define commands in the
form:

\glsxX{counter)X(name){(Hprefix)}{(location)}

for each counter that has been identified either by the counter package option, the (counter)
option for \newglossary or in the argument of \GlsAddXdyCounters. The first ar-
gument (Hprefix) is only relevant when used with the hyperref package and indicates that
\theH(counter) is given by \Hprefix. \the(counter).

The sample file samplexdy . tex, which comes with the glossaries package, uses the de-
fault page counter for locations, and it uses the default \gl snumberformat and a custom
\hyperbfit format. A new xindy location called tallynum, as illustrated above, is
defined to make the page numbers appear as dice. In order for the location numbers to
hyperlink to the relevant pages, I need to redefine the necessary \glsX(counter)X(format)
commands:

\renewcommand{\glsXpageXglsnumberformat} [2] {%
\linkpagenumber#2%
}

\renewcommand{\glsXpageXhyperbfit} [2]{%
\textbf{\em\linkpagenumber#2}%
}

\newcommand{\linkpagenumber} [2] {\hyperlink{page.#2}{#1{#2}}}

Note that the second argument of \glsXpageXglsnumberformat is in the format
\tallynum{(n)} so the line

\linkpagenumber#2%
does
\linkpagenumber\tallynum{{number)}

so \tallynum is the first argument of \linkpagenumber and (number) is the second
argument.

169

11 Xindy (Option 3)

This method is very sensitive to the internal definition of the location command.

Example 20 (Locations as Words not Digits)

Suppose I want the page numbers written as words rather than digits and I use the
fmtcount package to do this. I can redefine \thepage as follows:

\renewcommandx* { \thepage} { \Numberstring{page}}

This used to get expanded to \protect \Numberstringnum {(n)} where (n) is the
Arabic page number. This means that I needed to define a new location with the form:

\GlsAddXdyLocation{Numberstring}{:sep "\string\protect\space
\string\Numberstringnum\space\glsopenbrace"
"arabic-numbers" :sep "\glsclosebrace"}

and if I'd used the \linkpagenumber command from the previous example, it would
need three arguments (the first being \protect):

\newcommand{\linkpagenumber} [3] {\hyperlink{page.#3} {#1#2{#3}}}

The internal definition of \Numberstring has since changed so that it now expands to
\Numberstringnum {(n)} (no \protect). This means that the location class definition
must be changed to:

\GlsAddXdyLocation{Numberstring}{% no \protect now!
:sep "\string\Numberstringnum\space\glsopenbrace"
"arabic-numbers" :sep "\glsclosebrace"}

and \linkpagenumber goes back to only two arguments:
\newcommand{\linkpagenumber} [2] {\hyperlink{page.#2}{#1{#2}}}
The other change is that \Numberstring uses

\the\value{{counter)}

instead of

\expandafter\the\csname c@{counter)\endcsname

so it hides \c@page from the location escaping mechanism (see Section 5.2). This means
that the page number may be incorrect if the indexing occurs during the output routine.

A more recent change to fmtcount (v3.03) now puts three instances of \expandafter be-
fore \the\value which no longer hides \ c@page from the location escaping mechanism,
so the page numbers should once more be correct. Further changes to the fmtcount package
may cause a problem again.

170

11 Xindy (Option 3)

When dealing with custom formats where the internal definitions are outside of your

control and liable to change, it’s best to provide a wrapper command.

Instead of directly using \Numberstring in the definition of \thepage, I can provide
a custom command in the same form as the earlier \tally command:

\newcommand{\customfmt} [1] {\customfmtnum{\arabic{#1}}}
\newrobustcmd{\customfmtnum} [1] { \Numberstringnum{#1}}

This ensures that the location will always be written to the indexing file in the form:

:locref "{}{\\customfmtnum {(n)}}"

So the location class can be defined as:

\GlsAddXdyLocation{customfmt} {
:sep "\string\customfmtnum\space\glsopenbrace"
"arabic-numbers"
:sep "\glsclosebrace"}

The sample file samplexdy3. tex illustrates this.

In the number list, the locations are sorted according to the list of provided location
classes. The default ordering is: roman-page-numbers (i, ii,...), arabic-page-numbers
(1,2,...),arabic-section-numbers (for example, 1.1 if the compositor is a full stop or
1-1if the compositor is a hyphen'), alpha-page-numbers (a, b, ...), Roman-page-numbers
(L I, ...), Alpha-page-numbers (A, B, ...), Appendix-page-numbers (for example,
A.1if the Alpha compositor is a full stop or A-1 if the Alpha compositor is a hyphen?), user
defined location names (as specified by \G1lsAddXdyLocation in the order in which they
were defined), and finally see (cross-referenced entries).> This ordering can be changed
using:

\GlsSetXdyLocationClassOrder{(location names)}

where each location name is delimited by double quote marks and separated by white
space. For example:

\GlsSetXdyLocationClassOrder{
"arabic-page—-numbers"
"arabic-section—-numbers"
"roman-page—numbers"
"Roman-page—numbers"
"alpha-page—-numbers"

Isee \glsSetCompositor described in Section 3
2gee \glsSetAlphaCompositor described in Section 3
3With glossaries-extra seealso is appended to the end of the list.

171

11 Xindy (Option 3)

"Alpha-page—-numbers"
"Appendix-page—-numbers"
"See"

}

(Remember to add "seealso" if you're using glossaries-extra.)

Note that \GlsSetXdyLocationClassOrder has no effect if \noist is used or if

\makeglossaries is omitted. \GlsSetXdyLocationClassOrder must be used
before \makeglossaries.

If a number list consists of a sequence of consecutive numbers, the range will be con-
catenated. The number of consecutive locations that causes a range formation defaults to
2, but can be changed using;:

\GlsSetXdyMinRangeLength{(n)}

For example:

\GlsSetXdyMinRangeLength{3}

The argument may also be the keyword none, to indicate that there should be no range
formations. See the xindy manual for further details on range formations.

Note that \GlsSetXdyMinRangeLength has no effect if \noist is used or if

\makeglossaries is omitted. \GlsSetXdyMinRangeLength must be used before
\makeglossaries.

See also Section 5.3.

11.3 Glossary Groups

The glossary is divided into groups according to the first letter of the sort key. The glossaries
package also adds a number group by default, unless you suppress it in the xindy package
option. For example:

\usepackage [xindy={glsnumbers=false}] {glossaries}

Any entry that doesn’t go in one of the letter groups or the number group is placed in the
default group. If you want xindy to sort the number group numerically (rather than by a
string sort) then you need to use xindy’s numeric-sort module:

\GlsAddXdyStyle{numeric—-sort}

172

11 Xindy (Option 3)

If you don’t use glsnumbers=false, the default behaviour is to locate the number
group before the “A” letter group. If you are not using a Roman alphabet, you need to
change this using:

\GlsSetXdyFirstLetterAfterDigits{(letter)}

where (letter) is the first letter of your alphabet. Take care if you're using inputenc as non-
ASCII characters are actually active characters that expand. (This isn’t a problem with the
native UTF-8 engines and fontspec.) The starred form will sanitize the argument to prevent
expansion. Alternatively you can use:

\GlsSetXdyNumberGroupOrder{(relative location)}

to change the default

:before \string"(letter)\string"

to (relative location). For example:
\GlsSetXdyNumberGroupOrder{:after \string"Z\string"}

will put the number group after the “Z” letter group. Again take care of active characters.
There’s a starred version that sanitizes the argument (so don’t use \ st ringin it).

\GlsSetXdyNumberGroupOrder*{:after LIoLD!

Note that these commands have no effect if \noist is used or if \makeglossaries

is omitted. \GlsSetXdyFirstlLetterAfterDigits must be used before
\makeglossaries.

173

12 Defining New Glossaries

A new glossary can be defined using;:

\newglossary[(log-ext)] {(name)} {(in-ext)} {{out-ext)}
{{(title)} [(counter)]

where (name) is the label to assign to this glossary. The arguments (in-ext) and (out-ext)
specify the extensions to give to the input and output files for that glossary, (title) is the
default title for this new glossary and the final optional argument (counter) specifies which
counter to use for the associated number lists (see also Section 5). The first optional argu-
ment specifies the extension for the makeindex (Option 2) or xindy (Option 3) transcript
file (this information is only used by makeglossaries which picks up the information
from the auxiliary file). If you use Option 1, the (log-ext), (in-ext) and (out-ext) arguments
are ignored.

The glossary label (name) must not contain any active characters. It’s generally best to

stick with just characters that have category code 11 (typically the non-extended Latin
characters for standard I£TgX).

There is also a starred version (new to v4.08):

\newglossaryx{(name)}{{(title)} [{counter)]

which is equivalent to

\newglossary[(name)-glg] { (name)} {({name)-gls} {{name)-glo}
{(title)} [{counter)]

Or you can also use:

\altnewglossary{(name)}{(tag)}{(title)} [(counter)]

which is equivalent to
\newglossary[(tag)-glg] {(name)}{{tag)-gls}{(tag)-glo}{(title)} [(counter)]

It may be that you have some terms that are so common that they don’t need to be listed.
In this case, you can define a special type of glossary that doesn’t create any associated files.
This is referred to as an “ignored glossary” and it’s ignored by commands that iterate over
all the glossaries, such as \printglossaries. To define an ignored glossary, use

174

glossaries-extra.sty

12 Defining New Glossaries

\newignoredglossary{(name)}

where (name) is the name of the glossary (as above). This glossary type will automatically
be added to the nohypertypes list, since there are no hypertargets for the entries in an ignored
glossary. (The sample file sample-entryfmt.tex defines an ignored glossary:.)

The glossaries-extra package provides a starred version of this command that allows hy-

perlinks (since ignored glossaries can be useful with bib2g1ls). There is also an analo-
gous \provideignoredglossary command.

You can test if a glossary is an ignored one using;:

\ifignoredglossary{{(name)}{(true)}{(false)}

This does (true) if (name) was defined as an ignored glossary, otherwise it does (false).
Note that the main (default) glossary is automatically created as:

\newglossary{main}{gls}{glo}{\glossaryname}

so it can be identified by the label main (unless the nomain package option is used). Using
the acronym package option is equivalent to:

\newglossary[alg] {acronym}{acr}{acn}{\acronymname}

so it can be identified by the label acronym. If you are not sure whether the acronym option
has been used, you can identify the list of acronyms by the command \acronymtype
which is set to acronym, if the acronym option has been used, otherwise it is set to main.
Note that if you are using the main glossary as your list of acronyms, you need to declare
it as a list of acronyms using the package option acronymlists.

The symbols package option creates a new glossary with the label symbols using:

\newglossary[slg] {symbols}{sls}{slo}{\glssymbolsgroupname}

The numbers package option creates a new glossary with the label numbers using:
\newglossary[nlg] {numbers}{nls}{nlo}{\glsnumbersgroupname}

The index package option creates a new glossary with the label index using;:

\newglossary[ilg] {index}{ind}{idx} {\indexname}

Options 2 and 3: all glossaries must be defined before \makeglossaries to ensure
that the relevant output files are opened.
See Section 1.3.1 if you want to redefine \glossaryname, especially if

you are using babel or translator. (Similarly for \glssymbolsgroupname and
\glsnumbersgroupname.) If you want to redefine \ indexname, just follow the ad-
vice in How to change LaTeX'’s “fixed names”.

175

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=fixnam

13 Acronyms and Other Abbreviations

glossaries-extra.sty The glossaries-extra package provides superior abbreviation handling. You may want to
consider using that package instead of the commands described here.

Note that although this chapter uses the term “acronym”, you can also use the com-
mands described here for initialisms or contractions (as in the case of some of the ex-
amples given below). If the glossary title is no longer applicable (for example, it should
be “Abbreviations” rather than “Acronyms”) then you can change the title either by

redefining \acronymname (see Section 1.3) or by using the title in the optional ar-
gument of \printglossary (or \printacronyms). Alternatively consider using the
glossaries-extra package’s abbreviations option instead.

You may have noticed in Section 4 that when you specify a new entry, you can specify
alternate text to use when the term is first used in the document. This provides a useful
means to define abbreviations. For convenience, the glossaries package defines the com-
mand:

\newacronym[({key-val 1list)]{(label)}{{abbrv)}{{long)}

This uses \newglossaryentry to create an entry with the given label in the glossary
given by \acronymtype. You can specify a different glossary using the t ype key within
the optional argument. The \newacronym command also uses the 1ong, longplural,
short and shortplural keys in \newglossaryentry to store the long and abbrevi-
ated forms and their plurals.

Note that the same restrictions on the entry (label) in \newglossaryentry also apply
to \newacronym (see Section 4).

If you haven’t identified the specified glossary type as a list of acronyms (via the
package option acronymlists or the command \DeclareAcronymList, see Section 2.7)
\newacronym will add it to the list and reset the display style for that glossary via
\defglsentryfmt. If you have a mixture of acronyms and regular entries within

the same glossary, care is needed if you want to change the display style: you must
first identify that glossary as a list of acronyms and then use \defglsentryfmt (not
redefine \glsentryfmt) before defining your entries.

176

13 Acronyms and Other Abbreviations

The optional argument { (key-val list) } allows you to specify additional information. Any
key that can be used in the second argument of \newglossaryentry can also be used
here in (key-val list). For example, description (when used with one of the styles that
require a description, described in Section 13.1) or you can override plural forms of (abbrv)
or (long) using the shortplural or longplural keys. For example:

\newacronym[longplural={diagonal matrices}]%
{dm} {DM} {diagonal matrix}

If the first use uses the plural form, \glspl{dm} will display: diagonal matrices (DMs).
If you want to use the longplural or shortplural keys, I recommend you use
\setacronymstyle to set the display style rather than using one of the pre-version 4.02
acronym styles.

As with plural and firstplural, if longplural is missing, it's obtained by ap-
pended \glspluralsuffix to the singular form. The short plural shortplural is
obtained (is not explicitly set) by appending \glsacrpluralsuffix to the short form.
These commands may be changed by the associated language files, but they can’t be
added to the usual caption hooks as there’s no guarantee when they’ll be expanded (as
discussed earlier). A different approach is used by glossaries-extra, which has category at-
tributes to determine whether or not to append a suffix when forming the default value of
shortplural.

Since \newacronymuses \newglossaryentry, you can use commands like \gls and
\glsreset as with any other glossary entry.

Since \newacronym sets type=\acronymtype, if you want to load a file con-
taining acronym definitions using \loadglsentries[(type)] {(filename)}, the op-

tional argument (type) will not have an effect unless you explicitly set the type as
type=\glsdefaulttype in the optional argument to \newacronym. See Section 4.6.

Example 21 (Defining an Abbreviation)
The following defines the abbreviation IDN:
\newacronym{idn} {IDN} {identification number}

\gls{idn} will produce “identification number (IDN)” on first use and “IDN” on sub-
sequent uses. If you want to use one of the small caps acronym styles, described in Sec-
tion 13.1, you need to use lower case characters for the shortened form:

\newacronym{idn}{idn}{identification number}

Now \gls{idn} will produce “identification number (IDN)” on first use and “IDN” on
subsequent uses.

177

13 Acronyms and Other Abbreviations

Avoid nested definitions.

Recall from the warning in Section 4 that you should avoid using the \gls-like and
\glstext-like commands within the value of keys like text and first due to com-
plications arising from nested links. The same applies to abbreviations defined using
\newacronym.

For example, suppose you have defined:

\newacronym{ssi}{SSI}{server side includes}
\newacronym{html} {HTML} {hypertext markup language}

you may be tempted to do:
\newacronym{shtml}{S\gls{html}}{\gls{ssi} enabled \gls{html}}

Don’t! This will break the case-changing commands, such as \G1s, it will cause inconsis-
tencies on first use, and, if hyperlinks are enabled, will cause nested hyperlinks. It will also
confuse the commands used by the entry formatting (such as \glslabel).

Instead, consider doing:
\newacronym

[description={\gls{ssi} enabled \gls{html}}]
{shtml} {SHTML} {SSI enabled HTML}

or

\newacronym
[description={\gls{ssi} enabled \gls{html}}]
{shtml} {SHTML}
{server side includes enabled hypertext markup language}

Similarly for the \glstext-like commands.
Other approaches are available with glossaries-extra. See the section “Nested Links” in
the glossaries-extra user manual.

The commands described below are similar to the \glstext-like commands in
that they don’t modify the first use flag. However, their display is governed by

\defentryfmt with \glscustomtext set as appropriate. All caveats that apply to
the \glstext-like commands also apply to the following commands. (Including the
warning immediately above this box.)

The optional arguments are the same as those for the \glstext-like commands, and
there are similar star and plus variants that switch off or on the hyperlinks. As with the
\glstext-like commands, the link text is placed in the argument of \glstextformat.

\acrshort [(options)] {{(label)} [{insert)]

This sets the link text to the short form (within the argument of \acronymfont) for the en-
try given by (label). The short form is as supplied by the short key, which \newacronym
implicitly sets.

178

13 Acronyms and Other Abbreviations

There are also analogous upper case variants:

\Acrshort [(options)] {{label)} [{insert)]

\ACRshort [(options)] {(label)} [{insert)]

There are also plural versions:

\acrshortpl[(options)]{(label)} [(insert)]

\Acrshortpl[(options)]{(label)} [(insert)]

\ACRshortpl[{options)]{(label)} [(insert)]

The short plural form is as supplied by the shortplural key, which \newacronym im-
plicitly sets.

\acrlong[(options)] {(label)} [{insert)]

This sets the link text to the long form for the entry given by (label). The long form is as
supplied by the 1ong key, which \newacronym implicitly sets.
There are also analogous upper case variants:

\Acrlong[{options)] {(label)} [{insert)]

\ACRlong[{(options)] {(label)} [{insert)]

Again there are also plural versions:

\acrlongpl [(options)] {{label)} [(insert)]

\Acrlongpl[{(options)] {(label)} [{insert)]

\ACRlongpl [(options)] {(label)} [{insert)]

The long plural form is as supplied by the longplural key, which \newacronym implic-

179

13 Acronyms and Other Abbreviations

itly sets.

The commands below display the full form of the acronym, but note that this isn’t neces-
sarily the same as the form used on first use. These full-form commands are shortcuts that
use the above commands, rather than creating the link text from the complete full form.
These full-form commands have star and plus variants and optional arguments that are
passed to the above commands.

\acrfull [{options)] {(label)} [(insert)]

This is a shortcut for

\acrfullfmt{(options)}{(label)}{{insert)}

which by default does

\acrfullformat
{\acrlong[{options)]{{label)}{{(insert)}}
{\acrshort [(options)] {(label)}}

where

\acrfullformat {(long)} {(short)}

by default does (long) ({short)). This command is now deprecated for new acronym styles
but is used by the default for backward compatibility if \setacronymstyle (Section 13.1)
hasn’t been used. (For further details of these format commands see section 1.17 in the
documented code, glossaries—code.pdf.)

There are also analogous upper case variants:

\Acrfull [(options)] {(label)} [{insert)]

\ACRfull [(options)] {(label)} [{insert)]

and plural versions:

\acrfullpl[(options)]{(label)} [{insert)]

\Acrfullpl [(options)] {{label)} [{insert)]

\ACRfullpl[(options)]{(label)} [{insert)]

If you find the above commands too cumbersome to write, you can use the shortcuts

180

13 Acronyms and Other Abbreviations

package option to activate the shorter command names listed in table 13.1.

Table 13.1: Synonyms provided by the package option shortcuts

Shortcut Command Equivalent Command

\acs \acrshort
\Acs \Acrshort
\acsp \acrshortpl
\Acsp \Acrshortpl
\acl \acrlong
\Acl \Acrlong
\aclp \acrlongpl
\Aclp \Acrlongpl
\acf \acrfull
\Acf \Acrfull
\acfp \acrfullpl
\Acfp \Acrfullpl
\ac \gls

\Ac \Gls

\acp \glspl

\Acp \Glspl

It is also possible to access the long and short forms without adding information to the
glossary using commands analogous to \glsentrytext (described in Section 9).

The commands that convert the first letter to upper case come with the same caveats as
those for analogous commands like \Glsentrytext (non-expandable, can’t be used

in PDF bookmarks, care needs to be taken if the first letter is an accented character etc).
See Section 9.

The long form can be accessed using:

\glsentrylong{(label)}

or, with the first letter converted to upper case:

\Glsentrylong{(label)}

Plural forms:

181

13 Acronyms and Other Abbreviations

\glsentrylongpl{(label)}

\Glsentrylongpl{(label)}

Similarly, to access the short form:

\glsentryshort {(label)}

or, with the first letter converted to upper case:

\Glsentryshort{(label)}

Plural forms:

\glsentryshortpl{(label)}

\Glsentryshortpl{(label)}

And the full form can be obtained using:

\glsentryfull{ <label> }

\Glsentryfull{(label)}

\glsentryfullpl{(label)}

\Glsentryfullpl{(label)}

These again use \acrfullformat by default, but the new styles described in the section
below use different formatting commands.

13.1 Changing the Abbreviation Style

It may be that the default style doesn’t suit your requirements in which case you can switch
to another style using

182

13 Acronyms and Other Abbreviations

\setacronymstyle{(style name)}

where (style name) is the name of the required style.

You must use \ setacronymstyle before you define the acronyms with \newacronym.

For example:

\usepackage[acronym] {glossaries}
\makeglossaries
\setacronymstyle{long-sc—-short}

\newacronym{html} {html} {hypertext markup language}
\newacronym{xml} {xml} {extensible markup language}

Unpredictable results can occur if you try to use multiple styles.

If you need multiple abbreviation styles, then try using the glossaries-extra package,
which has better abbreviation management.

Unlike the default behaviour of \newacronym, the styles used via \setacronymstyle
don’tuse the first or text keys, butinstead they use \defglsentryfmt tosetacustom
format that uses the 1long and short keys (or their plural equivalents). This means that
these styles cope better with plurals that aren’t formed by simply appending the singular
form with the letter “s”. In fact, most of the predefined styles use \glsgenacfmt and
modify the definitions of commands like \genacrfullformat.

Note that when you use \setacronymstyle the name key is set to

\acronymentry{(label)}

and the sort key is set to

\acronymsort {{short)}{(long)}

These commands are redefined by the acronym styles. However, you can redefine them
again after the style has been set but before you use \newacronym. Protected expansion
is performed on \acronymsort when the entry is defined.

13.1.1 Predefined Acronym Styles

The glossaries package provides a number of predefined styles. These styles apply

183

13 Acronyms and Other Abbreviations

\firstacronymfont {(text)}

to the short form on first use and

\acronymfont { (text)}

on subsequent use. The styles modify the definition of \acronymfont as required, but
\firstacronymfont is only set once by the package when it's loaded. By default
\firstacronymfont {(text)} is the same as \acronymfont {(fext)}. If you want the
short form displayed differently on first use, you can redefine \firstacronymfont in-
dependently of the acronym style.

The predefined styles that contain sc in their name (for example long-sc-short) redefine
\acronymfont to use \textsc, which means that the short form needs to be specified in
lower case. Remember that \textsc{abc} produces ABC but \textsc{ABC} produces
ABC.

Some fonts don’t support bold small caps, so you may need to redefine \glsnamefont
(see Section 10) to switch to medium weight if you are using a glossary style that dis-

plays entry names in bold and you have chosen an acronym style that uses \textsc.

The predefined styles that contain sm in their name (for example long-sm-short) redefine
\acronymfont to use \textsmaller.

Note that the glossaries package doesn’t define or load any package that defines
\textsmaller. If you use one of the acronym styles that set \acronymfont
to \textsmaller you must explicitly load the relsize package or otherwise define
\textsmaller.

The remaining predefined styles redefine \acronymfont { (text) } to simply do its argu-
ment (text).

In most cases, the predefined styles adjust \acrfull and \glsentryfull (and their
plural and upper case variants) to reflect the style. The only exceptions to this are the

dua and footnote styles (and their variants).

The following styles are supplied by the glossaries package:

* long-short, long-sc-short, long-sm-short, long-sp-short:

With these three styles, acronyms are displayed in the form

(long) (\firstacronymfont{(short)})

on first use and

184

13 Acronyms and Other Abbreviations

\acronymfont { (short)}

on subsequent use. They also set \acronymsort {(short)} {(long)} to just (short).
This means that the acronyms are sorted according to their short form. In addition,
\acronymentry {(label)} is set to just the short form (enclosed in \acronymfont)
and the description key is set to the long form.

The long-sp-short style was introduced in version 4.16 and uses

\glsacspace{(label)}

for the space between the long and short forms. This defaults to a non-breakable
space (~) if (\acronymfont {(short)}) is less than 3em, otherwise it uses a nor-
mal space. This may be redefined as required. For example, to always use a non-
breakable space:

\renewcommandx*{\glsacspace} [1]{~}

short-long, sc-short-long, sm-short-long:

These three styles are analogous to the above three styles, except the display order is
swapped to

\firstacronymfont{(short)} ((long))

on first use.

Note, however, that \acronymsort and \acronymentry are the same as for the
(long) ((short)) styles above, so the acronyms are still sorted according to the short
form.

long-short-desc, long-sc-short-desc, long-sm-short-desc, long-sp-short-desc:

These are like the long-short, long-sc-short, long-sm-short and long-sp-short styles de-
scribed above, except that the description key must be supplied in the op-
tional argument of \newacronym. They also redefine \acronymentry to {(long)}
(\acronymfont {(short)}) and redefine \acronymsort {(short)} {(long)} to just
(long). This means that the acronyms are sorted according to the long form, and
in the list of acronyms the name field has the long form followed by the short form in
parentheses. I recommend you use a glossary style such as altlist with these acronym
styles to allow for the long name field.

short-long-desc, sc-short-long-desc, sm-short-long-desc:

These styles are analogous to the above three styles, but the first use display style is:

185

13 Acronyms and Other Abbreviations

\firstacronymfont { <short> } ((long))

The definitions of \acronymsort and \acronymentry are the same as those for
long-short-desc etc.

® dua, dua-desc:

With these styles, the \gls-like commands always display the long form re-
gardless of whether the entry has been used or not. However, \acrfull and
\glsentryfull will display (long) (\acronymfont {(short)}). In the case of dua,
the name and sort keys are set to the short form and the description is set to the
long form. In the case of dua-desc, the name and sort keys are set to the long form
and the description is supplied in the optional argument of \newacronym.

e footnote, footnote-sc, footnote-sm:

With these three styles, on first use the \ g1s-like commands display:

\firstacronymfont {(short)}\footnote{(long)}

However, \acrfull and \glsentryfull are set to \acronymfont {(short)}
((long)). On subsequent use the display is:

\acronymfont { (short)}

The sort and name keys are set to the short form, and the description is set to
the long form.

In order to avoid nested hyperlinks on first use the footnote styles automatically
implement hyperfirst=false for the acronym lists.

e footnote-desc, footnote-sc-desc, footnote-sm-desc:

These three styles are similar to the previous three styles, but the description has to
be supplied in the optional argument of \newacronym. The name key is set to the
long form followed by the short form in parentheses and the sort key is set to the
long form. This means that the acronyms will be sorted according to the long form.
In addition, since the name will typically be quite wide it’s best to choose a glossary
style that can accommodate this, such as altlist.

Example 22 (Adapting a Predefined Acronym Style)

Suppose I want to use the footnote-sc-desc style, but I want the name key set to the short

186

13 Acronyms and Other Abbreviations

form followed by the long form in parentheses and the sort key set to the short form.
Then I need to specify the footnote-sc-desc style:

\setacronymstyle{footnote-sc-desc}
and then redefine \acronymsort and \acronymentry:

\renewcommandx { \acronymsort} [2] {#1}% sort by short form
\renewcommandx { \acronymentry} [1]{%
\acronymfont {\glsentryshort {#1}}\space (\glsentrylong{#1})}$%

(I've used \ space for extra clarity, but you can just use an actual space instead.)
Note that the default Computer Modern fonts don’t support bold small caps, so another
font is required. For example:

\usepackage[T1l] {fontenc}

The alternative is to redefine \acronymfont so that it always switches to medium weight
to ensure the small caps setting is used. For example:

\renewcommand=* {\acronymfont} [1] {\textmd{\scshape #1}}

The sample file sampleFnAcrDesc. tex illustrates this example.

13.1.2 Defining A Custom Acronym Style

You may find that the predefined acronyms styles that come with the glossaries package
don’t suit your requirements. In this case you can define your own style using:

\newacronymstyle{(style name)}{{display)}{{definitions)}

where (style name) is the name of the new style (avoid active characters). The second ar-
gument, (display), is equivalent to the mandatory argument of \defglsentryfmt. You
can simply use \glsgenacfmt or you can customize the display using commands like
\ifglsused, \glsifplural and \glscapscase. (See Section 6.3 for further details.)
If the style is likely to be used with a mixed glossary (that is entries in that glossary are de-
fined both with \newacronymand \newglossaryentry) then you can test if the entry is
an acronym and use \glsgenacfmt if itis or \glsgenentryfmt if it isn’t. For example,
the long-short style sets (display) as

\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentryfmt}$%

(You can use \ifglshasshort instead of \ifglshaslong to test if the entry is an
acronym if you prefer.)

The third argument, (definitions), can be used to redefine the commands that af-
fect the display style, such as \acronymfont or, if (display) uses \glsgenacfmt,
\genacrfullformat and its variants.

187

13 Acronyms and Other Abbreviations

Note that \setacronymstyle redefines \glsentryfull and \acrfullfmt to use
\genacrfullformat (and similarly for the plural and upper case variants). If this isn’t
appropriate for the style (as in the case of styles like footnote and dua) \newacronymstyle
should redefine these commands within (definitions).

Within \newacronymstyle’s (definitions) argument you can also redefine

\GenericAcronymFields

This is a list of additional fields to be set in \newacronym. You can use the follow-
ing token registers to access the entry label, long form and short form: \glslabeltok,
\glslongtok and \glsshorttok. As with all TgX registers, you can access their values
by preceding the register with \the. For example, the long-short style does:

\renewcommand«* { \GenericAcronymFields} {%
description={\the\glslongtok}}%

which sets the description field to the long form of the acronym whereas the long-short-
desc style does:

\renewcommand+ { \GenericAcronymFields}{}%

since the description needs to be specified by the user.
It may be that you want to define a new acronym style that’s based on an existing style.
Within (display) you can use

\GlsUseAcrEntryDispStyle{(style name)}

to use the (display) definition from the style given by (style name). Within (definitions) you
can use

\GlsUseAcrStyleDefs{(style name)}

to use the (definitions) from the style given by (style name). For example, the long-sc-short
acronym style is based on the long-short style with minor modifications (remember to use
instead of # within (definitions)):

\newacronymstyle{long-sc—short}$%
{% use the same display as "long-short"
\GlsUseAcrEntryDispStyle{long-short}%

o\

}
{% use the same definitions as "long-short"
\GlsUseAcrStyleDefs{long-short}%
% Minor modifications:
\renewcommand{\acronymfont} [1] {\textsc{##1}}%
\renewcommand*{\acrpluralsuffix}{\glstextup{\glspluralsuffix}}$%

}

188

13 Acronyms and Other Abbreviations

(\glstextup is used to cancel the effect of \textsc. This defaults to \textulc, if de-
fined, otherwise \textup. For example, the plural of SVM should be rendered as SvMs
rather than sVMS.)

Example 23 (Defining a Custom Acronym Style)

Suppose I want my acronym on first use to have the short form in the text and the long
form with the description in a footnote. Suppose also that I want the short form to be put
in small caps in the main body of the document, but I want it in normal capitals in the
list of acronyms. In my list of acronyms, I want the long form as the name with the short
form in brackets followed by the description. That is, in the text I want \gls on first use
to display:

\textsc{{abbrv)}\footnote {(long): (description) }

on subsequent use:
\textsc{{abbrv)}

and in the list of acronyms, each entry will be displayed in the form:
(long) ((short)) (description)

Let’s suppose it’s possible that I may have a mixed glossary. I can check this in the
second argument of \newacronymstyle using:

\ifglshaslong{\glslabel}{\glsgenacfmt} {\glsgenentryfmt}$%

This will use \glsgenentryfmt if the entry isn’t an acronym, otherwise it will use
\glsgenacfmt. The third argument ((definitions)) of \newacronymstyle needs to re-
define \genacrfullformat etc so that the first use displays the short form in the text
with the long form in a footnote followed by the description. This is done as follows (re-
member to use ## instead of #):

% No case change, singular first use:
\renewcommand*{\genacrfullformat} [2]{%
\firstacronymfont{\glsentryshort {##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%
1%

% First letter upper case, singular first use:
\renewcommandx {\Genacrfullformat} [2]{%
\firstacronymfont{\Glsentryshort {##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%
}%

% No case change, plural first use:
\renewcommand*{\genplacrfullformat} [2]{%
\firstacronymfont {\glsentryshortpl{##1}}##2%

189

13 Acronyms and Other Abbreviations

\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}%
1%
% First letter upper case, plural first use:
\renewcommand+* {\Genplacrfullformat} [2]{%
\firstacronymfont{\Glsentryshortpl {##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}%

1%

If you think it inappropriate for the short form to be capitalised at the start of a sentence
you can change the above to:

% No case change, singular first use:

\renewcommand+*{\genacrfullformat} [2]{$%
\firstacronymfont{\glsentryshort {##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%

1%

% No case change, plural first use:

\renewcommandx* {\genplacrfullformat} [2]{%
\firstacronymfont{\glsentryshortpl {##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}%
1%

\let\Genacrfullformat\genacrfullformat
\let\Genplacrfullformat\genplacrfullformat

Another variation is to use \Glsentrylong and \Glsentrylongpl in the footnote in-
stead of \glsentrylongand \glsentrylongpl.

Now let’s suppose that commands such as \glsentryfull and \acrfull shouldn’t
use a footnote, but instead use the format: (long) ((short)). This means that the style needs
to redefine \glsentryfull, \acrfullfmt and their plural and upper case variants.

First, the non-linking commands:

\renewcommand*{\glsentryfull} [1]{$%
\glsentrylong{##1}\space
(\acronymfont {\glsentryshort{##1}})%
1%
\renewcommand+*{\Glsentryfull} [1]{$%
\Glsentrylong{##1}\space
(\acronymfont {\glsentryshort {##1}})%
1%
\renewcommand*{\glsentryfullpl}[1]{%
\glsentrylongpl{##1}\space
(\acronymfont {\glsentryshortpl {##1}})%
1%
\renewcommand*{\Glsentryfullpl}[1]{$%
\Glsentrylongpl{##1}\space
(\acronymfont {\glsentryshortpl {##1}})%

o

}

Now for the linking commands:

190

13 Acronyms and Other Abbreviations

\renewcommandx {\acrfullfmt} [3]{%
\glslink [##1] {##2}{%
\glsentrylong{##2}##3\space
(\acronymfont {\glsentryshort {##21}})%

o\

}
1%
\renewcommandx {\Acrfullfmt} [3]{%

\glslink [##1] {##2}(%

\Glsentrylong{##2}##3\space

(\acronymfont {\glsentryshort {##2}})%

o\

}
1%
\renewcommandx* { \ACRfullfmt} [3]{%

\glslink [##1] {##2} (%

\MakeTextUppercase{%

\glsentrylong{##2}##3\space
(\acronymfont {\glsentryshort{##2}})%

o\

00

}
1%
\renewcommand+*{\acrfullplfmt} [3]{%

\glslink [##1] {##2} (%

\glsentrylongpl{##2}##3\space
(\acronymfont {\glsentryshortpl {##2}})%

}
1%
\renewcommand* {\Acrfullplfmt} [3]{%

\glslink [##1] {(##2} (%

\Glsentrylongpl {##2}##3\space

(\acronymfont {\glsentryshortpl {##2}})%

o\°

}
1%
\renewcommand* { \AACRfullplfmt} [3]{%

\glslink [##1] {##2} (%

\MakeTextUppercase{%

\glsentrylongpl{##2}##3\space
(\acronymfont {\glsentryshortpl {##2}})%

o

-
o0
o\

o\

}

(This may cause problems with long hyperlinks, in which case adjust the definitions so
that, for example, only the short form is inside the argument of \glslink.)

The style also needs to redefine \acronymsort so that the acronyms are sorted accord-
ing to the long form:

\renewcommand~* {\acronymsort} [2] {##2}%

If you prefer them to be sorted according to the short form you can change the above to:

\renewcommand~* {\acronymsort} [2] {##1}%

191

13 Acronyms and Other Abbreviations

The acronym font needs to be set to \text sc and the plural suffix adjusted so that the “s”
suffix in the plural short form doesn’t get converted to small caps:

\renewcommand+*{\acronymfont} [1] {\textsc{##1}}%
\renewcommand~* {\acrpluralsuffix}{\glstextup{\glspluralsuffix}}$%

There are a number of ways of dealing with the format in the list of acronyms. The simplest
way is to redefine \acronyment ry to the long form followed by the upper case short form
in parentheses:

\renewcommandx { \acronymentry} [1]{%
\Glsentrylong{##1}\space
(\MakeTextUppercase{\glsentryshort {##1}})}%

(I've used \Glsentrylonginstead of \glsentrylong to capitalise the name in the glos-
sary.)

An alternative approach is to set \acronymentry to just the long form and redefine
\GenericAcronymFields to set the symbol key to the short form and use a glossary
style that displays the symbol in parentheses after the name (such as the tree style) like
this:

\renewcommand~* { \acronymentry} [1] {\Glsentrylong{##1}}%
\renewcommand~* { \GenericAcronymFields}{%
symbol={\protect\MakeTextUppercase{\the\glsshorttok}}}%

I'm going to use the first approach and set \GenericAcronymFields to do nothing:
\renewcommandx* { \GenericAcronymFields}{}%
Finally, this style needs to switch off hyperlinks on first use to avoid nested links:
\glshyperfirstfalse
Putting this all together:
\newacronymstyle{custom-fn}% new style name

{%

\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentryfmt}%

o\

o\

}
{
\renewcommandx* {\GenericAcronymFields}{}%
\glshyperfirstfalse

\renewcommand+* {\genacrfullformat} [2]{%
\firstacronymfont{\glsentryshort {##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%
1%

\renewcommandx* { \Genacrfullformat} [2]{%
\firstacronymfont {\Glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%

1%

\renewcommand*{\genplacrfullformat} [2]{%

192

13 Acronyms and Other Abbreviations

\firstacronymfont {\glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}%

1%

\renewcommand+* {\Genplacrfullformat} [2]{%
\firstacronymfont{\Glsentryshortpl {##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}%

1%

\renewcommand*{\glsentryfull} [1]{%

\glsentrylong{##1}\space
(\acronymfont {\glsentryshort {##1}})%
1%
\renewcommand*{\Glsentryfull}[1]{%
\Glsentrylong{##1}\space
(\acronymfont {\glsentryshort {##1}})%
1%
\renewcommand*{\glsentryfullpl}[1]{%
\glsentrylongpl{##1}\space
(\acronymfont {\glsentryshortpl{##1}})%
1%
\renewcommand+*{\Glsentryfullpl}[1]{%
\Glsentrylongpl{##1}\space
(\acronymfont {\glsentryshortpl{##1}})%
1%
\renewcommandx {\acrfullfmt} [3]{%
\glslink [##1] {##2} (%
\glsentrylong{##2}##3\space
(\acronymfont {\glsentryshort {##2}})%

o\

}
1%
\renewcommandx* { \Acrfullfmt} [3]{%

\glslink [##1] {##2}{%

\Glsentrylong{##2}##3\space
(\acronymfont {\glsentryshort{##2}})%

o

}
}%
\renewcommand* { \ACRfullfmt} [3]{%

\glslink [##1] {##2}{%

\MakeTextUppercase{%
\glsentrylong{##2}##3\space
(\acronymfont {\glsentryshort{##2}})%

o\°

o0

}
1%
\renewcommand*{\acrfullplfmt} [3]{%

\glslink [##1] {##2}{%

\glsentrylongpl{##2}##3\space
(\acronymfont {\glsentryshortpl {##2}})%

—
o\

-
o\

193

13 Acronyms and Other Abbreviations

\renewcommand* {\Acrfullplfmt} [3]{%
\glslink [##1] {##2}{%
\Glsentrylongpl{##2}##3\space
(\acronymfont {\glsentryshortpl {##2}1})%

o\

}
1%
\renewcommand* { \AACRfullplfmt} [3]{%

\glslink [##1] {##2}(%

\MakeTextUppercase{%
\glsentrylongpl{##2}##3\space
(\acronymfont {\glsentryshortpl{##2}})%

o\

o0 —~

}
}%
\renewcommand~* { \acronymfont} [1] {\textsc{##1}}%

\renewcommand~* {\acrpluralsuffix}{\glstextup{\glspluralsuffix}}$%
\renewcommand~* {\acronymsort} [2] {##2}%
\renewcommand*{\acronymentry} [1]{%
\Glsentrylong{##1}\space
(\MakeTextUppercase{\glsentryshort{##1}})}%

Now I need to specify that I want to use this new style:
\setacronymstyle{custom—fn}
I also need to use a glossary style that suits this acronym style, for example altlist:
\setglossarystyle{altlist}

Once the acronym style has been set, I can define my acronyms:

\newacronym[description={set of tags for use in
developing hypertext documents}]{html}{html} {Hyper
Text Markup Language}

\newacronym[description={language used to describe the
layout of a document written in a markup language}]{css}
{css}{Cascading Style Sheet}

The sample file sample-custom-acronym. tex illustrates this example.

Example 24 (Italic and Upright Abbreviations)

Suppose I want to have some abbreviations in italic and some that just use the surround-
ing font. Hard-coding this into the (short) argument of \newacronym can cause compli-
cations.

This example uses \glsaddstoragekey to add an extra field that can be used to store
the formatting declaration (such as \em).

\glsaddstoragekey{font}{}{\entryfont}

194

13 Acronyms and Other Abbreviations

This defines a new field /key called font, which defaults to nothing if it's not explicitly set.
This also defines a command called \entryfont that’s analogous to \glsentrytext.
A new style is then created to format abbreviations that access this field.

There are two ways to do this. The first is to create a style that doesn’t use \glsgenacfmt
but instead provides a modified version that doesn’t use \acronymfont { (short)} but
instead uses {\entryfont {\glslabel}(short)}. The full format given by commands
such as \genacrfullformat need to be similarly adjusted. For example:

\renewcommand*{\genacrfullformat} [2]{%
\glsentrylong{##1l}##2\space
({\entryfont {##1}\glsentryshort {##1}})%

13

This will deal with commands like \gls but not commands like \acrshort which still
use \acronymfont. Another approach is to redefine \acronymfont to look up the re-
quired font declaration. Since \acronymfont doesn’t take the entry label as an argument,
the following will only work if \acronymfont is used in a context where the label is pro-
vided by \glslabel. Thisis true in \gls, \acrshort and \acrfull. The redefinition
is now:

\renewcommandx {\acronymfont} [1] {{\entryfont{\glslabel}#1}}%
So the new style can be defined as:
\newacronymstyle{long-font-short}

{%

\GlsUseAcrEntryDispStyle{long-short}$%
}
{

o

\GlsUseAcrStyleDefs{long-short}%

\renewcommand+* {\genacrfullformat} [2]{%
\glsentrylong{##1}##2\space
({\entryfont {##1}\glsentryshort {##1}})%

1%

\renewcommandx* { \Genacrfullformat} [2] {%
\Glsentrylong{##1}##2\space
({\entryfont {##1}\glsentryshort {##1}})%

1%

\renewcommandx*{\genplacrfullformat} [2]{%
\glsentrylongpl{##1}##2\space
({\entryfont{##1}\glsentryshortpl{##1}})%

1%

\renewcommand*{\Genplacrfullformat} [2]{%
\Glsentrylongpl{##1}##2\space
({\entryfont{##1}\glsentryshortpl{##1}})%

}%

\renewcommandx { \acronymfont} [1] { {\entryfont {\glslabel}##1}}%

\renewcommand~* {\acronymentry} [1] {{\entryfont{##1}\glsentryshort {##1}}}%

195

13 Acronyms and Other Abbreviations

Remember the style needs to be set before defining the entries:
\setacronymstyle{long-font-short}

The complete document is contained in the sample file sample-font-abbr.tex.

Some writers and publishing houses have started to drop full stops (periods) from upper
case initials but may still retain them for lower case abbreviations, while others may still
use them for both upper and lower case. This can cause complications. Chapter 12 of The
TeXbook discusses the spacing between words but, briefly, the default behaviour of TgX is to
assume that an upper case character followed by a full stop and space is an abbreviation,
so the space is the default inter-word space whereas a lower case character followed by
a full stop and space is a word occurring at the end of a sentence. In the event that this
isn’t true, you need to make a manual adjustment using _, (back slash space) in place of
just a space character for an inter-word mid-sentence space and use \ @ before the full stop
to indicate the end of the sentence.

For example:

I was awarded a B.Sc. and a Ph.D. (From the same place.)

is typeset as
I was awarded a B.Sc. and a Ph.D. (From the same place.)

The spacing is more noticeable with the typewriter font:

\ttfamily
I was awarded a B.Sc. and a Ph.D. (From the same place.)

is typeset as
I was awarded a B.Sc. and a Ph.D. (From the same place.)

The lower case letter at the end of “B.Sc.” is confusing TgX into thinking that the full stop
after it marks the end of the sentence. Whereas the upper case letter at the end of “Ph.D.”
has confused TgX into thinking that the following full stop is just part of the abbreviation.
These can be corrected:

I was awarded a B.Sc.\ and a Ph.D\@. (From the same place.)

This situation is a bit problematic for glossaries. The full stops can form part of the (short)
argument of \newacronym and the B.Sc._, part can be dealt with by remembering to
add _ (for example, \gls{bsc}_) but the end of sentence case is more troublesome as
you need to omit the sentence terminating full stop (to avoid two dots) which can make
the source code look a little strange but you also need to adjust the space factor, which is
usually done by inserting \ @ before the full stop.

196

13 Acronyms and Other Abbreviations

The next example shows one way of achieving this. (Note that the supplemental
glossaries-extra package provides a much simpler way of doing this, which you may prefer
to use. See the initialisms example.)

Example 25 (Abbreviations with Full Stops (Periods))

As from version 4.16, there’s now a hook (\glspostlinkhook) that’s called at the very
end of the \gls-like and \glstext-like commands. This can be redefined to check if
the following character is a full stop. The amsgen package (which is automatically loaded
by glossaries) provides an internal command called \new@ifnextchar that can be used
to determine if the given character appears next. (For more information see the amsgen
documentation.)

It’s possible that I may also want acronyms or contractions in my document, so I need
some way to differentiate between them. Here I'm going to use the same method as in
example 4 where a new field is defined to indicate the type of abbreviation:

\glsaddstoragekey{abbrtype} {word} {\abbrtype}

\newcommandx* { \newabbr} [1] [] {\newacronym[abbrtype=initials, #1]}
Now I just use \newacronym for the acronyms, for example,

\newacronym{laser}{laser}{light amplification by stimulated
emission of radiation}

and my new command \newabbr for initials, for example,

\newabbr{eg}{e.qg.}{exempli gratia}
\newabbr{ie}{i.e.}{id est}
\newabbr{bsc}{B.Sc.}{Bachelor of Science}
\newabbr{ba}{B.A.}{Bachelor of Arts}
\newabbr{agm}{A.G.M. }{annual general meeting}

Within \glspostlinkhook the entry’s label can be accessed using \glslabel and
\ifglsfieldeq can be used to determine if the current entry has the new abbrtype
field set to “initials”. If it doesn’t, then nothing needs to happen, but if it does, a check is
performed to see if the next character is a full stop. If it is, this signals the end of a sentence
otherwise it’s mid-sentence.

Remember that internal commands within the document file (rather than in a class or
package) need to be placed between \makeatletter and \makeatother:

\makeatletter

\renewcommand{\glspostlinkhook} {%
\ifglsfieldeg{\glslabel}{abbrtype}{initials}$%
{\new@ifnextchar.\doendsentence\doendword}
{1%

}

\makeatother

197

https://www.dickimaw-books.com/gallery/sample-initialisms.shtml

13 Acronyms and Other Abbreviations

In the event that a full stop is found \doendsentence is performed but it will be followed
by the full stop, which needs to be discarded. Otherwise \doendword will be done but
it won't be followed by a full stop so there’s nothing to discard. The definitions for these
commands are:

\newcommand{\doendsentence} [1] {\spacefactor=10000{}}
\newcommand{\doendword} {\spacefactor=1000{}}

Now, I can just do \gls{bsc} mid-sentence and \gls{phd} . at the end of the sentence.
The terminating full stop will be discarded in the latter case, but it won’t be discarded in,
say, \gls{laser}. asthat doesn’t have the abbrtype field set to “initials”.

This also works on first use when the style is set to one of the (long) ((short)) styles but
it will fail with the (short) ((long)) styles as in this case the terminating full stop shouldn’t
be discarded. Since \glspostlinkhook is used after the first use flag has been unset for
the entry, this can’t be fixed by simply checking with \ifglsused. One possible solution
to this is to redefine \glslinkpostsetkeys to check for the first use flag and define a
macro that can then be used in \glspostlinkhook.

The other thing to consider is what to do with plurals. One possibility is to check for
plural use within \doendsentence (using \glsifplural) and put the full stop back if
the plural has been used.

The complete document is contained in the sample file sample-dot-abbr.tex.

13.2 Displaying the List of Acronyms

The list of acronym:s is just like any other type of glossary and can be displayed on its own
using;:

Option 1:
\printnoidxglossary|[type=\acronymtype]

Options 2 and 3:
\printglossary[type=\acronymtype]

(If you use the acronym package option you can also use
\printacronyms[(optionsﬂ
as a synonym for

\printglossary[type=\acronymtype,<optionsﬂ

198

13 Acronyms and Other Abbreviations

See Section 2.7.)
Alternatively the list of acronyms can be displayed with all the other glossaries using:
Option 1: \printnoidxglossaries
Options 2and 3: \printglossaries

However, care must be taken to choose a glossary style that’s appropriate to your
acronym style. Alternatively, you can define your own custom style (see Section 15.2 for
further details).

13.3 Upgrading From the glossary Package

Users of the obsolete glossary package may recall that the syntax used to define new
acronyms has changed with the replacement glossaries package. In addition, the old glos-
sary package created the command \ (acr-name) when defining the acronym (acr-name).

In order to facilitate migrating from the old package to the new one, the glossaries pack-
age! provides the command:

\oldacronym[(label)] {{abbrv)}{(long)}{{key-val list)}

This uses the same syntax as the glossary package’s method of defining acronyms. It is
equivalent to:

\newacronym [(key-val list)] { (label) } { (abbrv)} { (long)}

In addition, \oldacronym also defines the commands \ (label), which is equivalent to
\gls{(label)}, and \ (label)», which is equivalent to \G1s{ (label)}. If (label) is omitted,
(abbrv) is used. Since commands names must consist only of alphabetical characters, (label)
must also only consist of alphabetical characters. Note that \ (label) doesn’t allow you to
use the first optional argument of \gls or \G1ls — you will need to explicitly use \gls or
\G1s to change the settings.

Recall that, in general, IXIEX ignores spaces following command names consisting of
alphabetical characters. This is also true for \(label) unless you additionally load the

xspace package, but be aware that there are some issues with using xspace.’

The glossaries package doesn’t load the xspace package since there are both advantages
and disadvantages to using \xspace in \(label). If you don’t use the xspace package you
need to explicitly force a space using \,_, (backslash space) however you can follow \ (label)

las from version 1.18
2See David Carlisle’s explanation in Drawbacks of xspace

199

http://tex.stackexchange.com/questions/86565/drawbacks-of-xspace

13 Acronyms and Other Abbreviations

with additional text in square brackets (the final optional argument to \gls). If you use
the xspace package you don’t need to escape the spaces but you can’t use the optional
argument to insert text (you will have to explicitly use \gls).

To illustrate this, suppose I define the acronym “abc” as follows:

\oldacronym{abc}{example acronym}{}

This will create the command \abc and its starred version \abc*. Table 13.2 illustrates
the effect of \abc (on subsequent use) according to whether or not the xspace package has
been loaded. As can be seen from the final row in the table, the xspace package prevents
the optional argument from being recognised.

Table 13.2: The effect of using xspace with \oldacronym

Code With xspace Without xspace
\abc. abc. abc.

\abc xyz abc xyz abcxyz

\abc\ xyz abc xyz abc xyz

\abc* xyz Abc xyz Abc xyz

\abc[’s] xyz abc['s]xyz abc’sxyz

200

14 Unsetting and Resetting Entry Flags

When using the \gls-like commands it is possible that you may want to use the value
given by the first key, even though you have already used the glossary entry. Con-
versely, you may want to use the value given by the text key, even though you haven’t
used the glossary entry. The former can be achieved by one of the following commands:

\glsreset{(label)}

\glslocalreset{(label)}

while the latter can be achieved by one of the following commands:

\glsunset {(label)}

\glslocalunset{(label)}

You can also reset or unset all entries for a given glossary or list of glossaries using:

\glsresetall[(glossary list)]

\glslocalresetall[{glossary list)]

\glsunsetall[(glossary list)]

\glslocalunsetall[{glossary list)]

where (glossary list) is a comma-separated list of glossary labels. If omitted, all defined
glossaries are assumed (except for the ignored ones). For example, to reset all entries in the
main glossary and the list of acronyms:

\glsresetall [main, acronym]

201

14 Unsetting and Resetting Entry Flags

You can determine whether an entry’s first use flag is set using:

\ifglsused{(label)}{(true part)}{(false part)}

where (label) is the label of the required entry. If the entry has been used, (true part) will
be done, otherwise (false part) will be done.

Be careful when using \ gls-like commands within an environment or command argu-

ment that gets processed multiple times as it can cause unwanted side-effects when the
first use displayed text is different from subsequent use.

For example, the frame environment in beamer processes its argument for each overlay.
This means that the first use flag will be unset on the first overlay and subsequent overlays
will use the non-first use form.

Consider the following example:

\documentclass {beamer}
\usepackage{glossaries}
\newacronym{svm} {SVM} {support vector machine}
\begin{document}

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \gls{svm}
\item<+-> Stuff.

\end{itemize}

\end{frame}

\end{document }

On the first overlay, \gls{svm} produces “support vector machine (SVM)” and then
unsets the first use flag. When the second overlay is processed, \gls{svm} now produces
“SVM”, which is unlikely to be the desired effect. I don’t know anyway around this and I
can only offer two suggestions.

Firstly, unset all acronyms at the start of the document and explicitly use \acrfull
when you want the full version to be displayed:

\documentclass {beamer}
\usepackage{glossaries}

\newacronym{svm}{SVM} {support vector machine}

202

glossaries-extra.sty

14 Unsetting and Resetting Entry Flags

\glsunsetall

\begin{document}
\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \acrfull{svm}
\item<+-> Stuff.

\end{itemize}

\end{ frame}
\end{document }

Secondly, explicitly reset each acronym on first use:

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \glsreset{svm}\gls{svm}
\item<+-> Stuff.

\end{itemize}

\end{frame}

These are non-optimal, but the beamer class is too complex for me to provide a program-
matic solution. Other potentially problematic environments are some tabular-like environ-
ments (but not tabular itself) that process the contents in order to work out the column
widths and then reprocess the contents to do the actual typesetting.

The amsmath environments, such as align, also process their contents multiple times, but
the glossaries package now checks for this. For tabularx, you need to explicitly patch it by
placing \glspatchtabularx in the preamble (or anywhere before the problematic use
of tabularx).

If you need to use commands like \g1s in any problematic context that interferes with
the first use flag, then you can try using the buffering system provided with glossaries-

extra. See the “First Use Flag” section of the glossaries-extra manual.

14.1 Counting the Number of Times an Entry has been Used (First Use
Flag Unset)

As from version 4.14, it's now possible to keep track of how many times an entry is used.
That is, how many times the first use flag is unset. Note that the supplemental glossaries-
extra package improves this function and also provides per-unit counting, which isn’t avail-
able with the glossaries package.

203

14 Unsetting and Resetting Entry Flags

This function is disabled by default as it adds extra overhead to the document build
time and also switches \newglossaryentry (and therefore \newacronym) into

a preamble-only command.

To enable this function, use

\glsenableentrycount

before defining your entries. This adds two extra (internal) fields to entries: currcount
and prevcount.

The currcount field keeps track of how many times \glsunset is used within the
document. A local unset (using \glslocalunset) performs a local rather than global
increment to currcount. Remember that not all commands use \glsunset. Only the
\gls-like commands do this. The reset commands \glsreset and \glslocalreset
reset this field back to zero (where \glslocalreset performs alocal change).

The prevcount field stores the final value of the currcount field from the previous run.
This value is read from the aux file at the beginning of the document environment.

You can access these fields using

\glsentrycurrcount{{label)}

for the currcount field, and

\glsentryprevcount {({label)}

for the prevcount field.

These commands are only defined if you have used \glsenableentrycount.

For example:

\documentclass{article}
\usepackage{glossaries}
\makeglossaries
\glsenableentrycount

\newglossaryentry{apple} {name=apple,description={a fruit}}

\begin{document}
Total usage on previous run: \glsentryprevcount{apple}.

\gls{apple}. \gls{apple}. \glsadd{apple}\glsentrytext{apple}.
\glslink{apple}{apple}. \glsdisp{apple}{apple}. \Gls{apple}.

204

14 Unsetting and Resetting Entry Flags

Number of times apple has been used: \glsentrycurrcount{apple}.
\end{document}

On the first IfTEX run, \glsentryprevcount {apple} produces 0. At the end of the
document, \glsentrycurrcount {apple} produces 4. This is because the only com-
mands that have incremented the entry count are those that use \glsunset. That is:
\gls, \glsdisp and \Gls. The other commands used in the above example, \glsadd,
\glsentrytext and \glslink, don’t use \glsunset sothey don’t increment the entry
count. On the next KIEX run, \glsentryprevcount {apple} now produces 4 as that
was the value of the currcount field for the apple entry at the end of the document on
the previous run.

When you enable the entry count using \glsenableentrycount, you also enable the
following commands:

\cgls[(options)] {{label)}[(insert)]

(no case-change, singular)

\cglspl[{options)]{{label)}[{insert)]

(no case-change, plural)

\cGls[({options)]{{label)} [{insert)]

(first letter uppercase, singular), and

\cGlspl[{options)]{(label)}[{insert)]

(first letter uppercase, plural). These all have plus and starred variants like the analogous
\gls, \glspl, \Gls and \Glspl commands.

If youdon’tuse \glsenableentrycount, these commands behavelike \gls, \glspl,
\Gls and \G1lspl, respectively, only there will be a warning that you haven’t enabled en-
try counting. If you have enabled entry counting with \glsenableentrycount then
these commands test if \glsentryprevcount {(label)} equals 1. If it doesn’t then the
analogous \gls etc will be used. If it does, then the first optional argument will be ig-
nored and

(cs format){(label)}{(insert)}\glsunset{(label)}

will be performed, where (cs format) is a command that takes two arguments. The com-
mand used depends whether you have used \cgls, \cglspl, \cGls or \cGlspl.

\cglsformat{(label)}{(insert)}

This command is used by \cgls and defaults to

205

14 Unsetting and Resetting Entry Flags

\glsentrylong{{label)}{(insert)

if the entry given by (label) has a long form or
\glsentryfirst{(label)}(insert)

otherwise.

\cglsplformat{(label)}{(insert)}

This command is used by \cglspl and defaults to
\glsentrylongpl{{label)}(insert)

if the entry given by (label) has a long form or
\glsentryfirstplural{(label)}(insert)

otherwise.

\cGlsformat {(label)}{(insert)}

This command is used by \cG1s and defaults to

\Glsentrylong{{label)}{(insert)

if the entry given by (label) has a long form or
\Glsentryfirst{(label)}(insert)

otherwise.

\cGlsplformat{(label)}{(insert)}

This command is used by \cG1lspl and defaults to
\Glsentrylongpl{({label)}(insert)
if the entry given by (label) has a long form or

\Glsentryfirstplural{(label)}(insert)

otherwise.

This means that if the previous count for the given entry was 1, the entry won’t be hyper-
linked with the \cgls-like commands and they won’t add a line to the external glossary
file. If you haven’t used any of the other commands that add information to glossary file
(such as \glsadd or the \glstext-like commands) then the entry won’t appear in the

glossary.

Remember that since these commands use \glsentryprevcount you need to run
IETEX twice to ensure they work correctly. The document build order is now (at least):

(pdf) latex, (pdf) latex, makeglossaries, (pdf) latex.

206

bib2gls

14 Unsetting and Resetting Entry Flags

Example 26 (Don’t index entries that are only used once)

In this example, the abbreviations that have only been used once (on the previous run)
only have their long form shown with \cgls.

\documentclass{article}

\usepackage [colorlinks] {hyperref}
\usepackage [acronym] {glossaries}
\makeglossaries

\glsenableentrycount
\setacronymstyle{long—-short}

\newacronym{html} {HTML} {hypertext markup language}
\newacronym{css}{CSS}{cascading style sheets}
\newacronym{xml}{XML}{extensible markup language}
\newacronym{sqgl}{SQL}{structured query language}

\newacronym{rdbms} {RDBMS}{relational database management system}
\newacronym{rdsms} {RDSMS}{relational data stream management system}

\begin{document}

These entries are only used once: \cgls{sqgl}, \cgls{rdbms},
\cgls{xml}. These entries are used multiple times:
\cgls{html}, \cgls{html}, \cgls{css}, \cgls{css}, \cgls{css},
\cgls{rdsms}, \cgls{rdsms}.

\printglossaries
\end{document}

After a complete document build (latex, latex, makeglossaries, latex) the list of
abbrevaitions only includes the entries HTML, CSS and RDSMS. The entries SQL, RDBMS
and XML only have their long forms displayed and don’t have a hyperlink.

Remember that if you don’t like typing \cgls you can create a synonym. For example

\let\ac\cgls

With bib2gls there’s an analogous record counting set of commands. See glossaries-
extra and bib2gls manuals for further details.

207

glossaries-extra.sty

15 Glossary Styles

Glossaries vary from lists that simply contain a symbol with a terse description to lists
of terms or phrases with lengthy descriptions. Some glossaries may have terms with
associated symbols. Some may have hierarchical entries. There is therefore no single
style that fits every type of glossary. The glossaries package comes with a number of
pre-defined glossary styles, described in Section 15.1. You can choose one of these that
best suits your type of glossary or, if none of them suit your document, you can defined
your own style (see Section 15.2). There are some examples of glossary styles available at
https://www.dickimaw-books.com/gallery/#glossaries.

The glossary style can be set using the style key in the optional argument to
\printnoidxglossary (Option 1) or \printglossary (Options 2 and 3) or using the
command:

\setglossarystyle{(style—-name)}

(before the glossary is displayed).

Some of the predefined glossary styles may also be set using the style package option, it
depends if the package in which they are defined is automatically loaded by the glossaries
package.

You can use the lorum ipsum dummy entries provided in the accompanying example-
glossaries—x.tex files (described in Section 1.2) to test the different styles.

The glossaries-extra-stylemods package provided with glossaries-extra patches the prede-

fined styles. There also more styles available with glossaries-extra.

15.1 Predefined Styles

The predefined styles can accommodate numbered level 0 (main) and level 1 entries.
See the package options entrycounter, counterwithin and subentrycounter described in Sec-
tion 2.3. There is a summary of available styles in table 15.1. You can view sam-
ples of all the predefined styles at https://www.dickimaw-books.com/gallery/
glossaries-styles/. Note that glossaries-extra provides additional styles in the supple-
mentary packages glossary-bookindex and glossary-longnoloc. See the glossaries-extra manual
for further details.

208

https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-styles/

15 Glossary Styles

Note that the group styles (such as listgroup) will have unexpected results if used with
the sort=def or sort=use options. If you don’t sort your entries alphabetically, it’s best to

set the nogroupskip package option to prevent odd vertical gaps appearing.

The group title is obtained using \glsgetgrouptitle{(label)}, which is described in
Section 15.2.

Table 15.1: Glossary Styles. An asterisk in the style name indicates anything that matches
that doesn’t match any previously listed style (e.g. long3col* matches
long3col, long3colheader, long3colborder and long3colheaderborder). A maximum
level of 0 indicates a flat glossary (sub-entries are displayed in the same way
as main entries). Where the maximum level is given as — there is no limit, but
note that makeindex (Option 2) imposes a limit of 2 sub-levels. If the homo-
graph column is checked, then the name is not displayed for sub-entries. If the
symbol column is checked, then the symbol will be displayed.

Style Maximum Level Homograph Symbol
listdotted
sublistdotted
listx

altlistx
long*3colx*
long4col~
altlongx4colx
long=*
super*3colx
superdcol*
altsuper*4colx*

o)

AN N N N N N N N
NS

super

N == = = = e R

index
treenonamex
*alttreex —

|
\
ANANENEN

xtreex —
inline 1 v

The tabular-like styles that allow multi-line descriptions and page lists use the length

\glsdescwidth

to set the width of the description column and the length

209

15 Glossary Styles

\glspagelistwidth

to set the width of the page list column.! These will need to be changed using \ set length
if the glossary is too wide. Note that the long4col and super4col styles (and their header
and border variations) don’t use these lengths as they are designed for single line entries.
Instead you should use the analogous altlong4col and altsuper4col styles. If you want to
explicitly create a line-break within a multi-line description in a tabular-like style it’s better
to use \newline instead of \\.

Remember that a cell within a tabular-like environment can’t be broken across a page, so
even if a tabular-like style, such as long, allows multilined descriptions, you’ll probably

encounter page-breaking problems if you have entries with long descriptions. You may
want to consider using the alttree style instead.

Note that if you use the st y1e key in the optional argument to \printnoidxglossary
(Option 1) or \printglossary (Options 2 and 3), it will override any previous style set-
tings for the given glossary, so if, for example, you do

\renewcommand=* {\glsgroupskip}{}
\printglossary[style=long]

then the new definition of \glsgroupskip will not have an affect for this glossary, as
\glsgroupskipisredefined by style=1long. Likewise, \setglossarystyle will also
override any previous style definitions, so, again

\renewcommand+ {\glsgroupskip}{}
\setglossarystyle{long}

will reset \glsgroupskip back to its default definition for the named glossary style (long
in this case). If you want to modify the styles, either use \newglossarystyle (described
in the next section) or make the modifications after \setglossarystyle, e.g.

\setglossarystyle{long}
\renewcommand+* {\glsgroupskip}{}

As from version 3.03, you can now use the package option nogroupskip to suppress the gap
between groups for the default styles instead of redefining \glsgroupskip.

All the styles except for the three- and four-column styles and the listdotted style use the
command

\glspostdescription

after the description. This simply displays a full stop by default. To eliminate this
full stop (or replace it with something else, say, a comma) you will need to redefine

IThese lengths will not be available if you use both the nolong and nosuper package options or if you use the
nostyles package option unless you explicitly load the relevant package.

210

15 Glossary Styles

\glspostdescription before the glossary is displayed. Alternatively, you can sup-
press it for a given entry by placing \nopostdesc in the entry’s description. Note
that \longnewglossaryentry puts \nopostdesc at the end of the description. The
glossaries-extra package provides a starred version that doesn't.

As from version 3.03 you can now use the package option nopostdot to suppress this full
stop. This is the better option if you want to use the glossaries-extra package. The glossaries-
extra-stylemods package provides some adjustments some of to the predefined styles listed
here, allowing for greater flexibility. See the glossaries-extra documentation for further de-
tails.

15.1.1 List Styles

The styles described in this section are all defined in the package glossary-list. Since they all
use the description environment, they are governed by the same parameters as that environ-
ment. These styles all ignore the entry’s symbol. Note that these styles will automatically
be available unless you use the nolist or nostyles package options.

Note that, except for the listdotted style, these list styles are incompatible with classic-

thesis. They may also be incompatible with other classes or packages that modify the
description environment.

list The list style uses the description environment. The entry name is placed in the optional
argument of the \ item command (so it will usually appear in bold by default). The
description follows, and then the associated number list for that entry. The symbol
is ignored. If the entry has child entries, the description and number list follows (but
not the name) for each child entry. Groups are separated using \ indexspace.

The closest matching non-list style is the index style.

listgroup The listgroup style is like list but the glossary groups have headings obtained using
\glsgetgrouptitle{(label)}, which is described in Section 15.2.

listhypergroup The listhypergroup style is like listgroup but has a navigation line at the start
of the glossary with links to each group that is present in the glossary. This requires
an additional run through KTgX to ensure the group information is up to date. In the
navigation line, each group is separated by

\glshypernavsep

which defaults to a vertical bar with a space on either side. For example, to simply
have a space separating each group, do:

\renewcommandx* { \glshypernavsep} {\space}

211

15 Glossary Styles

Note that the hyper-navigation line is now (as from version 1.14) set inside the op-
tional argument to \ item instead of after it to prevent a spurious space at the start.
This can cause a problem if the navigation line is too long. As from v4.22, if you need
to adjust this, you can redefine

\glslistnavigationitem{<navigation line)}

The default definition is \item [(navigation line)] but may be redefined indepen-
dently of setting the style. For example:

\renewcommand*{\glslistnavigationitem}[1]{\item \textbf{#1}}

You may prefer to use the tree-like styles, such as treehypergroup instead.

altlist The altlist style is like list but the description starts on the line following the name.
(As with the list style, the symbol is ignored.) Each child entry starts a new line, but
as with the list style, the name associated with each child entry is ignored.

The closest matching non-list style is the index style with the following adjustment:

\renewcommand{\glstreepredesc}{%
\glstreeitem\parindent\hangindent}

altlistgroup The altlistgroup style is like altlist but the glossary groups have headings.

altlisthypergroup The altlisthypergroup style is like altlistgroup but has a set of links to the glos-
sary groups. The navigation line is the same as that for listhypergroup, described above.

listdotted This style uses the description environment.? Each entry starts with \item[],
followed by the name followed by a dotted line, followed by the description. Note
that this style ignores both the number list and the symbol. The length

\glslistdottedwidth

governs where the description should start. This is a flat style, so child entries are
formatted in the same way as the parent entries.

A non-list alternative is to use the index style with

\renewcommand{\glstreepredesc}{\dotfill}
\renewcommand{\glstreechildpredesc}{\dot£fill}

Note that this doesn’t use \glslistdottedwidth and causes the description to be
flush-right and will display the symbol, if provided. (It also doesn’t suppress the
number list, but that can be achieved with the nonumberlist option.)

2This style was supplied by Axel Menzel.

212

15 Glossary Styles

sublistdotted This is a variation on the listdotted style designed for hierarchical glossaries.
The main entries have just the name displayed. The sub entries are displayed in the
same manner as listdotted. Unlike the listdotted style, this style is incompatible with
classicthesis.

15.1.2 Longtable Styles

The styles described in this section are all defined in the package glossary-long. Since they
all use the longtable environment, they are governed by the same parameters as that en-
vironment. Note that these styles will automatically be available unless you use the no-
long or nostyles package options. These styles fully justify the description and page list
columns. If you want ragged right formatting instead, use the analogous styles described
in Section 15.1.3. If you want to incorporate rules from the booktabs package, try the styles
described in Section 15.1.4.

long The long style uses the longtable environment (defined by the longtable package). It
has two columns: the first column contains the entry’s name and the second column
contains the description followed by the number list. The entry’s symbol is ignored.
Sub groups are separated with a blank row. The width of the first column is governed
by the widest entry in that column. The width of the second column is governed by
the length \glsdescwidth. Child entries have a similar format to the parent entries
except that their name is suppressed.

longborder The longborder style is like long but has horizontal and vertical lines around it.
longheader The longheader style is like long but has a header row.

longheaderborder The longheaderborder style is like longheader but has horizontal and verti-
cal lines around it.

long3col The long3col style is like long but has three columns. The first column contains
the entry’s name, the second column contains the description and the third column
contains the number list. The entry’s symbol is ignored. The width of the first column
is governed by the widest entry in that column, the width of the second column
is governed by the length \glsdescwidth, and the width of the third column is
governed by the length \glspagelistwidth.

long3colborder The long3colborder style is like the long3col style but has horizontal and ver-
tical lines around it.

long3colheader The long3colheader style is like long3col but has a header row.

long3colheaderborder The long3colheaderborder style is like long3colheader but has horizontal
and vertical lines around it.

213

15 Glossary Styles

long4col The long4col style is like long3col but has an additional column in which the entry’s
associated symbol appears. This style is used for brief single line descriptions. The
column widths are governed by the widest entry in the given column. Use altlong4col
for multi-line descriptions.

long4colborder The long4colborder style is like the long4col style but has horizontal and ver-
tical lines around it.

long4colheader The long4colheader style is like long4col but has a header row.

long4colheaderborder The long4colheaderborder style is like long4colheader but has horizontal
and vertical lines around it.

altlong4col The altlong4col style is like long4col but allows multi-line descriptions and page
lists. The width of the description column is governed by the length \glsdescwidth
and the width of the page list column is governed by the length \glspagelistwidth.
The widths of the name and symbol columns are governed by the widest entry in the
given column.

altlong4colborder The altlong4colborder style is like the long4colborder but allows multi-line
descriptions and page lists.

altlong4colheader The altiong4colheader style is like long4colheader but allows multi-line de-
scriptions and page lists.

altlong4colheaderborder The altlong4colheaderborder style is like long4colheaderborder but al-
lows multi-line descriptions and page lists.

15.1.3 Longtable Styles (Ragged Right)

The styles described in this section are all defined in the package glossary-longragged. These
styles are analogous to those defined in glossary-long but the multiline columns are left
justified instead of fully justified. Since these styles all use the longtable environment, they
are governed by the same parameters as that environment. The glossary-longragged package
additionally requires the array package. Note that these styles will only be available if you
explicitly load glossary-longragged:

\usepackage{glossaries}
\usepackage{glossary-longragged}

Note that you can’t set these styles using the style package option since the styles aren’t
defined until after the glossaries package has been loaded. If you want to incorporate rules
from the booktabs package, try the styles described in Section 15.1.4.

longragged The longragged style has two columns: the first column contains the entry’s
name and the second column contains the (left-justified) description followed by
the number list. The entry’s symbol is ignored. Sub groups are separated with a

214

15 Glossary Styles

blank row. The width of the first column is governed by the widest entry in that col-
umn. The width of the second column is governed by the length \glsdescwidth.
Child entries have a similar format to the parent entries except that their name is
suppressed.

longraggedborder The longraggedborder style is like longragged but has horizontal and verti-
cal lines around it.

longraggedheader The longraggedheader style is like longragged but has a header row.

longraggedheaderborder The longraggedheaderborder style is like longraggedheader but has
horizontal and vertical lines around it.

longragged3col The longragged3col style is like longragged but has three columns. The first
column contains the entry’s name, the second column contains the (left justified)
description and the third column contains the (left justified) number list. The en-
try’s symbol is ignored. The width of the first column is governed by the widest
entry in that column, the width of the second column is governed by the length
\glsdescwidth, and the width of the third column is governed by the length
\glspagelistwidth.

longragged3colborder The longragged3colborder style is like the longragged3col style but has
horizontal and vertical lines around it.

longragged3colheader The longragged3colheader style is like longragged3col but has a header
rOwW.

longragged3colheaderborder The longragged3colheaderborder style is like longragged3colheader
but has horizontal and vertical lines around it.

altlongragged4col The altlongragged4col style is like longragged3col but has an additional col-
umn in which the entry’s associated symbol appears. The width of the description
column is governed by the length \glsdescwidth and the width of the page list
column is governed by the length \glspagelistwidth. The widths of the name
and symbol columns are governed by the widest entry in the given column.

altlongragged4colborder The altiongragged4colborder style is like the altiongragged4col but has
horizontal and vertical lines around it.

altlongragged4colheader The altlongragged4colheader style is like altlongragged4col but has a
header row.

altlongragged4colheaderborder The altlongragged4colheaderborder style is like altlongragged4colheader
but has horizontal and vertical lines around it.

215

15 Glossary Styles

15.1.4 Longtable Styles (booktabs)

The styles described in this section are all defined in the package glossary-longbooktabs.

Since these styles all use the longtable environment, they are governed by the same pa-
rameters as that environment. The glossary-longbooktabs package automatically loads the
glossary-long (Section 15.1.2) and glossary-longragged (Section 15.1.3) packages. Note that
these styles will only be available if you explicitly load glossary-longbooktabs:

\usepackage{glossaries}
\usepackage{glossary—-longbooktabs}

Note that you can’t set these styles using the style package option since the styles aren’t
defined until after the glossaries package has been loaded.

These styles are similar to the “header” styles in the glossary-long and glossary-ragged
packages, but they add the rules provided by the booktabs package, \toprule, \midrule
and \bottomrule. Additionally these styles patch the longtable environment to check for
instances of the group skip occurring at a page break. If you don’t want this patch to
affect any other use of longtable in your document, you can scope the effect by only setting
the style through the style key in the optional argument of \printglossary. (The
nogroupskip package option is checked by these styles.)

Alternatively, you can restore the original longtable behaviour with:

\glsrestoreLToutput

For more information about the patch, see the documented code (glossaries-code.pdf).

long-booktabs This style is similar to the longheader style but adds rules above and below
the header (\toprule and \midrule) and inserts a rule at the bottom of the table
(\bottomrule).

long3col-booktabs This style is similar to the long3colheader style but adds rules as per long-
booktabs.

long4col-booktabs This style is similar to the long4colheader style but adds rules as above.

altlong4col-booktabs This style is similar to the altlong4colheader style but adds rules as
above.

longragged-booktabs This style is similar to the longraggedheader style but adds rules as
above.

longragged3col-booktabs This style is similar to the longragged3colheader style but adds
rules as above.

altlongragged4col-booktabs This style is similar to the altiongragged4colheader style but adds
rules as above.

216

15 Glossary Styles

15.1.5 Supertabular Styles

The styles described in this section are all defined in the package glossary-super. Since they
all use the supertabular environment, they are governed by the same parameters as that
environment. Note that these styles will automatically be available unless you use the
nosuper or nostyles package options. In general, the longtable environment is better, but there
are some circumstances where it is better to use supertabular.® These styles fully justify the
description and page list columns. If you want ragged right formatting instead, use the
analogous styles described in Section 15.1.6.

super The super style uses the supertabular environment (defined by the supertabular pack-
age). It has two columns: the first column contains the entry’s name and the second
column contains the description followed by the number list. The entry’s symbol is
ignored. Sub groups are separated with a blank row. The width of the first column
is governed by the widest entry in that column. The width of the second column is
governed by the length \glsdescwidth. Child entries have a similar format to the
parent entries except that their name is suppressed.

superborder The superborder style is like super but has horizontal and vertical lines around
it.

superheader The superheader style is like super but has a header row.

superheaderborder The superheaderborder style is like superheader but has horizontal and
vertical lines around it.

super3col The super3col style is like super but has three columns. The first column contains
the entry’s name, the second column contains the description and the third column
contains the number list. The entry’s symbol is ignored. The width of the first column
is governed by the widest entry in that column. The width of the second column is
governed by the length \glsdescwidth. The width of the third column is governed
by the length \glspagelistwidth.

super3colborder The super3colborder style is like the super3col style but has horizontal and
vertical lines around it.

super3colheader The super3colheader style is like super3col but has a header row.

super3colheaderborder The super3colheaderborder style is like the super3colheader style but
has horizontal and vertical lines around it.

superdcol The super4col style is like super3col but has an additional column in which the
entry’s associated symbol appears. This style is designed for entries with brief single
line descriptions. The column widths are governed by the widest entry in the given
column. Use altsuper4col for multi-line descriptions.

3e.g. with the flowfram package.

217

15 Glossary Styles

super4colborder The superdcolborder style is like the superdcol style but has horizontal and
vertical lines around it.

superdcolheader The super4colheader style is like super4col but has a header row.

super4dcolheaderborder The super4colheaderborder style is like the superdcolheader style but
has horizontal and vertical lines around it.

altsuper4col The altsuper4col style is like super4col but allows multi-line descriptions and
page lists. The width of the description column is governed by the length \glsdescwidth
and the width of the page list column is governed by the length \glspagelistwidth.
The width of the name and symbol columns is governed by the widest entry in the
given column.

altsuper4colborder The altsuper4colborder style is like the super4colborder style but allows
multi-line descriptions and page lists.

altsuper4colheader The altsuperdcolheader style is like superdcolheader but allows multi-line
descriptions and page lists.

altsuper4colheaderborder The altsuper4colheaderborder style is like super4colheaderborder but
allows multi-line descriptions and page lists.

15.1.6 Supertabular Styles (Ragged Right)

The styles described in this section are all defined in the package glossary-superragged. These
styles are analogous to those defined in glossary-super but the multiline columns are left jus-
tified instead of fully justified. Since these styles all use the supertabular environment, they
are governed by the same parameters as that environment. The glossary-superragged pack-
age additionally requires the array package. Note that these styles will only be available if
you explicitly load glossary-superragged:

\usepackage{glossaries}
\usepackage{glossary—-superragged}

Note that you can’t set these styles using the style package option since the styles aren’t
defined until after the glossaries package has been loaded.

superragged The superragged style uses the supertabular environment (defined by the su-
pertabular package). It has two columns: the first column contains the entry’s name
and the second column contains the (left justified) description followed by the num-
ber list. The entry’s symbol is ignored. Sub groups are separated with a blank row.
The width of the first column is governed by the widest entry in that column. The
width of the second column is governed by the length \glsdescwidth. Child en-
tries have a similar format to the parent entries except that their name is suppressed.

superraggedborder The superraggedborder style is like superragged but has horizontal and
vertical lines around it.

218

15 Glossary Styles

superraggedheader The superraggedheader style is like superragged but has a header row.

superraggedheaderborder The superraggedheaderborder style is like superraggedheader but
has horizontal and vertical lines around it.

superragged3col The superragged3col style is like superragged but has three columns. The
first column contains the entry’s name, the second column contains the (left jus-
tified) description and the third column contains the (left justified) number list.
The entry’s symbol is ignored. The width of the first column is governed by the
widest entry in that column. The width of the second column is governed by the
length \glsdescwidth. The width of the third column is governed by the length
\glspagelistwidth

superragged3colborder The superragged3colborder style is like the superragged3col style but
has horizontal and vertical lines around it.

superragged3colheader The superragged3colheader style is like superragged3col but has a
header row.

superragged3colheaderborder The superragged3colheaderborder style is like the above but
has horizontal and vertical lines around it.

altsuperragged4col The altsuperragged4col style is like superragged3col but has an additional
column in which the entry’s associated symbol appears. The column widths for the
name and symbol column are governed by the widest entry in the given column.

altsuperragged4colborder The altsuperragged4colborder style is like the altsuperragged4col
style but has horizontal and vertical lines around it.

altsuperragged4colheader The altsuperragged4colheader style is like altsuperragged4col but has
a header row.

altsuperragged4colheaderborder The altsuperragged4colheaderborder style is like the above
but has horizontal and vertical lines around it.

15.1.7 Tree-Like Styles

The styles described in this section are all defined in the package glossary-tree. These styles

are designed for hierarchical glossaries but can also be used with glossaries that don’t have

sub-entries. These styles will display the entry’s symbol if it exists. Note that these styles

will automatically be available unless you use the notree or nostyles package options.
These styles all format the entry name using:

\glstreenamefmt { (name)}

This defaults to \textbf {(name)}, but note that (name) includes \glsnamefont so
the bold setting in \glstreenamefont may be counteracted by another font change in

219

15 Glossary Styles

\glsnamefont (or in \acronymfont). The tree-like styles that also display the header
use

\glstreegroupheaderfmt {{text)}

to format the heading. This defaults to \glstreenamefmt {(text)}. The tree-like styles
that display navigation links to the groups (such as indexhypergroup), format the navigation
line using

\glstreenavigationfmt {{text)}

which defaults to \glstreenamefmt { (fext) }.

Note that this is different from \glslistnavigationitem, provided with the styles
such as listhypergroup, as that also includes \ i tem.

With the exception of the alttree style (and those derived from it), the space before the
description for top-level entries is produced with

\glstreepredesc

This defaults to \ space.
With the exception of the treenoname and alttree styles (and those derived from them), the
space before the description for child entries is produced with

\glstreechildpredesc

This defaults to \ space.

Most of these styles are not designed for multi-paragraph descriptions. (The tree style
isn’t too bad for multi-paragraph top-level entry descriptions, or you can use the index

style with the adjustment shown below.)

index The index style is similar to the way indices are usually formatted in that it has a
hierarchical structure up to three levels (the main level plus two sub-levels). The
name is typeset in bold, and if the symbol is present it is set in parentheses after the
name and before the description. Sub-entries are indented and also include the name,
the symbol in brackets (if present) and the description. Groups are separated using
\indexspace.

Each main level item is started with

\glstreeitem

The level 1 entries are started with

220

15 Glossary Styles

\glstreesubitem

The level 2 entries are started with

\glstreesubsubitem

Note that the index style automatically sets

\let\item\glstreeitem
\let\subitem\glstreesubitem
\let\subsubitem\glstreesubsubitem

at the start of the glossary for backward compatibility.

The index style isn’t suitable for multi-paragraph descriptions, but this limitation can
be overcome by redefining the above commands. For example:

\renewcommand{\glstreeitem}{%
\parindentOpt\par\hangindent40pt
\everypar{\parindent50pt\hangindent40pt}}

indexgroup The indexgroup style is similar to the index style except that each group has a
heading obtained using \glsgetgrouptitle{(label)}, which is described in Sec-
tion 15.2.

indexhypergroup The indexhypergroup style is like indexgroup but has a set of links to the
glossary groups. The navigation line is the same as that for listhypergroup, described
above, but is formatted using \glstreenavigationfmt.

tree The tree style is similar to the index style except that it can have arbitrary levels. (Note
that makeindex is limited to three levels, so you will need to use xindy if you want
more than three levels.) Each sub-level is indented by \glstreeindent. Note that
the name, symbol (if present) and description are placed in the same paragraph block.
If you want the name to be apart from the description, use the alttree style instead.
(See below.)

treegroup The treegroup style is similar to the tree style except that each group has a head-
ing.

treehypergroup The treehypergroup style is like treegroup but has a set of links to the glossary
groups. The navigation line is the same as that for listhypergroup, described above, but
is formatted using \glstreenavigationfmt.

treenoname The treenoname style is like the tree style except that the name for each sub-
entry is ignored.

221

15 Glossary Styles

treenonamegroup The treenonamegroup style is similar to the treenoname style except that
each group has a heading.

treenonamehypergroup The treenonamehypergroup style is like treenonamegroup but has a set
of links to the glossary groups. The navigation line is the same as that for listhyper-
group, described above, but is formatted using \glstreenavigationfmt.

alttree The alttree style is similar to the tree style except that the indentation for each level
is determined by the width of the text specified by

\glssetwidest[(level)] {{text)}

The optional argument (level) indicates the level, where 0 indicates the top-most
level, 1 indicates the first level sub-entries, etc. If \glssetwidest hasn’t been used
for a given sub-level, the level 0 widest text is used instead. If (level) is omitted, 0 is
assumed.

As from v4.22, the glossary-tree package also provides

\glsfindwidesttoplevelname[{(glossary list)]

This iterates over all parentless entries in the given glossary lists and determines the
widest entry. If the optional argument is omitted, all glossaries are assumed (as per
\forallglossaries).

For example, to have the same name width for all glossaries:

\glsfindwidesttoplevelname
\setglossarystyle{alttree}
\printglossaries

Alternatively, to compute the widest entry for each glossary before it’s displayed:

\renewcommand{\glossarypreamble}{%
\glsfindwidesttoplevelname [\currentglossary]}

\setglossarystyle{alttree}

\printglossaries

These commands only affects the alttree styles, including those listed below and
the ones in the glossary-mcols package. If you forget to set the widest entry name,

the description will overwrite the name.

For each level, the name is placed to the left of the paragraph block containing the
symbol (optional) and the description. If the symbol is present, it is placed in paren-
theses before the description.

222

15 Glossary Styles

The name is placed inside a left-aligned \makebox. As from v4.19, this can now be
adjusted by redefining

\glstreenamebox{(width)} {(text)}

where (width) is the width of the box and (text) is the contents of the box. For exam-
ple, to make the name right-aligned:

\renewcommand«*{\glstreenamebox} [2]{%
\makebox [#1] [r] {#2}%
}

alttreegroup The alttreegroup is like the alttree style except that each group has a heading.

alttreehypergroup The alttreehypergroup style is like alttreegroup but has a set of links to the
glossary groups. The navigation line is the same as that for listhypergroup, described
above.

15.1.8 Multicols Style

The glossary-mcols package provides tree-like styles that are in the multicols environment
(defined by the multicol package). The style names are as their analogous tree styles (as
defined in Section 15.1.7) but are prefixed with “mcol”. For example, the mcolindex style
is essentially the index style but put in a multicols environment. For the complete list,
see table 15.2. The glossary-tree package is automatically loaded by glossary-mcols (even
if the notree package option is used when loading glossaries). The formatting commands
\glstreenamefmt, \glstreegroupheaderfmt and \glstreenavigationfmt are
all used by the corresponding glossary-mcols styles.

Note that glossary-mcols is not loaded by glossaries. If you want to use any of the multicol

styles in that package you need to load it explicitly with \usepackage and set the
required glossary style using \setglossarystyle.

The default number of columns is 2, but can be changed by redefining

\glsmcols

to the required number. For example, for a three column glossary:

\usepackage{glossary-mcols}
\renewcommand=* { \glsmcols} {3}
\setglossarystyle{mcolindex}

223

15 Glossary Styles

Table 15.2: Multicolumn Styles

glossary-mcols Style Analogous Tree Style
mcolindex index

mcolindexgroup indexgroup
mcolindexhypergroup or mcolindexspannav indexhypergroup
mcoltree tree

mcoltreegroup treegroup
mcoltreehypergroup or mcoltreespannav treehypergroup
mcoltreenoname treenoname
mcoltreenonamegroup treenonamegroup
mcoltreenonamehypergroup or mcoltreenonamespannav treenonamehypergroup
mcolalttree alttree
mcolalttreegroup alttreegroup
mcolalttreehypergroup or mcolalttreespannav alttreehypergroup

The styles with a navigation line, such as mcoltreehypergroup, now have a variant (as from
v4.22) with “hypergroup” replaced with “spannav” in the style name. The original “hy-
pergroup” styles place the navigation line at the start of the first column. The newer “span-
nav” styles put the navigation line in the optional argument of the multicols environment so
that it spans across all the columns.

15.1.9 In-Line Style

This section covers the glossary-inline package that supplies the inline style. This is a style
that is designed for in-line use (as opposed to block styles, such as lists or tables). This
style doesn’t display the number list.

You will most likely need to redefine \glossarysection with this style. For example,
suppose you are required to have your glossaries and list of acronyms in a footnote, you
can do:

\usepackage{glossary—-inline}

\renewcommand*{\glossarysection} [2] []{\textbf{#1}: }
\setglossarystyle{inline}

Note that you need to include glossary-inline with \usepackage asit’s not automatically

included by the glossaries package and then set the style using \setglossarystyle.

Where you need to include your glossaries as a footnote you can do:

\footnote{\printglossaries}

The inline style is governed by the following;:

224

15 Glossary Styles

\glsinlineseparator

This defaults to “; " and is used between main (i.e. level 0) entries.

\glsinlinesubseparator

This defaults to “, ” and is used between sub-entries.

\glsinlineparentchildseparator

This defaults to “: 7 and is used between a parent main entry and its first sub-entry.

\glspostinline

This defaults to “; ” and is used at the end of the glossary.

\glsinlinenameformat {{label)} {(name)}

This is used to format the entry name and defaults to \glstarget { (label)} { (name)},
where (name) is provided in the form \glossentryname {(label)} and (label) is the en-
try’s label. For example, if you want the name to appear in small caps:

\renewcommand* {\glsinlinenameformat} [2] {\glstarget{#1}{\textsc{#2}}}

Sub-entry names are formatted according to

\glsinlinesubnameformat {{label)} {{name)}

This defaults to \glstarget { (label)} { } so the sub-entry name is ignored.
If the description has been suppressed (according to \ifglsdescsuppressed) then

\glsinlineemptydescformat {(symbol)} {{number 1list)}

(which defaults to nothing) is used, otherwise the description is formatted according to

\glsinlinedescformat {{description)}{(symbol)}{{number 1list)}

This defaults to just \ space (description) so the symbol and location list are ignored. If the
description is missing (according to \i fglshasdesc), then \glsinlineemptydescformat
is used instead.

For example, if you want a colon between the name and the description:

\renewcommand=* {\glsinlinedescformat} [3]1{: #1}

The sub-entry description is formatted according to:

225

15 Glossary Styles

\glsinlinesubdescformat {{description)}{(symbol)}{{number list)}

This defaults to just (description).

15.2 Defining your own glossary style

If the predefined styles don’t fit your requirements, you can define your own style using;:

\newglossarystyle{{(name)}{(definitions)}

where (name) is the name of the new glossary style (to be used in \setglossarystyle).
The second argument (definitions) needs to redefine all of the following:

theglossary

This environment defines how the main body of the glossary should be typeset.

Note that this does not include the section heading, the glossary preamble (defined by
\glossarypreamble) or the glossary postamble (defined by \glossarypostamble).
For example, the list style uses the description environment, so the theglossary environment
is simply redefined to begin and end the description environment.

\glossaryheader

This macro indicates what to do at the start of the main body of the glossary. Note that this
is not the same as \glossarypreamble, which should not be affected by changes in the
glossary style. The list glossary style redefines \glossaryheader to do nothing, whereas
the longheader glossary style redefines \glossaryheader to do a header row.

\glsgroupheading{(label)}

This macro indicates what to do at the start of each logical block within the main body of
the glossary. If you use makeindex the glossary is sub-divided into a maximum of twenty-
eight logical blocks that are determined by the first character of the sort key (or name
key if the sort key is omitted). The sub-divisions are in the following order: symbols,
numbers, A, ..., Z. If you use xindy, the sub-divisions depend on the language settings.

Note that the argument to \glsgroupheading is a label not the group title. The group
title can be obtained via

\glsgetgrouptitle{(label)}

This obtains the title as follows: if (label) consists of a single non-active character or (label)
is equal to glssymbols or glsnumbers and \ (label)groupname exists, this is taken to be
the title, otherwise the title is just (label). (The “symbols” group has the label glssymbols,

226

15 Glossary Styles

so the command \glssymbolsgroupname is used, and the “numbers” group has the
label gl snumbers, so the command \glsnumbersgrouptitle isused.) If you are using
xindy, (label) may be an active character (for example @), in which case the title will be
set to just (label). You can redefine \glsgetgrouptitle if this is unsuitable for your
document.

A navigation hypertarget can be created using

\glsnavhypertarget {(label)} {(text)}

This typically requires \glossaryheader to be redefined to use

\glsnavigation

which displays the navigation line.

For further details about \glsnavhypertarget, see section 3.1 in the documented
code (glossaries—-code.pdf).

Most of the predefined glossary styles redefine \glsgroupheading to simply ignore
its argument. The listhypergroup style redefines \glsgroupheading as follows:

\renewcommand=* {\glsgroupheading}[1] {%
\item[\glsnavhypertarget {##1}{\glsgetgrouptitle{##1}}]}

See also \glsgroupskip below.
Note that command definitions within \newglossarystyle must use ##1 instead of
#1 etc.

\glsgroupskip

This macro determines what to do after one logical group but before the header for
the next logical group. The list glossary style simply redefines \glsgroupskip to be
\indexspace, whereas the tabular-like styles redefine \glsgroupskip to produce a
blank row.

As from version 3.03, the package option nogroupskip can be used to suppress this default
gap for the predefined styles.

\glossentry{(label)}{(number list)}

This macro indicates what to do for each top-level (level 0) glossary entry. The entry label is
given by (label) and the associated number list is given by (number list). You can redefine
\glossentry to use commands like \glossentryname{(label)}, \glossentrydesc
{(label) } and \glossentrysymbol{(label)} to display the name, description and sym-
bol fields, or to access other fields, use commands like \glsentryuseri{(label)}. (See
Section 9 for further details.) You can also use the following commands:

227

15 Glossary Styles

\glsentryitem{(label)}

This macro will increment and display the associated counter for the main (level 0) entries
if the entrycounter or counterwithin package options have been used. This macro is typically
called by \glossentry before \glstarget. The format of the counter is controlled by
the macro

\glsentrycounterlabel

Each time you use a glossary entry it creates a hyperlink (if hyperlinks are enabled)
to the relevant line in the glossary. Your new glossary style must therefore redefine
\glossentry to set the appropriate target. This is done using

\glstarget{(label)}{(text)}

where (label) is the entry’s label. Note that you don’t need to worry about whether the
hyperref package has been loaded, as \glstarget won’t create a target if \hypertarget
hasn’t been defined.

For example, the list style defines \glossentry as follows:

\renewcommand~*{\glossentry} [2]{%
\item[\glsentryitem{##1}%
\glstarget {##1}{\glossentryname{##1}}]
\glossentrydesc{##1}\glspostdescription\space ##2}

Note also that (number list) will always be of the form

\glossaryentrynumbers{\relax
\setentrycounter [(Hprefix)] {{counter name)}(format cmd)
{{number (s))}}

where (number(s)) may contain \delimN (to delimit individual numbers) and/or \de1imR
(to indicate a range of numbers). There may be multiple occurrences of \setentrycounter
[(Hprefix) 1 { (counter name) } (format cmd) { (number(s)) }, but note that the entire number
list is enclosed within the argument of \glossaryentrynumbers. The user can rede-
fine this to change the way the entire number list is formatted, regardless of the glos-
sary style. However the most common use of \glossaryentrynumbers is to provide
a means of suppressing the number list altogether. (In fact, the nonumberlist option rede-
fines \glossaryentrynumbers to ignore its argument.) Therefore, when you define a
new glossary style, you don’t need to worry about whether the user has specified the non-
umberlist package option.

\subglossentry{(level)}{(label)}{(number list)}

This is used to display sub-entries. The first argument, (level), indicates the sub-entry

228

15 Glossary Styles

level. This must be an integer from 1 (first sub-level) onwards. The remaining arguments
are analogous to those for \glossentry described above.

\glssubentryitem{(label)}

This macro will increment and display the associated counter for the level 1 entries
if the subentrycounter package option has been used. This macro is typically called by
\subglossentry before \glstarget. The format of the counter is controlled by the
macro

\glssubentrycounterlabel

Note that \printglossary (which \printglossaries calls) sets

\currentglossary

to the current glossary label, so it’s possible to create a glossary style that varies according
to the glossary type.

For further details of these commands, see section 1.16 “Displaying the glossary” in the
documented code (glossaries—code.pdf).

Example 27 (Creating a completely new style)

If you want a completely new style, you will need to redefine all of the commands and
the environment listed above.

For example, suppose you want each entry to start with a bullet point. This means
that the glossary should be placed in the itemize environment, so theglossary should start
and end that environment. Let’s also suppose that you don’t want anything between the
glossary groups (so \glsgroupheading and \glsgroupskip should do nothing) and
suppose you don’t want anything to appear immediately after \begin{theglossary}
(so \glossaryheader should do nothing). In addition, let’s suppose the symbol should
appear in brackets after the name, followed by the description and last of all the number
list should appear within square brackets at the end. Then you can create this new glossary
style, called, say, mylist, as follows:

\newglossarystyle{mylist}{%

% put the glossary in the itemize environment:

\renewenvironment {theglossary}$%
{\begin{itemize}}{\end{itemize}}$%

% have nothing after \begin{theglossary}:

\renewcommandx {\glossaryheader}{}%

% have nothing between glossary groups:

\renewcommand*{\glsgroupheading} [1]{}%

\renewcommand*{\glsgroupskip}{}%

% set how each entry should appear:
\renewcommand~*{\glossentry} [2]{%

229

15 Glossary Styles

)

\item % bullet point

\glstarget{##1}{\glossentryname{##1}}% the entry name

\space (\glossentrysymbol{##1})% the symbol in brackets

\space \glossentrydesc{##1}% the description

\space [##2]% the number list in square brackets

1%

% set how sub-entries appear:

\renewcommandx* {\subglossentry} [3]{%
\glossentry {##2} {##3}}%

}

Note that this style creates a flat glossary, where sub-entries are displayed in exactly the
same way as the top level entries. It also hasn’t used \glsentryitemor \glssubentryitem

so it won’t be affected by the entrycounter, counterwithin or subentrycounter package options.
Variations:

* You might want the entry name to be capitalised, in which case use \Glossentryname
instead of \glossentryname.

* You might want to check if the symbol hasn’t been set and omit the parentheses if the
symbol is absent. In this case you can use \ifglshassymbol (see Section 16):

\renewcommand=*{\glossentry} [2]{%
\item % bullet point
\glstarget{##1}{\glossentryname{##1}}% the entry name
\ifglshassymbol{##1}% check if symbol exists
{%

\space (\glossentrysymbol{##1})% the symbol in brackets
1%
{}% no symbol so do nothing
\space \glossentrydesc{##1}% the description
\space [##2]% the number list in square brackets

1%

Example 28 (Creating a new glossary style based on an existing style)

If you want to define a new style that is a slightly modified version of an existing style,
you can use \setglossarystyle within the second argument of \newglossarystyle
followed by whatever alterations you require. For example, suppose you want a style like
the list style but you don’t want the extra vertical space created by \ indexspace between
groups, then you can create a new glossary style called, say, mylist as follows:

\newglossarystyle{mylist}{%
\setglossarystyle{list}% base this style on the list style
\renewcommand{\glsgroupskip}{}% make nothing happen

[o)

% between groups

}

230

15 Glossary Styles

(In this case, you can actually achieve the same effect using the list style in combination

with the package option nogroupskip.)

Example 29 (Example: creating a glossary style that uses the userl, ..., useré6

keys)

Suppose each entry not only has an associated symbol, but also units (stored in user1l)
and dimension (stored in user2). Then you can define a glossary style that displays each

entry in a longtable as follows:

\newglossarystyle{long6col}{%
% put the glossary in a longtable environment:
\renewenvironment {theglossary}%
{\begin{longtable} {lp{\glsdescwidth}cccp{\glspagelistwidth}}}%
{\end{longtable}}%
% Set the table's header:
\renewcommand* {\glossaryheader}{%
\bfseries Term & \bfseries Description & \bfseries Symbol &
\bfseries Units & \bfseries Dimensions & \bfseries Page List
\\\endhead}%
% No heading between groups:
\renewcommand+* {\glsgroupheading} [1]{}%
% Main (level 0) entries displayed in a row optionally numbered:
\renewcommand~*{\glossentry} [2]{%
\glsentryitem{##1}% Entry number if required
\glstarget{##1}{\glossentryname{##1}}% Name
& \glossentrydesc{##1}% Description
& \glossentrysymbol {##1}% Symbol
& \glsentryuseri{##1}% Units
& \glsentryuserii{##1}% Dimensions
& ##2% Page list
\

[)

tabularnewline % end of row

oe

}
% Similarly for sub-entries (no sub-entry numbers) :
\renewcommand= { \subglossentry} [3]{%

% ignoring first argument (sub-level)
\glstarget{##2}{\glossentryname{##2}1}% Name
& \glossentrydesc{##2}% Description
& \glossentrysymbol{##2}% Symbol
& \glsentryuseri{##2}% Units
& \glsentryuserii{##2}% Dimensions
& ##3% Page list
\

[)

tabularnewline % end of row

oe

}
% Nothing between groups:
\renewcommand*{\glsgroupskip}{}%

}

231

15 Glossary Styles

232

glossaries-extra.sty

16 Utilities

This section describes some utility commands. Additional commands can be found in the
documented code (glossaries-code.pdf).

16.1 Loops

Some of the commands described here take a comma-separated list as an argument. As
with IXIEX’s \@for command, make sure your list doesn’t have any unwanted spaces

in it as they don’t get stripped. (Discussed in more detail in §2.7.2 of “IZTEX for Admin-
istrative Work”.)

\forallglossaries[(glossary list)]{{cs)}{(body)}

This iterates through (glossary list), a comma-separated list of glossary labels (as supplied
when the glossary was defined). At each iteration (cs) (which must be a control sequence)
is set to the glossary label for the current iteration and (body) is performed. If (glossary list)
is omitted, the default is to iterate over all glossaries (except the ignored ones).

\forallacronyms{{cs)}{(body)}

This is like \forallglossaries but only iterates over the lists of acronyms (that have
previously been declared using \DeclareAcronymList or the acronymlists package op-
tion). This command doesn’t have an optional argument. If you want to explicitly say
which lists to iterate over, just use the optional argument of \forallglossaries.

\forglsentries[(glossary label)]l{{cs)}{(body)}

This iterates through all entries in the glossary given by (glossary label). At each iteration
(cs) (which must be a control sequence) is set to the entry label for the current iteration and
(body) is performed. If (glossary label) is omitted, \glsdefaulttype (usually the main
glossary) is used.

233

http://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml#spacesinlists
http://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml#spacesinlists

16 Utilities

\forallglsentries[(glossary list)]{{cs)}{(body)}

This is like \forglsentries but for each glossary in (glossary list) (a comma-separated
list of glossary labels). If (glossary list) is omitted, the default is the list of all defined
glossaries (except the ignored ones). At each iteration (cs) is set to the entry label and
(body) is performed. (The current glossary label can be obtained using \glsentrytype
{(cs)} within (body).)

16.2 Conditionals

\ifglossaryexists(label)(true part)(false part)

This checks if the glossary given by (label) exists. If it does (true part) is performed, oth-
erwise (false part). The unstarred form will do (false part) for ignored glossaries. As from
v4.46, there is now a starred form of this command which will also consider ignored glos-
saries as existing. For example, given:

\newignoredglossary{common}
then

\ifglossaryexists{common}{true}{false}
\ifglossaryexists*{common}{true}{false}

will produce “false true”.

\ifglsentryexists(label)(true part)(false part)

This checks if the glossary entry given by (label) exists. If it does (true part) is performed,
otherwise (false part). (Note that \ifglsentryexists will always be true after the con-
taining glossary has been displayed via \printglossary or \printglossaries even
if the entry is explicitly defined later in the document. This is because the entry has to be
defined before it can be displayed in the glossary, see Section 4.8.1 for further details.)

\glsdoifexists{(label)}{(code)}

Does (code) if the entry given by (label) exists. If it doesn’t exist, an error is generated. (This
command uses \ifglsentryexists.)

\glsdoifnoexists{(label)}{(code)}

Does the reverse of \glsdoifexists. (This command uses \ifglsentryexists.)

234

16 Utilities

\glsdoifexistsorwarn{{label)}{({code)}

As \glsdoifexists butissues a warning rather than an error if the entry doesn’t exist.

\glsdoifexistsordo{(label)}{(code)}{(else code)}

Does (code) if the entry given by (label) exists otherwise generate an error and do (else
code).

\glsdoifnoexistsordo{{label)}{{code)}{(else code)}

Does (code) if the entry given by (label) doesn’t exist otherwise generate an error and do
(else code).

\ifglsused(label){true part)(false part)

See Section 14.

\ifglshaschildren(label)(true part){false part)

This checks if the glossary entry given by (label) has any sub-entries. If it does, (true part)
is performed, otherwise (false part).

\ifglshasparent(label)(true part)(false part)

This checks if the glossary entry given by (label) has a parent entry. If it does, (true part) is
performed, otherwise (false part).

\ifglshassymbol{(label)}{(true part)}{(false part)}

This checks if the glossary entry given by (label) has had the symbol field set. If it has,
(true part) is performed, otherwise (false part).

\ifglshaslong{(label)}{(true part)}{(false part)}

This checks if the glossary entry given by (label) has had the 1ong field set. If it has, (true
part) is performed, otherwise (false part). This should be true for any entry that has been
defined via \newacronym. There is no check for the existence of (label).

\ifglshasshort{(label)}{(true part)}{(false part)}

This checks if the glossary entry given by (label) has had the short field set. If it has, (true
part) is performed, otherwise (false part). This should be true for any entry that has been

235

16 Utilities

defined via \newacronym. There is no check for the existence of (label).

\ifglshasdesc{(label)}{(true part)}{(false part)}

This checks if the description field is non-empty for the entry given by (label). If it has,
(true part) is performed, otherwise (false part). Compare with:

\ifglsdescsuppressed{(label)}{(true part)}{(false part)}

This checks if the description field has been set to just \nopostdesc for the entry
given by (label). If it has, (true part) is performed, otherwise (false part). There is no check
for the existence of (label).

For all other fields you can use:

\ifglshasfield{(field)}{(label)}{(true part)}{(false part)}

This tests the value of the field given by (field) for the entry identified by (label). If the
value is empty or the default value, then (false part) is performed, otherwise (true part) is
performed. If the field supplied is unrecognised (false part) is performed and a warning
is issued. Unlike the above commands, such as \ifglshasshort, an error occurs if the
entry is undefined.

As from version 4.23, within (true part) you can use

\glscurrentfieldvalue

to access the field value. This command is initially defined to nothing but has no relevance
outside (true part). This saves re-accessing the field if the test is true. For example:

\ifglshasfield{useri}{sample}{, \glscurrentfieldvalue}{}

will insert a comma, space and the field value if the user1 key has been set for the entry
whose label is sample.
You can test if the value of the field is equal to a given string using;:

\ifglsfieldeqg{(label)}{(field)}{(string)}{(true)}{(false)}

In this case the (field) must be the field name not the key (see table 4.1). If the field isn’t
recognised, an error will occur. This command internally uses etoolbox’s \ifcsstring to
perform the comparison. The string is not expanded during the test.

The result may vary depending on whether or not expansion is on for the given field
(when the entry was defined). For example:

\documentclass{article}

\usepackage{glossaries}

236

16 Utilities

\newcommandx* {\foo} {FOO}

\newglossaryentry{samplel}{name={samplel},description={an example},
userl={FO0O0}}
\newglossaryentry{sample2} {name={sample2},description={an example},
userl={\foo}}

\begin{document}
\ifglsfieldeg{samplel}{useri}{FOO}{TRUE}{FALSE}.

\ifglsfieldeg{sample2}{useri}{FOO} {TRUE} {FALSE}.
\end{document}

This will produce “TRUE” in both cases since expansion is on, so \ foo was expanded to
“FOO” when sample2 was defined. If the tests are changed to:

\ifglsfieldeqg{samplel}{useri}{\foo} {TRUE}{FALSE}.
\ifglsfieldeg{sample2}{useri}{\foo} {TRUE}{FALSE}.

then this will produce “FALSE” in both cases. Now suppose expansion is switched off for
the userl key:

\documentclass{article}

\usepackage{glossaries}

\newcommandx*{\foo} {FOO}

\glssetnoexpandfield{useri}
\newglossaryentry{samplel}{name={samplel},description={an example},
userl={FO0O0}}
\newglossaryentry{sample2}{name={sample2},description={an example},

userl={\foo}}

\begin{document }
\ifglsfieldeg{samplel}{useri}{FOO} {TRUE} {FALSE}.

\ifglsfieldeg{sample2}{useri}{FOO}{TRUE}{FALSE}.
\end{document }

This now produces “TRUE” for the first case (comparing “FOO” with “FOO”) and
“FALSE” for the second case (comparing “\ foo” with “FOO”).
The reverse happens in the following:

\documentclass{article}

\usepackage{glossaries}

237

16 Utilities

\newcommandx* {\foo} {FOO}
\glssetnoexpandfield{useri}

\newglossaryentry{samplel}{name={samplel},description={an example},
userl={FO0O0}}
\newglossaryentry{sample2}{name={sample2},description={an example},
userl={\foo}}

\begin{document}
\ifglsfieldeg{samplel}{useri}{\foo} {TRUE}{FALSE}.

\ifglsfieldeqg{sample2}{useri}{\foo}{TRUE}{FALSE}.
\end{document}

This now produces “FALSE” for the first case (comparing “FOO” with “\foo”) and
“TRUE” for the second case (comparing “\ foo” with “\ foo”).
You can test if the value of a field is equal to the replacement text of a command using;:

\ifglsfielddefeq{(label)}{(field)}{(command)}{{true)}{(false)}

This internally uses etoolbox’s \ifdefstrequal command to perform the comparison.
The argument (command) must be a macro.
For example:

\documentclass{article}

\usepackage{glossaries}

\newcommand~*{\foo} {FOO}

\glssetnoexpandfield{useri}
\newglossaryentry{samplel}{name={samplel}, description={an example},
userl={F00}}

\newglossaryentry{sample2} {name={sample2},description={an example},

userl={\foo}}

\begin{document}
\ifglsfielddefeqg{samplel}{useri}{\foo} {TRUE}{FALSE}.

\ifglsfielddefeqg{sample2}{useri}{\foo}{TRUE}{FALSE}.
\end{document}

Here, the first case produces “TRUE” since the value of the useri field (“FOQ”) is the
same as the replacement text (definition) of \ foo (“FOO”). We have the result “F00” is
equal to “FO0”.

238

16 Utilities

The second case produces “FALSE” since the value of the useri field (“\fo0”) is not
the same as the replacement text (definition) of \foo (“FOQO”). No expansion has been
performed on the value of the useri field. We have the result “\foo” is not equal to
“FO0”.

If we add:

\newcommand{\FOO} {\foo}
\ifglsfielddefeqg{sample2}{useri} {\FOO} {TRUE}{FALSE}.

we now get “TRUE” since the value of the useri field (“\ foo”) is the same as the replace-
ment text (definition) of \FOO (“\foo”). We have the result “\ foo” is equal to “\ foo”.

There is a similar command that requires the control sequence name (without the leading
backslash) instead of the actual control sequence:

\ifglsfieldcseqg{(label)}{(field)}{{csname)} {(true)}{(false)}

This internally uses etoolbox’s \ifcsstrequal command instead of \ifdefstrequal.

16.3 Fetching and Updating the Value of a Field

In addition to the commands described in Section 9, the following may also be used to
fetch field information.

\glsentrytype{(label)}

Expands to the entry’s glossary type. No existence check is performed.

\glsentryparent{(label)}

Expands to the label of the entry’s parent. No existence check is performed.

\glsentrysort{(label)}

Expands to the entry’s sort value. No existence check is performed.
You can fetch the value of a given field and store it in a control sequence using:

\glsfieldfetch{(label)}{(field)}{(cs)}

where (label) is the label identifying the glossary entry, (field) is the field label (see table 4.1)
and (cs) is the control sequence in which to store the value. Remember that (field) is the in-
ternal label and is not necessarily the same as the key used to set that field in the argument
of \newglossaryentry (or the optional argument of \newacronym).

You can change the value of a given field using one of the following commands. Note
that these commands only change the value of the given field. They have no affect on any

239

16 Utilities

related field. For example, if you change the value of the text field, it won’t modify the
value given by the name, plural, first or any other related key.

In all the four related commands below, (label) and (field) are as above and (definition) is
the new value of the field.

\glsfielddef{(label)}{(field)}{(definition)}

This uses \def to change the value of the field (so it will be localised by any grouping).

\glsfieldedef{(label)}{(field)}{(definition)}

This uses \edef to change the value of the field (so it will be localised by any grouping).
Any fragile commands contained in the (definition) must be protected.

\glsfieldgdef{(label)}{(field)}{(definition)}

This uses \gdef to change the value of the field.

\glsfieldxdef{(label)}{(field)}{{(definition)}

This uses \xdef to change the value of the field. Any fragile commands contained in the
(definition) must be protected.

240

17 Prefixes or Determiners

The glossaries-prefix package that comes with the glossaries package provides additional
keys that can be used as prefixes. For example, if you want to specify determiners (such as
“a”,”an” or “the”). The glossaries-prefix package automatically loads the glossaries package

and has the same package options.
The extra keys for \newglossaryentry are as follows:

prefix The prefix associated with the text key. This defaults to nothing.
prefixplural The prefix associated with the plural key. This defaults to nothing.

prefixfirst The prefix associated with the first key. If omitted, this defaults to the
value of the prefix key.

prefixfirstplural The prefix associated with the firstplural key. If omitted, this
defaults to the value of the prefixplural key.

Example 30 (Defining Determiners)

Here’s the start of my example document:

\documentclass{article}

\usepackage[colorlinks] {hyperref}
\usepackage[toc,acronym] {glossaries—-prefix}

Note that I've simply replaced glossaries from previous sample documents with glossaries-
prefix. Now for a sample definition':

\newglossaryentry{sample} {name={sample}, %
description={an example}, %
prefix={a~},%
prefixplural={the\space}$%

}

Note that I've had to explicitly insert a space after the prefix since there’s no designated
separator between the prefix and the term being referenced. This not only means that
you can vary between a breaking space and non-breaking space, but also allows for the
possibility of prefixes that shouldn’t have a space, such as:

“u

ISingle letter words, such as “a” and “I” should typically not appear at the end of a line, hence the non-
breakable space after “a” in the prefix field.

241

17 Prefixes or Determiners

\newglossaryentry{oeil} {name={oeil},
plural={yeux},
description={eye},
prefix={1"'},
prefixplural={les\space}}

Where a space is required at the end of the prefix, you must use a spacing command, such
as \space, _, (backslash space) or ~ due to the automatic spacing trimming performed in
(key)=(value) options.

In the event that you always require a space between the prefix and the term, then you
can instead redefine

\glsprefixsep

to do a space. (This command does nothing by default.) For example:

\renewcommand{\glsprefixsep} {\space}

The prefixes can also be used with acronyms. For example:

\newacronym
[%

prefix={an\space},prefixfirst={a~}%
] {svm} {SVM} {support vector machine}

The glossaries-prefix package provides convenient commands to use these prefixes with
commands such as \gls. Note that the prefix is not considered part of the link text, so it’s
not included in the hyperlink (where hyperlinks are enabled). The options and any star or
plus modifier are passed on to the \gls-like command. (See Section 6 for further details.)

\pgls[{(options)] {{label)}[(insert)]

This is inserts the value of the prefix key (or prefixfirst key, on first use) in front of
\gls [(options)] {(label)} [(insert)].

\Pgls[({options)]{{label)}[{insert)]

If the prefix key (or prefixfirst, on first use) has been set, this displays the value of
that key with the first letter converted to upper case followed by \gls [(options)] { (label) }
[(insert)]. If that key hasn’t been set, this is equivalent to \G1ls [(options)] {(label)}
[(insert)].

\PGLS [{options)] {{label)} [{insert)]

As \pgls but converts the prefix to upper case and uses \GLS instead of \gls.

242

17 Prefixes or Determiners

\pglspl[{options)]{{label)}[{insert)]

This is inserts the value of the prefixplural key (or prefixfirstplural key, on first
use) in front of \glspl [(options)] { (label) } [(insert)].

\Pglspl[{options)]{(label)}[{insert)]

If the prefixplural key (or prefixfirstplural, on first use) has been set, this dis-
plays the value of that key with the first letter converted to upper case followed by \glspl
[(options)] { (label) } [(insert)]. If that key hasn’t been set, this is equivalent to \G1lspl
[(options)] { (label) } [(insert)].

\PGLSpl [{options)]{(label)}[{insert)]

As \pglspl but converts the prefix to upper case and uses \GLSpl instead of \glspl.
Example 31 (Using Prefixes)

Continuing from Example 30, now that I've defined my entries, I can use them in the
text via the above commands:

First use: \pgls{svm}. Next use: \pgls{svm}.
Singular: \pgls{sample}, \pgls{oeil}.
Plural: \pglspl{sample}, \pglspl{oeil}.

which produces:

First use: a support vector machine (SVM). Next use: an SVM. Singular: a sam-
ple, I'oeil. Plural: the samples, les yeux.

For a complete document, see sample-prefix.tex.

This package also provides the commands described below, none of which perform any
check to determine the entry’s existence.

\ifglshasprefix{(label)}{(true part)}{(false part)}

Does (true part) if the entry identified by (label) has a non-empty value for the prefix key.
This package also provides the following commands:

\ifglshasprefixplural{(label)}{(true part)}{(false part)}

Does (true part) if the entry identified by (label) has a non-empty value for the prefixplural
key.

243

17 Prefixes or Determiners

\ifglshasprefixfirst{(label)}{(true part)}{(false part)}

Does (true part) if the entry identified by (label) has a non-empty value for the prefixfirst
key.

\ifglshasprefixfirstplural{(label)}{(true part)}{(false part)}

Does (true part) if the entry identified by (label) has a non-empty value for the prefix-
firstplural key.

\glsentryprefix{(label)}

Displays the value of the prefix key for the entry given by (label).

\glsentryprefixfirst{ (label> }

Displays the value of the prefixfirst key for the entry given by (label).

\glsentryprefixplural{ (label> }

Displays the value of the prefixplural key for the entry given by (label). (No check is
performed to determine if the entry exists.)

\glsentryprefixfirstplural{(label)}

Displays the value of the prefixfirstplural key for the entry given by (label). (No
check is performed to determine if the entry exists.)

There are also variants that convert the first letter to upper case?:

2The earlier caveats about initial non-Latin characters apply.

244

17 Prefixes or Determiners

\Glsentryprefix{(label)}

\Glsentryprefixfirst{(label)}

\Glsentryprefixplural{({label)}

\Glsentryprefixfirstplural{(label)}

As with analogous commands such as \Glsentrytext, these commands aren’t ex-
pandable so can’t be used in PDF bookmarks.

Example 32 (Adding Determiner to Glossary Style)

You can use the above commands to define a new glossary style that uses the determiner.
For example, the following style is a slight modification of the list style that inserts the prefix
before the name:

\newglossarystyle{plist}{%
\setglossarystyle{list}$%
\renewcommand+*{\glossentry} [2]{%
\item[\glsentryitem{##1}%
\glsentryprefix{##1}%
\glstarget{##1}{\glossentryname {##1}}]
\glossentrydesc{##1}\glspostdescription\space ##21}%
}

If you want to change the prefix separator (\glsprefixsep) then the following is better:

\newglossarystyle{plist}{%
\setglossarystyle{list}%
\renewcommand*{\glossentry} [2]{%

\item[\glsentryitem{##1}%
\ifglshasprefix{##1}{\glsentryprefix{##1}\glsprefixsepl}{}%
\glstarget {##1}{\glossentryname{##1}}]

\glossentrydesc{##1}\glspostdescription\space ##2}%
}

The conditional is also useful if you want the style to use an uppercase letter at the start of
the entry item:

\newglossarystyle{plist}{%
\setglossarystyle{list}%

245

17 Prefixes or Determiners

\renewcommand*{\glossentry}[2]{%
\item[\glsentryitem{##1}%

\glstarget {##1}%

{%
\ifglshasprefix{##1}%
{\Glsentryprefix{##1l}\glsprefixsep\glossentryname{##1}}%
{\Glossentryname{##1}}%

}]

\glossentrydesc{##1}\glspostdescription\space ##2}%

246

18 Accessibility Support

Limited accessibility support is provided by the accompanying glossaries-accsupp package,
but note that this package is experimental and it requires the accsupp package which is
also listed as experimental. This package automatically loads the glossaries package. Any
options are passed to glossaries (if it hasn’t already been loaded). For example:

\usepackage [acronym] {glossaries—accsupp}

This will load glossaries with the acronym package option as well as loading glossaries-
accsupp.

If you are using the glossaries-extra extension package, you need to load glossaries-extra
with the accsupp package option. For example:

\usepackage [abbreviations,accsupp] {glossaries-extra}

This will load glossaries-extra (with the abbreviations option), glossaries and glossaries-accsupp
and make appropriate patches to integrate the accessibility support with the extension
commands.

The glossaries-accsupp package defines additional keys that may be used when defining
glossary entries. The keys are as follows:

access The replacement text corresponding to the name key.

textaccess The replacement text corresponding to the text key.

firstaccess The replacement text corresponding to the first key.

pluralaccess The replacement text corresponding to the plural key.
firstpluralaccess The replacement text corresponding to the firstplural key.
symbolaccess The replacement text corresponding to the symbol key.
symbolpluralaccess The replacement text corresponding to the symbolplural key.
descriptionaccess The replacement text corresponding to the description key.

descriptionpluralaccess The replacement text corresponding to the
descriptionplural key.

longaccess The replacement text corresponding to the 1ong key (used by
\newacronym).

247

18 Accessibility Support
shortaccess The replacement text corresponding to the short key (used by
\newacronym).

longpluralaccess The replacement text corresponding to the longplural key (used
by \newacronym).

shortpluralaccess The replacement text corresponding to the shortplural key
(used by \newacronym).

userlaccess The replacement text corresponding to the userl key.
user2access The replacement text corresponding to the user2 key.
user3access The replacement text corresponding to the user3 key.
user4access The replacement text corresponding to the user4 key.
user5access The replacement text corresponding to the users5 key.
user6access The replacement text corresponding to the useré6 key.

For example:

\newglossaryentry{tex} {name={\TeX},description={Document
preparation language},access={TeX}}

Now the link text produced by \gls{tex} will be:

\BeginAccSupp{ActualText={TeX}}\TeX\EndAccSupp{ }

The sample file sampleaccsupp. tex illustrates the glossaries-accsupp package.

If you prefer to use accessibility or tagpdf instead of accsupp then you’ll need to define
\gls@accsuppl@engine and \gls@accessibility before loading glossaries-accsupp.
See section 5 in the documented code for further details.

The PDF specification identifies three different types of replacement text:

Alt Description of some content that’s non-textual (for example, an image). A word break
is assumed after the content.

ActualText A character or sequence of characters that replaces textual content (for exam-
ple, a dropped capital, a ligature or a symbol). No word break is assumed after the
content.

E Expansion of an abbreviation to avoid ambiguity (for example, “St” could be short for
“saint” or “street”).

Many PDF viewers don’t actually support any type of replacement text. Some may
support “ActualText” but not “Alt” or “E”. PDFBox’s “PDFDebugger” tool can be used

to inspect the PDF content to make sure that the replacement text has been correctly set.

248

https://pdfbox.apache.org/

18 Accessibility Support

If you define abbreviations with \newacronym, the shortaccess field will automati-
cally be set to:

\glsdefaultshortaccess{(long)} {(short)}

With the base glossaries package this just expands to (long). With glossaries-extra this ex-
pands to (long) ((short)). This command must be fully expandable. It expands when the
abbreviation is defined.

As from glossaries-accsupp v4.45, the helper command used to identify the replacement
text depends on the field name. Previous versions just used:

\glsaccsupp{(replacement)}{{content)}

for all fields. This is defined to use ActualText, which is appropriate for symbols but not
for abbreviations.
As from v4.45, there’s a new helper command:

\glsfieldaccsupp{(replacement)}{{content)}{(field)}{(label)}

This will use \gls(field)accsupp ifit’s defined otherwise it will just use \glsaccsupp.
There are just two of these field commands for short and shortplural:

\glsshortaccsupp{(replacement)}{{content)}

which is like \glsaccsupp but uses E instead of ActualText and

\glsshortplaccsupp{{replacement)}{{content)}

which just does \glsshortaccsupp {(replacement)} { (content)}. Note that (field) indi-
cates the internal field name (such as shortpl) not the key name (such as shortplural).
See table 4.1.

Rather than explicitly using \BeginAccSupp, these helper commands can use:

\glsaccessibility[(options)]{(tag)}{{value)}{(content)}

where (tag) is one of E, A1t or ActualText. The replacement text for (content) should be
provided in (value). This does:

\BeginAccSupp{{tag)={(value)}, (options)}{content)\EndAccSupp/{}

but it also provides debugging information if debug=showaccsupp is used. If you explic-
itly use \BeginAccSupp instead of this command then the debugging support won’t be
available.

249

18 Accessibility Support

You can define your own custom helper commands for specific fields that require them.
For example:

\newcommand{\glssymbolaccsupp}[2]{%
\glsaccessibility[method=hex,unicode] {ActualText}{#1}{#2}%
}

This definition requires the replacement text to be specified with the hexadecimal character
code. For example:

\newglossaryentry{int}{name={int}, description={integral},
symbol={\ensuremath{\int}}, symbolaccess={222B}
}

If you are using glossaries-extra, then \glsfieldaccsupp will first test for the existence
of \glsxtr(category)(field)accsupp and \glsxtr(category)accsupp and then
for \gls(field)accsupp. For example:

\usepackage{siunitx}
\usepackage[accsupp] {glossaries—extra}

\glsnoexpandfields

\newcommand{\glsxtrsymbolaccsupp} [2]{%
\glsaccessibility[method=hex,unicode] {ActualText}{#1}{#2}%
}

\newcommand{\glsxtrunitaccsupp} [2] {\glsaccessibility{E}{#1}{#2}}

\newglossaryentry{cm}{name={\si{\centi\metre}},
access={centimetre},
description={centimetre},
category=unit

}

\newglossaryentry{int} {name={\ensuremath{\int}}, access={222B},
description={integral}, category={symbol}

}

The above uses the \glsxtr(category)accsupp form that doesn’t include the field
name. Remember that if you want to supply a command specifically for the name field
then it won’t be picked up by the text, plural, firstplural and first fields. You'd
need to supply them all. For example:

\newcommand{\glsnameaccsupp} [2] {%
\glsaccessibility[method=hex,unicode] {ActualText}{#1}{#2}%
}

\newcommand{\glstextaccsupp}{\glsnameaccsupp}
\newcommand{\glspluralaccsupp}{\glsnameaccsupp}
\newcommand{\glsfirstaccsupp}{\glsnameaccsupp}
\newcommand{\glsfirstplaccsupp}{\glsnameaccsupp}

250

18 Accessibility Support

See section 5 in the documented code (glossaries-code.pdf) for further details.
I recommend that you also read the accsupp documentation. See also the accessibility and
tagpdf packages.

251

19 Sample Documents

The glossaries package is provided with some sample documents that illustrate the various
functions. These should be located in the samples subdirectory (folder) of the glossaries
documentation directory. This location varies according to your operating system and
TeX distribution. You can use texdoc to locate the main glossaries documentation. For
example, in a terminal or command prompt, type:

$ texdoc -1 glossaries

This should display a list of all the files in the glossaries documentation directory with their
full pathnames. (The GUI version of t exdoc may also provide you with the information.)

If you can’t find the sample files on your computer, they are also available from
your nearest CTAN mirror at http://mirror.ctan.org/macros/latex/contrib/
glossaries/samples/. Each sample file listed below has a hyperlink to the file’s loca-
tion on the CTAN mirror.

The glossaries-extra package and bib2gls provide some additional sample files. There
are also examples in the Dickimaw Books Gallery.

If you prefer to use UTF-8 aware engines (xelatex or lualatex) remember that you'll
need to switch from fontenc & inputenc to fontspec where appropriate.

The $ symbol in the instructions indicates the command prompt. It should be omitted
when copying the text. If you get any errors or unexpected results, check that you have
up-to-date versions of all the required packages. (Search the log file for lines starting with
“Package: ”.) Where hyperref is loaded you will get warnings about non-existent refer-
ences that look something like:

pdfTeX warning (dest): name{glo:aca} has been
referenced but does not exist, replaced by a fixed one

These warnings may be ignored on the first XIgX run. (The destinations won’t be defined
until the glossary has been created.)

19.1 Basic

minimalgls.tex

This document is a minimal working example. You can test your installation using this
file. To create the complete document you will need to do the following steps:

1. Runminimalgls.tex through IXIEX either by typing

252

http://www.dickimaw-books.com/latex/novices/html/terminal.html
http://mirror.ctan.org/macros/latex/contrib/glossaries/samples/
http://mirror.ctan.org/macros/latex/contrib/glossaries/samples/
https://www.dickimaw-books.com/gallery/
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/minimalgls.tex

19 Sample Documents

$ pdflatex minimalgls

in a terminal or by using the relevant button or menu item in your text editor or front-
end. This will create the required associated files but you will not see the glossary in
the document.

2. If youhave Perl installed, runmakeglossaries on the document (Section 1.4). This
can be done on a terminal by typing:

$ makeglossaries minimalgls

otherwise do:

$ makeglossaries-lite minimalgls

If for some reason you want to call makeindex explicitly, you can do this in a termi-
nal by typing (all on one line):

$ makeindex -s minimalgls.ist -t minimalgls.glg -o

minimalgls.gls minimalgls.glo

See Section 1.4.4 for further details on using makeindex explicitly.

Note that if the file name contains spaces, you will need to use the double-quote
character to delimit the name.

3. Runminimalgls.tex through IXIEX again (as step 1)

You should now have a complete document. The number following each entry in the
glossary is the location number. By default, this is the page number where the entry was
referenced.

The acronym package option creates a second glossary with the label acronym (which
can be referenced with \acronymtype). If you decide to enable this option then there
will be a second set of glossary files that need to be processed by makeindex. If you use
makeglossaries ormakeglossaries-lite youdon’t need to worry about it, as those
scripts automatically detect which files need to be processed and will run makeindex (or
xindy) the appropriate number of times.

If for some reason you don’t want to use makeglossaries ormakeglossaries—1lite
and you want the acronym package option then the complete build process is:

$ pdflatex minimalgls
$ makeindex -s minimalgls.ist -t minimalgls.glg —-o minimalgls.gls
minimalgls.glo

$ makeindex -s minimalgls.ist -t minimalgls.alg -o minimalgls.acr
minimalgls.acn
$ pdflatex minimalgls

253

glossaries-extra.sty

19 Sample Documents

There are three other files that can be used as minimal working examples: mwe-gls.
tex, mwe—acr.tex and mwe—acr—desc.tex

If you want to try out the glossaries-extra extension package, you need to replace the
package loading line:

\usepackage [acronym] {glossaries}
with:
\usepackage [acronym, postdot, stylemods] {glossaries—extra}

Note the different default package options. (You may omit the acronym package option in
both cases if you only want a single glossary.) The glossaries-extra package internally loads
the base glossaries package so you don’t need to explicitly load both (in fact, it’s better to
let glossaries-extra load glossaries).

Next, replace:

\setacronymstyle{long-short}
with:
\setabbreviationstyle [acronym] {long-short}

The optional argument acronym identifies the category that this style should be applied
to. The \newacronym command provided by the base glossaries package is redefined by
glossaries-extra to use \newabbreviation with the category set to acronym.

If you prefer to replace \newacronym with \newabbreviation then the default cate-
gory is abbreviation so the style should instead be:

\setabbreviationstyle [abbreviation] {long-short}

This is actually the default category if the optional argument is omitted, so you can simply
do:

\setabbreviationstyle{long-short}

The long-short style is the default for the abbreviation category so you can omit this line
completely if you replace \newacronym. (The default style for the acronym category is
short-nolong, which only shows the short form on first use.)

As mentioned earlier, the acronym package option creates a new glossary with the label
acronym. This is independent of the acronym category. You can use the acronym package
option with either \newacronymor \newabbreviation

You may instead prefer to use the abbreviations package option, which creates a new
glossary with the label abbreviations:

\usepackage [abbreviations, postdot, stylemods] {glossaries—extra}

254

http://www.dickimaw-books.com/latex/minexample/
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/mwe-gls.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/mwe-gls.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/mwe-acr.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/mwe-acr-desc.tex

bib2gls

19 Sample Documents

This can again be used with either \newacronym or \newabbreviation, but the file
extensions are different. This isn’t a problem if you are using makeglossaries or
makeglossaries-lite. If you are explicitly calling makeindex (or xindy) then you
need to modify the file extensions. See the glossaries-extra user manual for further details.

If you use both the acronym and abbreviations package options then \newacronym
will default to the acronym glossary and \newabbreviation will default to the
abbreviations glossary.

If you want to try bib2gls, you first need to convert the document to use glossaries-extra
as described above. Then add the record package option. For example:

\usepackage [record, postdot, stylemods] {glossaries—extra}

Next you need to convert the entry definitions into the bib format required by bib2gls.
This can easily be done with convertgls2bib. For example:

$ convertgls2bib —--preamble-only minimalgls.tex entries.bib

This will create a file called entries.bib. Next, replace:
\makeglossaries

with:

\GlsXtrLoadResources[src=entries]

Now remove all the entry definitions in the preamble (\longnewglossaryentry,
\newglossaryentry and \newacronym or \newabbreviation).

The abbreviation style command must go before \G1lsxtrLoadResources. For exam-
ple (if you are using \newacronym):

\setabbreviationstyle[acronym] {long-short}
\GlsXtrLoadResources [src=entries]

Finally, replace:
\printglossaries

with:
\printunsrtglossaries
The document build is now:

$ pdflatex minimalgls

$ bib2gls minimalgls
$ pdflatex minimalgls

255

bib2gls

19 Sample Documents

sampleDB. tex

This document illustrates how to load external files containing the glossary definitions. It
also illustrates how to define a new glossary type. This document has the number list sup-
pressed and uses \glsaddall to add all the entries to the glossaries without referencing
each one explicitly. (Note that it’s more efficient to use glossaries-extra and bib2gls if you
have a large number of entries.) To create the document do:

$ pdflatex sampleDB
$ makeglossaries sampleDB
$ pdflatex sampleDB

$ pdflatex sampleDB
$ makeglossaries-lite sampleDB
$ pdflatex sampleDB

The glossary definitions are stored in the accompanying files databasel.tex and
database2.tex. If for some reason you want to call makeindex explicitly you must
have a separate call for each glossary:

1. Create the main glossary (all on one line):

$ makeindex —-s sampleDB.ist -t sampleDB.glg —o sampleDB.gls
sampleDB.glo

2. Create the secondary glossary (all on one line):

$ makeindex -s sampleDB.ist -t sampleDB.nlg —-o sampleDB.not
sampleDB.ntn

Note that both makeglossaries and makeglossaries—1ite do this all in one
call, so they not only make it easier because you don’t need to supply all the switches
and remember all the extensions but they also call make index the appropriate num-
ber of times.

If you want to switch to using bib2gls with glossaries-extra, you can convert databasel.
tex and database2.tex to bib files using convertgls2bib:

$ convertgls2bib databasel.tex databasel.bib
$ convertgls2bib database2.tex database2.bib

The document code then needs to be:

\documentclass{article}

\usepackage[colorlinks,plainpages=false] {hyperref}
\usepackage [record, postdot] {glossaries—extra}

256

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleDB.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/database2.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/database2.tex

19 Sample Documents

\newglossary*{punc}{Punctuation Characters}

\GlsXtrLoadResources [src={databasel},
selection=all, sort=en]

\GlsXtrLoadResources [src={database2}, type=punc,
selection=all, sort=letter—-case]

\begin{document}
\printunsrtglossaries
\end{document}

Note that the nonumberlist package option has been omitted. It’s not needed because there
are no locations in this amended document (whereas in the original sampleDB. tex lo-
cations are created with \glsaddall). The starred \newglossary=* is used since the
makeindex/xindy extensions are now irrelevant.

Instead of using makeglossaries you need to use bib2gls when you build the doc-
ument:

$ pdflatex sampleDB
$ bib2gls sampleDB

$ pdflatex sampleDB

Note that one bib2gls call processes all the indexing (rather than one call per glossary).
Unlike makeindex and xindy, bib2gls processes each resource set in turn, but the re-
source sets aren’t linked to a specific glossary. Multiple glossaries may be processed in
a single resource set or sub-blocks of a single glossary may be processed by multiple re-
source sets. In this example, there happens to be one resource set per glossary because each
glossary requires a different sort method. (A locale-sensitive alphabetical sort for the first
and a character code sort for the second.)
If you want letter groups, you need to use the ——group switch:

$ bib2gls —-—-group sampleDB

and use an appropriate glossary style.
See also bib2gls gallery: sorting, glossaries-extra and bib2gls: An Introductory Guide
and the bib2gls user manual.

19.2 Acronyms and First Use

sampleAcr.tex

This document has some sample abbreviations. It also adds the glossary to the table of
contents, so an extra run through IXTEX is required to ensure the document is up to date:

257

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleAcr.tex

glossaries-extra.sty

19 Sample Documents

$ pdflatex sampleAcr
$ makeglossaries sampleAcr

$ pdflatex sampleAcr
$ pdflatex sampleAcr

(or use makeglossaries-lite).

Note that if the glossary is at the start of the document and spans across multiple pages,
then this can cause the locations to be shifted. In that case, an extra makeglossaries
and IXTEX call are required. In this particular example, the glossary is at the end of the
document so it’s not a problem. It’s also not a problem for a glossary at the start of the
document if the page numbering is reset at the end of the glossary. For example, if the
glossary is at the end of the front matter in a book-style document.

" _

This document uses \ i fglsused to determine whether to use “a” or “an” in:
is \ifglsused{svm}{an}{a} \gls{svm}

This clumsy bit of code can be tidied up with the glossaries-prefix package. Since that pack-
age automatically loads glossaries and passes all its options to the base package it’s possible
to do a simple replacement of:

\usepackage[style=long, toc] {glossaries}

with:
\usepackage[style=long, toc] {glossaries—prefix}
The definition of svm now needs an adjustment:

\newacronym[description={statistical pattern recognition
technique~\protect\cite{svm}},
prefixfirst={a~},prefix={an\space}

] {svm} {svm} {support vector machine}

The clumsy text can now simply be changed to:
is \pgls{svm}

If you want to convert this sample document to use glossaries-extra, you may want the
patched version of the styles provided in glossary-long, in which case you can also add
stylemods:

\usepackage[stylemods, style=long] {glossaries—extra}

If you want to suppress all the other glossary style packages with nostyles, then you need
to specify exactly which package (or packages) that you do want:

\usepackage [nostyles, stylemods=long, style=long] {glossaries—extra}

258

19 Sample Documents

(Now that glossaries-extra is being used, there are more available “long” styles in the
glossary-longextra package, which you may prefer.)

If you want to use glossaries-prefix, you can either load it after glossaries-extra or (with at
least glossaries-extra v1.42) you can simply use the prefix package option.

Note that the toc package option has been dropped. This is the default with glossaries-
extra, so it doesn’t need to be specified now. The document build is now shorter:

$ pdflatex sampleAcr

$ makeglossaries sampleAcr
$ pdflatex sampleAcr

The third I£TEX call is no longer required to make the table of contents up-to-date. This
is because glossaries-extra provides boilerplate text on the first IXIEX call when the glossary
files are missing. This means that the glossary header is added to the toc file on the first
IZTEX call, whereas with just the base glossaries package, the header isn’t present until the
second IXTEX call. (As with just the base glossaries package, if the glossary occurs at the start
of the document without a page reset after it then part of the build process needs repeating
to ensure all referenced page numbers are up-to-date. This problem isn’t specific to the
glossaries package.)

The other different default setting is the post-description punctuation. The base package
has nopostdot=false as the default. This means that a full stop (period) is automatically
inserted after the description in the glossary. The extension package has nopostdot=true as
the default. If you want the original behaviour then you can use nopostdot=false or the
shorter synonym postdot.

The glossaries-extra package has different abbreviation handling that’s far more flexible
than that provided by the base glossaries package. The style now needs to be set with
\setabbreviationstyle instead of \setacronymstyle:

\setabbreviationstyle[acronym] {long-short-sc}
\newacronym{svm}{svm}{support vector machine}

(Note the different style name long-short-sc instead of long-sc-short and the optional argu-
ment acronym.) If you prefer to replace \newacronym with \newabbreviation then
omit the optional argument:

\setabbreviationstyle{long—-short-sc}
\newabbreviation{svm} {svm}{support vector machine}

(The optional argument of \setabbreviationstyle is the category to which the style
should be applied. If it’s omitted, abbreviation is assumed. You can therefore have different
styles for different categories.)

Finally, you need to replace \acrshort, \acrlong and \acrfull and their variants
with \glsxtrshort, \glsxtrlongand \glsxtrfull etc.

sampleAcrDesc.tex

This is similar to the previous example, except that the abbreviations have an associated
description. As with the previous example, the glossary is added to the table of contents,

259

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleAcrDesc.tex

glossaries-extra.sty

19 Sample Documents

so an extra run through IXTEX is required:

$ pdflatex sampleAcrDesc
$ makeglossaries sampleAcrDesc

$ pdflatex sampleAcrDesc
$ pdflatex sampleAcrDesc

This document uses the acronym package option, which creates a new glossary used by
\newacronym. This leaves the default main glossary available for general terms. How-
ever, in this case there are no general terms so the main glossary is redundant. The nomain
package option will prevent its creation. Obviously, if you decide to add some terms with
\newglossaryentry you will need to remove the nomain option as the main glossary
will now be required.

As with the previous example, if you want to convert this document to use glossaries-extra
you need to make a few modifications. The most obvious one is to replace glossaries
with glossaries-extrain the \usepackage argument. Again you can omit toc as this
is the default for glossaries-extra. As in the previous example, you may want to use the
patched styles. This document uses altlist which is provided by glossary-list, so the style can
be patched with stylemods.

\usepackage[acronym, nomain, style=altlist,stylemods] {glossaries—extra}

You may prefer to replace the acronym option with abbreviations, but this will change the file
extensions. If you use makeglossaries or makeglossaries-1lite you don’t need to
worry about it.

Again the style command needs to be changed:

\setabbreviationstyle[acronym] {long-short—-sc—-desc}

(Note the change in style name long-short-sc-desc instead of long-sc-short-desc and the op-
tional argument acronym.)

As with the previous example, if you prefer to use \newabbreviation instead of
\newacronym then you need to omit the optional argument:

\setabbreviationstyle{long-short-sc—-desc}

The original document uses:

\renewcommandx* {\glsseeitemformat} [1]{%
\acronymfont {\glsentrytext{#1}}}

to ensure that the cross-references (from the see key) use the acronym font. The new
abbreviation styles don’t use \acronymfont so this isn’t appropriate with glossaries-extra.
If you're using at least version 1.42 of glossaries-extra, you don’t need to do anything as it
automatically redefines \glsseeitemformat to take the style formatting into account. If
you have an earlier version you can redefine this command as follows:

\renewcommandx* {\glsseeitemformat} [1]{%
\ifglshasshort{#1}{\glsfmttext{#1}}{\glsfmtname{#1}}%
}

260

bib2gls

19 Sample Documents

This will just show the short form in the cross-reference. If you prefer the name instead
(which includes the short and long form) you can use:

\renewcommand=* {\glsseeitemformat} [1] {\glsfmtname{#1}}

The glossaries-extra package provides two additional cross-referencing keys secalso
and alias,so see={[see also]{svm}} can be replaced with a more appropriate key:

\newacronym[description={Statistical pattern recognition
technique using the ~“kernel trick''},

seealso={svm},

] {ksvm}{ksvm} {kernel support vector machine}

Finally, as with the previous example, you need to replace \acrshort, \acrlong and
\acrfull etc with \glsxtrshort, \glsxtrlongand \glsxtrfull etc.

If you want to convert this document so that it uses bib2gls, you first need to convert
it to use glossaries-extra, as above, but remember that you now need the record option:

\usepackage [acronym, nomain, style=altlist, record, postdot, stylemods]
{glossaries—-extra}

Now you need to convert the abbreviation definitions to the bib format required by
bib2gls. This can be done with:

$ convertgls2bib --preamble-only sampleAcrDesc.tex entries.bib

If you retained \newacronym from the original example file, then the new entries.bib
tile will contain entries defined with @acronym. For example:

@acronym{ksvm,
description = {Statistical pattern recognition technique
using the "~“kernel trick''},
seealso = {svm},
short = {ksvm},
long = {kernel support vector machine}

}

If you switched to \newabbreviation then the entries will instead be defined with
@abbreviation.

Next replace \makeglossaries with the resource command, but note that the abbre-
viation style must be set first:

\setabbreviationstyle[acronym] {long-short-sc-desc}
\GlsXtrLoadResources[src=entries, % terms defined in entries.bib
abbreviation-sort-fallback=long]

Another possibility is to make @acronymbehave as though it was actually Gabbreviation:

\setabbreviationstyle{long-short-sc-desc}
\GlsXtrLoadResources |[src=entries, abbreviation-sort-fallback=long,
entry-type-aliases={acronym=abbreviation}]

261

19 Sample Documents

Note that the category is now abbreviation not acronym so the optional argument of
\setabbreviationstyle needs adjusting.

If the sort field is missing (which should usually be the case), then both acronymand
@abbreviation will fallback on the short field (not the name field, which is usually set
by the style and therefore not visible to bib2gls). For some styles, as in this example, it’s
more appropriate to sort by the long form so the fallback is changed. (Remember that you
will break this fallback mechanism if you explicitly set the sort value.) See the bib2gls
manual for further details and other examples.

Remember to delete any \newacronym or \newabbreviation in the tex file. Finally
replace \printglossary with \printunsrtglossary. The document build is now:

$ pdflatex sampleAcrDesc

$ bib2gls sampleAcrDesc
$ pdflatex sampleAcrDesc

Note that it’s now much easier to revert back to the descriptionless style used in
sampleAcr.tex:

\setabbreviationstyle[acronym] {long—short—sc}
\GlsXtrLoadResources[src=entries, ignore-fields=description]

With the other options it would be necessary to delete all the description fields from the
abbreviation definitions in order to omit them, but with bib2gls you can simply instruct
bib2gls to ignore the description. This makes it much easier to have a large database of
abbreviations for use across multiple documents that may or may not require the descrip-
tion.

sampleDesc.tex

This is similar to the previous example, except that it defines the abbreviations using
\newglossaryentry instead of \newacronym. As with the previous example, the glos-
sary is added to the table of contents, so an extra run through IXTgX is required:

$ pdflatex sampleDesc
$ makeglossaries sampleDesc

$ pdflatex sampleDesc
$ pdflatex sampleDesc

This sample file demonstrates the use of the first and text keys but in general it’s
better to use \newacronym instead as it’s more flexible. For even greater flexibility use
\newabbreviation provided by glossaries-extra. For other variations, such as showing
the symbol on first use, you may prefer to make use of the post-link category hook. For
examples, see the section “Changing the Formatting” in glossaries-extra and bib2gls: An
Introductory Guide.

262

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleDesc.tex
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

glossaries-extra.sty

glossaries-extra.sty

19 Sample Documents

sampleFnAcrDesc.tex

This document has some sample abbreviations that use the footnote-sc-desc acronym: style.
As with the previous example, the glossary is added to the table of contents, so an extra
run through I£TEX is required:

$ pdflatex sampleFnAcrDesc
$ makeglossaries sampleFnAcrDesc

$ pdflatex sampleFnAcrDesc
$ pdflatex sampleFnAcrDesc

If you want to convert this sample document to use glossaries-extra, then you just need to
follow the same steps as for sampleAcr.tex with a slight modification. This time the
short-sc-footnote-desc abbreviation style is needed:

\setabbreviationstyle[acronym] {short-sc—footnote-desc}

The command redefinitions (performed with \ renewcommand) should now all be deleted
as they are no longer applicable.

You may prefer to use the short-sc-postfootnote-desc style instead. There are subtle differ-
ences between the postfootnote and footnote set of styles. Try changing the abbreviation style
to short-sc-footnote and compare the location of the footnote marker with the two styles.

This modified sample file now has a shorter build:

$ pdflatex sampleFnAcrDesc

$ makeglossaries sampleFnAcrDesc
$ pdflatex sampleFnAcrDesc

This is because the glossaries-extra package produces boilerplate text when the glossary file
is missing (on the first KXTEX run) which adds the glossary title to the table of contents (toc)
file.

sampleCustomAcr. tex

This document has some sample abbreviations with a custom acronym style. It also adds
the glossary to the table of contents, so an extra run through ETgX is required:

$ pdflatex sampleCustomAcr
$ makeglossaries sampleCustomAcr

$ pdflatex sampleCustomAcr
$ pdflatex sampleCustomAcr

This is a slight variation on the previous example where the name is in the form (long)
((short)) instead of (short) ((long)), and the sort key is set to the long form instead of
the short form. On first use, the footnote text is in the form (long): (description) (instead
of just the long form). This requires defining a new acronym style that inherits from the
footnote-sc-desc style.

The conversion to glossaries-extra starts in much the same way as the previous examples:

263

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleFnAcrDesc.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleCustomAcr.tex

19 Sample Documents

\usepackage [acronym, nomain, postdot, stylemods, style=altlist]
{glossaries—-extra}

The abbreviation styles have associated helper commands that may be redefined to make
minor modifications. These redefinitions should be done before the abbreviations are de-
fined.

The short-sc-footnote-desc abbreviation style is the closest match to the requirement, so
replace the \setacronymstyle command with:

\setabbreviationstyle[acronym] {short-sc—footnote-desc}

Again, you may prefer short-sc-postfootnote-desc. Both styles use the same helper com-
mands.

Next some adjustments need to be made to fit the new requirements. The name needs to
be (long) ((short)):

\renewcommand=* {\glsxtrfootnotedescname} {%
\protect\glslongfont {\the\glslongtok}%
\protect\glsxtrfullsep{\the\glslabeltok}$%
\protect\glsxtrparen{\protect\glsabbrvfont {\the\glsshorttok}}%
}

This command expands when the abbreviations are defined so take care to \protect
commands that shouldn’t be expanded at that point, and make sure that the token registers
that store the label, long and short values are able to expand. Similarly the sort value needs
adjusting:

\renewcommandx { \glsxtrfootnotedescsort}{\the\glslongtok}

The footnote for all the footnote abbreviation styles is produced with:

\glsxtrabbrvfootnote{(label>}{(text)}

where (text) is the singular or plural long form, depending on what command was used
to reference the abbreviation (\gls, \glspl etc). This can simply be redefined as:

\renewcommand=* { \glsxtrabbrvfootnote} [2] {\footnote{$%
#2: \glsentrydesc{#1}}}

This will mimic the result from the original sample document.
You may prefer to replace #2 with a reference to a specific field (or fields). For example:

\renewcommandx { \glsxtrabbrvfootnote} [2] {\footnote{%
\Glsfmtlong{#1} (\glsfmtshort{#1}): \glsentrydesc{#1}.}}

As with the earlier sampleAcrDesc. tex, you need to remove or change the redefinition
of \glsseeitemformat since \acronymfont is no longer appropriate.

In the original sampleCustomAcr.tex source code, I started the description with a
capital:
\newacronym[description={Statistical pattern recognition
technique using the "~“kernel trick''},

see={[see also]{svm}},
] {ksvm}{ksvm} {kernel support vector machine}

264

glossaries-extra.sty

19 Sample Documents

This leads to a capital letter after the colon in the footnote, which is undesirable, but I
would like to have the description start with a capital in the glossary. The solution to this
problem is easy with glossaries-extra. I start the description with a lowercase letter and set
the glossdesc attribute to firstuc:

\glssetcategoryattribute{acronym}{glossdesc}{firstuc}
The abbreviation definitions are modified slightly:

\newacronym[description={statistical pattern recognition
technique using the "~“kernel trick''},

seealso={svm},

] {ksvm}{ksvm} {kernel support vector machine}

Note the use of the seealso key, which is only available with glossaries-extra.
If you prefer to use \newabbreviation instead of \newacronym, then the category
needs to be abbreviation rather than acronym:

\glssetcategoryattribute{abbreviation} {glossdesc}{firstuc}

and the style command needs to be adjusted so that it omits the optional argument. For
example:

\setabbreviationstyle{short-sc-postfootnote-desc}

sample-FnDesc.tex

This example defines a custom display format that puts the description in a footnote on
tirst use.

$ pdflatex sample-FnDesc

$ makeglossaries sample-FnDesc
$ pdflatex sample-FnDesc

In order to prevent nested hyperlinks, this document uses the hyperfirst=false package op-
tion (otherwise the footnote marker hyperlink would be inside the hyperlink around the
link text which would result in a nested hyperlink).

The glossaries-extra package has category post-link hooks that make it easier to adjust
the formatting. The post-link hook is placed after the hyperlink around the link text, so
a hyperlink created by \ footnote in the post-link hook won’t cause a nested link. This
means that the hyperfirst=false option isn’t required:

\usepackage [postdot, stylemods] {glossaries—extra}

Never use commands like \gls or \glsdesc in the post-link hook as you can end up

with infinite recursion. Use commands that don’t themselves have a post-link hook,
such as \glsentrydesc or \glossentrydesc, instead.

In the original sample-FnDesc. tex file, the format was adjusted with:

265

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-FnDesc.tex

19 Sample Documents

\renewcommand~*{\glsentryfmt}{%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\footnote{\glsentrydesc{\glslabel}}}$%
}

This can be changed to:

\glsdefpostlink
{general}% category label
{\glsxtrifwasfirstuse{\footnote{\glsentrydesc{\glslabel}}}{}}

This sets the post-link hook for the general category (which is the default category for en-
tries defined with \newglossaryentry). If I added some abbreviations (which have a
different category) then this change wouldn’t apply to them.

The first paragraph in the document is:

First use: \gls{sample}.

So the PDF will have the word “sample” (the link text created by \gls{sample}) as a
hyperlink to the entry in the glossary followed by the footnote marker, which is a hyperlink
to the footnote. This is then followed by the sentence terminator. “First use: sample".”

It would look tidier if the footnote marker could be shifted after the full stop. “First use:
sample.!” This can easily be achieved with a minor modification:

\glsdefpostlink

{general}% category label

{\glsxtrifwasfirstuse
{\glsxtrdopostpunc{\footnote{\glsentrydesc{\glslabel}}}}%
{1%

}

You may prefer to use \glossentrydesc instead of \glsentrydesc. This will obey
the glossdesc attribute. If you append \glspostdescription, you can also pick up the
postdot package option. For example:

\glssetcategoryattribute{general}{glossdesc}{firstuc}

\glsdefpostlink
{general}% category label
{\glsxtrifwasfirstuse
{\glsxtrdopostpunc{\footnote{%
\glossentrydesc{\glslabel}\glspostdescription}}}%
{1%
}

Alternatively, you could just use \Glsentrydesc and explicitly append the full stop.

266

glossaries-extra.sty

19 Sample Documents

sample—custom—acronym. tex

This document illustrates how to define your own acronym style if the predefined styles
don’t suit your requirements.

$ pdflatex sample-custom-acronym

$ makeglossaries sample—custom—acronym
$ pdflatex sample-custom—acronym

In this case, a style is defined to show the short form in the text with the long form and
description in a footnote on first use. The long form is used for the sort value. The short
form is displayed in small caps in the main part of the document but in uppercase in the
list of acronyms. (So it’s a slight variation of some of the examples above.) The name is
set to the long form (starting with an initial capital) followed by the all caps short form
in parentheses. The final requirement is that the inline form should show the long form
followed by the short form in parentheses.

As with sampleFnAcrDesc. tex, the short-sc-footnote-desc and short-sc-postfootnote-desc
abbreviation styles produce almost the required effect so one of those can be used as a
starting point. However the final requirement doesn’t fit. It's now necessary to actually
define a custom abbreviation style, but it can mostly inherit from the short-sc-footnote-desc
or short-sc-postfootnote-desc style:

\newabbreviationstyle{custom—-fn}$%
{%

\GlsXtrUseAbbrStyleSetup{short-sc-footnote-desc}%

—~— e
o\

o

\GlsXtrUselbbrStyleFmts{short-sc-footnote-desc}%
\renewcommand*{\glsxtrinlinefullformat} [2]{%
\glsfirstlongfootnotefont {\glsaccesslong{##1}%
\ifglsxtrinsertinside##2\fi}%
\ifglsxtrinsertinside\else##2\fi\glsxtrfullsep{##1}%
\glsxtrparen{\glsfirstabbrvscfont{\glsaccessshort {##1}}}%
1%
\renewcommand*{\glsxtrinlinefullplformat} [2] (%
\glsfirstlongfootnotefont {\glsaccesslongpl{##1}%
\ifglsxtrinsertinside##2\fi}%
\ifglsxtrinsertinside\else##2\fi\glsxtrfullsep{##1}%
\glsxtrparen{\glsfirstabbrvscfont{\glsaccessshortpl{##1}}1%
1%
\renewcommandx {\Glsxtrinlinefullformat} [2]{%
\glsfirstlongfootnotefont {\Glsaccesslong{##1}%
\ifglsxtrinsertinside##2\fi}%
\ifglsxtrinsertinside\else##2\fi\glsxtrfullsep{##1}%
\glsxtrparen{\glsfirstabbrvscfont{\glsaccessshort{##1}}}%
1%
\renewcommand*{\Glsxtrinlinefullplformat} [2]({%
\glsfirstlongfootnotefont {\Glsaccesslongpl{##1}%

267

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-custom-acronym.tex

bib2gls

19 Sample Documents

\ifglsxtrinsertinside##2\fi}%
\ifglsxtrinsertinside\else##2\fi\glsxtrfullsep{##11}%
\glsxtrparen{\glsfirstabbrvscfont{\glsaccessshortpl {##1}}}%

o

}
}

(See the glossaries-extra user manual for further details.)
This new custom style now needs to be set:

\setabbreviationstyle[acronym] {custom-£fn}

Remember that if you decide to use \newabbreviation instead of \newacronym then
the category will be abbreviation not acronym:

\setabbreviationstyle{custom-fn}

This custom style simply adjusts the inline full form. There are other adjustments to be
made that apply to the inherited style. (The alternative is to design a new style from
scratch.) The footnote contains the long form followed by the description. This is the
same as the modification to an earlier example:

\renewcommandx { \glsxtrabbrvfootnote} [2] {\footnote{#2:
\glsentrydesc{#1}.}}

Aswith sampleCustomAcr. tex, if you specifically want the singular long form then you
can ignore the second argument. For example:

\renewcommandx {\glsxtrabbrvfootnote} [2] {\footnote
{\Glsfmtlong{#1}: \glsentrydesc{#1l}.}}

The name now needs to be the long form followed by the short form in parentheses, but
note the new requirement that the short form should now be in all capitals not small caps
and the long form should start with a capital letter.

\renewcommandx* {\glsxtrfootnotedescname} {%
\protect\glsfirstlongfootnotefont
{\makefirstuc{\the\glslongtok}}
(\protect\MakeTextUppercase{\the\glsshorttok})$%
}

The inherited abbreviation style uses the short form as the sort value by default. This
needs to be changed to the long form:

\renewcommand= {\glsxtrfootnotedescsort}{\the\glslongtok}

If you want to switch to using bib2gls, remember to set the abbreviation style be-

fore the resource command and change the default sort fallback field to 1ong, as with
sampleAcrDesc.tex

268

glossaries-extra.sty

19 Sample Documents

sample—dot—-abbr.tex

This document illustrates how to use the base post link hook to adjust the space factor after
abbreviations.

$ pdflatex sample-dot-abbr

$ makeglossaries sampledot-abbrf
$ pdflatex sample-dot-abbr

This example creates a custom storage key that provides a similar function to glossaries-
extra’s category key.

This example is much simpler with glossaries-extra. The custom storage key, which is
defined using:

\glsaddstoragekey{abbrtype} {word} {\abbrtype}

can now be removed.
The category key is set to initials for the initialisms (which are defined with the
custom \newacr command). The abbreviation styles can be set with:

\setabbreviationstyle[acronym] {long-short}
\setabbreviationstyle[initials]{long-short}

The discardperiod attribute will discard any full stop (period) following commands like
\gls:

\glssetcategoryattribute{initials}{discardperiod}{true}

(If you want to use the noshortplural attribute then you will also need to set the pluraldiscard-
period attribute.)

The first use is governed by the retainfirstuseperiod attribute. If set, the period won’t be
discarded if it follows the first use of commands like \g1s. This is useful for styles where
the first use doesn’t end with the short form. In this case, the first use of the long-short style
ends with a closing parenthesis, so the end of sentence might be clearer if the period is
retained:

\glssetcategoryattribute{initials}{retainfirstuseperiod} {true}

The insertdots attribute can automatically insert dots into the short form with a final space
factor adjustment:

\glssetcategoryattribute{initials}{insertdots}{true}
The custom helper command defined in the example needs to be slightly modified:

\newcommandx* { \newabbr} [1] []{%
\newabbreviation[category=initials,#1]}

The definitions need to be slightly modified to work with the insertdots attribute:

269

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-dot-abbr.tex

glossaries-extra.sty

19 Sample Documents

\newabbr{eg} {eg}{eg}

\newabbr{ie}{ie} {ie}
\newabbr{bsc} {B{Sc}} {Bachelor of Science}
\newabbr{ba} {BA} {BA}
\newabbr{agm} {AGM} {AGM}

(This makes it much easier to change your mind if you decide at a later date to omit the
dots, especially if you are storing all your definitions in a file that’s shared across multiple
documents, but note the need to group “Sc”.)

The “laser” definition remains unchanged:

\newacronym{laser}{laser}{light amplification by stimulated
emission of radiation}

The remaining code in the preamble must now be removed. (It will interfere with glossaries-
extra’s category post-link hooks.) No change is required in the document body.

See the glossaries-extra user manual for further details about category attributes and post-
link hooks.

sample—-font-abbr.tex

This document illustrates how to have different fonts for abbreviations within the style.
The document build is:

$ pdflatex sample-font—abbr

$ makeglossaries sample-font—abbr
$ pdflatex sample-font—abbr

The acronym mechanism provided by the base glossaries package isn’t well suited to hav-
ing a mixture of styles. This example provides a workaround that involves defining a new
storage key with \glsaddstoragekey that’s used to hold the font declaration (such as
\em).

\glsaddstoragekey{font}{}{\entryfont}

A new custom acronym style is defined that fetches the font information from this new key
so that it can be applied to the abbreviation. Some helper commands are also provided to
define the different types of abbreviation:

\newcommand~* {\newitabbr} [1] []{\newacronym[font=\em, #1]}
\newcommandx { \newupabbr} { \newacronym}

\newitabbr{eg}{e.qg.}{exempli gratia}
\newupabbr{bsc} {BSc} {Bachelor of Science}

This makes the first use of \gls{eg} appear as “exempli gratia (e.g.)” whereas the first
use of \gls{bsc} is “Bachelor of Science (BSc)”.

This example document is much simpler with glossaries-extra. First the \usepackage
command needs adjusting:

270

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-font-abbr.tex

19 Sample Documents

\usepackage [postdot, stylemods] {glossaries—extra}

The custom storage key can now be removed and also the custom acronym style. Now
replace the \setacronymstyle line with:

\setabbreviationstyle[acronym] {long-short—-em}
and change the definition of the helper commands:

\newcommand* { \newitabbr} {\newacronym}
\newcommandx { \newupabbr} { \newabbreviation}

Note that the font=\em, part has been removed from the definition of the first com-
mand and the second command uses \newabbreviation instead of \newacronym. This
means that \newitabbr will default to category=acronym and \newupabbr will de-
fault to category=abbreviation. The default style for the abbreviation category is long-
short, which is the required style for this example. This just means that only the acronym cat-
egory needs to have the style set (with the above \setabbreviationstyle command).

Finally, the \acrshort, \acrlongand \acrfull commands need to be replaced with
\glsxtrshort, \glsxtrlongand \glsxtrfull.

You may notice that the spacing after “e.g.” and “i.e.” isn’t correct. This is similar to the
sample-dot-abbr.tex example where the space factor needs adjusting. In this case I've
inserted the dots manually (rather than relying on the insertdots attribute). You can either
remove the dots and use insertdots with discardperiod:

\glssetcategoryattribute{acronym}{insertdots}{true}
\glssetcategoryattribute{acronym}{discardperiod}{true}

\newitabbr{eg}{eg}{exempli gratia}
\newitabbr{ie}{ie}{id est}

Or you can manually insert the space factor adjustment and only use the discardperiod at-
tribute:

\glssetcategoryattribute{acronym}{discardperiod}{true}

\newitabbr{eg}{e.g.\@}{exempli gratia}
\newitabbr{ie}{i.e.\@}{id est}

You don’t have to use the acronym category. You may prefer a different label that fits
better semantically. For example:

\setabbreviationstyle[latinabbr] {long-short—-em}

\newcommandx* { \newlatinabbr} [1] [] {\newabbreviation[category=latinabbr, #1]}
\glssetcategoryattribute{latinabbr} {insertdots}{true}
\glssetcategoryattribute{latinabbr}{discardperiod}{true}

\newlatinabbr{eg}{e.g.\@}{exempli gratia}
\newlatinabbr{ie}{i.e.\@}{id est}

271

bib2gls

19 Sample Documents

19.3 Non-Page Locations

sampleEq.tex

This document illustrates how to change the location to something other than the page
number. In this case, the equation counter is used since all glossary entries appear inside an
equation environment. To create the document do:

$ pdflatex sampleEq

$ makeglossaries sampleEq
$ pdflatex sampleEq

The glossaries package provides some location formats, such as \hyperrmand \hyperbf,
that allow the locations in the number list to hyperlink to the appropriate place in the
document (if hyperref has been used). Since it’s not possible to include the hyperlink name
in the indexing information with makeindex and xindy, the glossaries package has to
reform the name from a prefix and the location value.

Unfortunately it’s not always possible to split the link name into a prefix and location.
That happens with the equation counter in certain classes, such as the report class (which is
used in this example). This means that it’s necessary to redefine \theHequation so that
it has a format that fits the requirement:

\renewcommand*\theHequation{\theHchapter.\arabic{equation}}

If you don’t do this, the equation locations in the glossary won’t form valid hyperlinks.
Each glossary entry represents a mathematical symbol. This means that with Options 1-
3 it’s necessary to use the sort key. For example:

\newglossaryentry{Gamma} {name=\ensuremath{\Gamma (z) },
description=Gamma function, sort=Gamma}

If you want to switch to using bib2gls, the first change you need to make is to switch
from explicitly loading glossaries to loading glossaries-extra with the record package op-
tion. If record=only (or record without a value) is used, then the above redefinition of
\theHequation is still required. If record=nameref is used instead then the redefinition
of \theHequation isn’t required. You may also want to use the stylemods and postdot
options:

\usepackage [record=nameref, stylemods, postdot,
ucmark, style=long3colheader, counter=equation] {glossaries—extra}

The entries now need to be converted into the bib format required by bib2gls, which
can be done with convertgls2bib:

$ convertgls2bib —--preamble-only sampleEq.tex entries.bib

This will create a file called entries.bib that starts:

272

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleEq.tex

19 Sample Documents

% Encoding: UTF-8

@entry{Gamma,
name = {\ensuremath{\Gamma (z) }},
description = {Gamma function}

}

You may prefer to change Centry to @symbol. (This should be easy to do with your text
editor’s search and replace function.)

Note that the sort key has been omitted. This is because it typically shouldn’t be used.
The difference between using Centry and @symbol is that with @entry the sort value
will be obtained from the name but with @symbol the sort value will be obtained from the
label. If you explicitly use the sort key then you will break this behaviour. (If you try
this example out, notice the difference in the ordering if you switch between @entry and
@symbol. See also bib2gls gallery: sorting.)

Next replace \makeglossaries with

\GlsXtrLoadResources [src=entries]

If you have used record=nameref then you can remove the redefinition of \theHequation.
Next remove all the lines defining the glossary entries (since they’re now defined in the
bib file).

Finally, replace \printglossary with \printunsrtglossary

\printunsrtglossary[title={Index of Special Functions and
Notations}]

The rest of the document remains unchanged (unless you want to use \glsxtrfmt as
described in the following example).

sampleEgPg.tex

This is similar to the previous example, but the number lists are a mixture of page numbers
and equation numbers. This example adds the glossary to the table of contents, so an extra
IETEX run is required:

$ pdflatex sampleEgPg
$ makeglossaries sampleEgPg

$ pdflatex sampleEgPg
$ pdflatex sampleEqgPg

As with the previous example, entries are defined like this:

\newglossaryentry{Gamma} {name=\ensuremath{\Gamma (z) },
description=Gamma function, sort=Gamma}

The counter=equation package option is used to set the default indexing counter to equation.
This means that it has to be changed for indexing outside of any numbered equation. For
example:

\glslink[format=hyperbf, counter=page] {Gamma} {gamma function}

273

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleEqPg.tex

glossaries-extra.sty

19 Sample Documents

I've set the format to hyperbf to indicate that this is a primary reference. (Note that I'm
using \hyperbf not \textbf in order to include a hyperlink in the location.)

The link text here is almost identical to the description. The only difference is that the
description starts with a capital. If it started with a lowercase character instead, I could
simply use \glsdesc instead of \glslink. If I change the entry descriptions so that they
all start with a lowercase letter then I would need to create a custom glossary style that
used \Glossentrydesc instead of \glossentrydesc.

If T switch to using glossaries-extra I wouldn’t need a new glossary style. Instead I could
just use the glossdesc attribute to perform the case change. Remember that the first change
to make is to replace glossaries with glossaries-extra:

\usepackage[style=long3colheader, postdot, stylemods,
counter=equation] {glossaries—extra}

The entries are now all defined so that the description starts with a lowercase letter (except
for the descriptions that start with a proper noun). For example:

\newglossaryentry{Gamma} {name=\ensuremath{\Gamma (z) },
description=gamma function, sort=Gamma}

The glossdesc attribute needs setting:
\glssetcategoryattribute{general}{glossdesc}{firstuc}

This means that I can now use \glsdesc instead of \glslink.

It’s a bit cumbersome typing [format=hyperbf, counter=page] for each primary
reference, but glossaries-extra provides a convenient way of having a third modifier for
commands like \gls and \glstext. This needs to be a single punctuation character
(but not x or + which are already in use). For example:

\GlsXtrSetAltModifier{!}{format=hyperbf, counter=page}
Now \glsdesc! {Gamma} is equivalent to:
\glsdesc[format=hyperbf, counter=page] { Gamma }

So the text at the start of the “Gamma Functions” chapter is now just:
The \glsdesc!{Gamma} is defined as

which is much more compact. Similar changes can be made for the other instance of
\glslink where the link text is just the description:

The \glsdesc!{erf} is defined as
There are three other instances of \glslink, such as:

\glslink{Gamma} {\Gamma (x+1) }

274

19 Sample Documents

If I just use \gls{Gamma} then I would get I'(z) as the link text. For entries like this that
represent functions with variable parameters it would be more convenient (and help with
consistency) if a command was available to easily replace the parameters.

With the base glossaries package, one simple solution that works for this example is to
save just the function symbol in the symbol field, for example:

\newglossaryentry{Gamma} {name=\ensuremath{\Gamma (z) },
symbol={\ensuremath{\Gamma}},
description=gamma function, sort=Gamma}

and then use:
\glssymbol {Gamma} [(\Gamma (x+1))]
(which includes the function parameter inside the link text) or just:

\glssymbol {Gamma} (\Gamma (x+1))

(which has the function parameter after the link text). This is a convenient approach where
the extra material can simply follow the symbol, and it can also be used with glossaries-
extra.

The glossaries-extra package provides another possibility. It requires a command that
takes a single argument, for example:

\newcommand{\Gammafunction} [1] {\Gamma (#1) }

The control sequence name (the command name without the leading backslash) is stored
in the field identified by the command \GlsXtrFmtField (this should be the internal
field name not the key name, see table 4.1). The default is useri which corresponds
to the userl key. This means that the Gamma entry would need to be defined with
userl=Gammafunction. With this approach, each function entry would need a separate
associated command.

Another approach is to store the parameterless function in the symbol key (as earlier)
and have a more generic command that uses this symbol. This requires the entry label,
which can be obtained with \glslabel within the link text:

\newcommand{\entryfunc} [1] {\glsentrysymbol{\glslabel} (#1)}

(Obviously, this command can’t be used outside of the link text or post-link hooks since it
uses \glslabel.)

So the entry now needs the parameterless function in symbol and the control sequence
name of this generic command in user1. For example:

\newglossaryentry{Gamma} {name=\ensuremath{\Gamma (z) },
symbol={\ensuremath{\Gamma}}, userl=entryfunc,
description=gamma function, sort=Gamma}

275

19 Sample Documents

(This doesn’t need to be done for the C and G entries since they’re constants not functions.)
You may want to consider providing helper commands to make the functions easier to
define. For example:

\newcommand{\func} [2] {#1 (#2) }
\newcommand{\entryfunc} [1] {\func{\glsentrysymbol{\glslabel}} {#1}}
\newcommand{\newfunc} [5][]{%
\newglossaryentry{#2}{name={\ensuremath{\func{#3}{#4}}},

symbol={#3},

userl={entryfunc},

description={#5},

sort={#21}, #1

o\°

}
}

The entries can now be defined using this custom \newfunc command. For example:

\newfunc{Gamma} {\Gamma} {z} {gamma function}

\newfunc[sort=gammal] {gamma} {\gamma} {\alpha, x}{lower
incomplete gamma function}

\newfunc [sort=Gamma2] {iGamma} { \Gamma} { \alpha, x} {upper
incomplete gamma function}

Note that in \newfunc the symbol key doesn’t have its value encapsulated with
\ensuremath so \glssymbol will need to explicitly be placed in math mode. If you
switch to a glossary style that displays the symbol, you will either need to adjust the def-
inition of \newfunc to use \ensuremath in the symbol field or you can add the encap-
sulation with the glosssymbolfont attribute.

Now \glslink{znu}{Z_\nu} can simply be replaced with \glssymbol{Znu} (no
parameter is required in this case). For the other cases, where the parameter is differ-
ent from that given in the text field (which is obtained from the name), you can use
\glsxtrfmt. For example, \glslink{Gamma} {\Gamma (x+1)} can now be replaced
with:

\glsxtrfmt{Gamma} {x+1}

This effectively works like \ gls1ink but omits the post-link hook. (See the glossaries-extra
user manual for further details.)

Don’t use \glsxtrfmt within the argument of another \glsxtrfmt command (or
inside any other link text).

Similarly \glslink{Gamma} { \Gamma (\alpha) } can now be replaced with:

\glsxtrfmt{Gamma} {\alpha}

Note that it’s still possible to use:

\glssymbol{Gamma} [(\alpha)]

276

bib2gls

19 Sample Documents

You may prefer to define a helper command that makes it easier to switch between your
preferred method. For example:

\newcommandx {\Fn} [3] []{\glssymbol [#1] {#2} [(#3)]1}
or:
\newcommand {\Fn} [3] []{\glsxtrfmt [#1] {#2}{#3}}

If you want to convert this example so that it works with bib2gls, first convert it to use
glossaries-extra (as described above), and then follow the instructions from sampleEqg. tex.
The convertgls2bib application recognises \newcommand so it will be able to parse the
custom \newfunc commands.

Note that bib2gls allows you to separate the locations in the number list into dif-
ferent groups according to the counter used for the location. This can be done with the
loc-counters resource option. It's also possible to identify primary formats (such as
hyperbf used in this example) using the primary-location-formats option. The
primary locations can then be given a more prominent position in the number list. See the
bib2gls user manual for further details.

sampleSec.tex

This document also illustrates how to change the location to something other than the page
number. In this case, the section counter is used. This example adds the glossary to the
table of contents, so an extra IXIEX run is required:

$ pdflatex sampleSec
$ makeglossaries sampleSec

$ pdflatex sampleSec
$ pdflatex sampleSec

Note that there are conflicting location formats, which trigger a warning from makeindex:

Warning (input = sampleSec.glo, line = 6; output =
sampleSec.gls, line = 9):

—— Conflicting entries: multiple encaps for the same page
under same key.

Warning (input = sampleSec.glo, line = 2; output =
sampleSec.gls, line = 10):

—-— Conflicting entries: multiple encaps for the same page
under same key.

This is the result of indexing an entry multiple times for the same location! with different
values of the format key. In this case, it’s caused by three references to the ident entry
in section 2.1:

Imakeindex assumes that the location is a page number

277

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleSec.tex

bib2gls

19 Sample Documents

\gls[format=hyperit] {ident}
\glspl{ident} % default format=glsnumberformat
\gls« [format=hyperbf] {ident}

If you use themakeglossaries Perlscriptit will detect the warnings in the makeindex
transcript file and attempt to fix the conflict by removing entries from the glo file:

Multiple encaps detected. Attempting to remedy.
Reading sampleSec.glo...

Writing sampleSec.glo...

Retrying

(Range formats have highest precedence. The default glsnumberformat has the lowest
precedence.)

If youuse makeglossaries-1lite or call makeindex directly then the problem won’t
be fixed and the glossary will end up with the rather odd number list for the identity matrix
entry consisting of three references to section 2.1: the first in the default font, followed
by bold (hyperbf) and then italic (hyperit), which results in 2.1, 2.1, 2.1. If you use
makeglossaries then only the bold entry (2.1) will be present.

If you switch to xindy:

\usepackage [xindy, style=altlist, toc,counter=section] {glossaries}

then the conflict will be resolved using the number format attribute list order of priority.
In this case, gl snumberformat has the highest priority. This means that only the upright
medium weight entry (2.1) will be present. The simplest way of altering this is to provide
your own custom format. For example:

\newcommandx { \primary} [1] {\hyperit {#1}}
\GlsAddXdyAttribute{primary}

and change \gls[format=hyperit] to \gls[format=primary] etc. This will give
format=primary the highest priority. (It's also better practice to provide this kind of
semantic command.)

With bib2gls, you can supply rules to deal with location format conflicts, as illustrated
below.

In order to switch to bib2gls, first replace glossaries with glossaries-extra, and add the
record package option. Remember that glossaries-extra has a different set of defaults and
you may also want to patch the predefined base styles. For example:

\usepackage[style=altlist,postdot, stylemods, counter=section]
{glossaries—-extra}

The entry definitions now need to be converted into bib2gls format and saved in a
bib file (say, entries.bib). You can use convertgls2bib:

$ convertgls2bib —-preamble-only sampleSec.tex entries.bib

Next replace \makeglossaries with:

278

19 Sample Documents

\GlsXtrLoadResources[src=entries]

and remove all the \newglossaryentry commands.
Finally, replace \printglossaries with \printunsrtglossaries. The document
build is now:

$ pdflatex sampleSec

$ bib2gls sampleSec
$ pdflatex sampleSec

As with the original example, there’s still a location format conflict, which bib2gls warns
about:

Warning: Entry location conflict for formats: hyperbf and hyperit
Discarding: {ident}{}{section}{hyperbf}{2.1}
Conflicts with: {ident}{}{section}{hyperit}{2.1}

This means that it has discarded the bold location and kept the italic one. (As with
makeglossaries, range formats have the highest priority and glsnumberformat has
the lowest.)

It would be better if the conflict could be merged into a single location that was both
bold and italic. To achieve this, it’s first necessary to define a command that produces this
effect:

\newcommandx { \hyperbfit} [1] {\textbf{\hyperit{#1}}}

Now bib2gls needs to be invoked with the appropriate mapping with the ——map-format
or —m switch:

$ bib2gls -m "hyperbf:hyperbfit, hyperit:hyperbfit" sampleSec

If you are using arara the directive should be:

o\

arara: bib2gls: { mapformats: [[hyperbf, hyperbfit],
arara: —--> [hyperit, hyperbfit]] }

o

If you try out this example, notice the difference between record=only and record=nameref.
If you use the latter, the locations will now be the section titles rather than the section
numbers. If you use the nameref setting you can customize the location by defining the
command:

\glsxtr{counter)locfmt{{location)}{{title)}

In this case the counter is section, so the command should be \glsxtrsectionlocfmt.
It takes two arguments: the first is the location and the second is the title. For example:

\newcommand~*{\glsxtrsectionlocfmt} [2] {\S#1 #2}

(The only command of this type that is defined by default is the one for the equation counter,
\glsxtrequationlocfmt.) Make sure that you have at least version 1.42 of glossaries-
extra.

279

19 Sample Documents

19.4 Multiple Glossaries

See also sampleSort . tex in Section 19.5, which has three glossaries.

sampleNtn.tex

This document illustrates how to create an additional glossary type. This example adds
the glossary to the table of contents, so an extra ETEX run is required:

$ pdflatex sampleNtn
$ makeglossaries sampleNtn

$ pdflatex sampleNtn
$ pdflatex sampleNtn

Note that if you want to call make index explicitly instead of using the makeglossaries
or makeglossaries-1lite scripts then you need to call makeindex twice:

1. Create the main glossary (all on one line):

$ makeindex -s sampleNtn.ist -t sampleNtn.glg -o
sampleNtn.gls sampleNtn.glo

2. Create the secondary glossary (all on one line):

$ makeindex -s sampleNtn.ist -t sampleNtn.nlg -o

sampleNtn.not sampleNtn.ntn

This document creates a new glossary using:

\newglossary[nlg] {notation}{not}{ntn}{Notation}

This defines a glossary that can be identified with the label not at ion with the default title
“Notation”. The other arguments are the file extensions required with Options 2 and 3. For
those two options, the glossaries package needs to know the input and output files required
by makeindex or xindy.

(The optional argument is the file extension of the indexing transcript file, which glos-
saries doesn’t need to know about, but it writes the information to the aux file for the
benefit of makeglossaries and makeglossaries—1lite.)

If you switch to a different indexing option then these file extensions aren’t required, in
which case it’s simpler to use the starred form:

\newglossary=*{notation} {Notation}

This example uses a label prefixing system? to differentiate between the different types
of entries. For example, the term “set” is defined as:

\newglossaryentry{gls:set}{name=set,
description={A collection of distinct objects}}

2If you use babel with a language that makes the colon character : active you will need to change the prefix.

280

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleNtn.tex

glossaries-extra.sty

bib2gls

19 Sample Documents

and the set notation is defined as:

\newglossaryentry{not:set}{type=notation,
name={\ensuremath{\mathcal{S}}},
description={A \gls{gls:set}},sort={S}}

Notice that the latter description contains \gls. This means you shouldn’t use \glsdesc
with this entry otherwise you will end up with nested links.

The glossaries-extra package provides a command for use in within field values to prevent
nested link text:

\glsxtrp{(field)}{(label)}

There are convenient shortcuts for common fields: \glsps{(label)} (for the short
field) and \glspt {(label)} (for the text field). So the set notation definition can be
modified:

\newglossaryentry{not:set}{type=notation,

name={\ensuremath{\mathcal{S}}},
description={A \glspt{gls:set}}, sort=S}

This will stop the inner reference from causing interference if you use \glsdesc. It will
also suppress indexing within the glossary but will have a hyperlink (if hyperref is used).

The glossaries-extra package provides a way of defining commands like \gls that auto-
matically insert a prefix. For example:

\glsxtrnewgls{not:}{\sym}
\glsxtrnewglslike{gls:}{\term}{\termpl}{\Term} {\Termpl}

(there’s no point providing commands for plural or case-changing with symbols). Now
\gls{not:set} canbe replaced with \sym{set} and \gls{gls:set} can be replaced
with \term{set}.

These two commands are primarily provided for the benefit of bib2gls as the infor-
mation is written to the aux file. This allows bib2gls to recognise the custom com-
mands if they have been used in the bib files. When combined with 1abel-prefix and
ext-prefixes (see below) this makes it much simpler to change the prefixes if necessary.

If you want to convert this document to use bib2gls, remember that you need the
record or record=nameref option. For example:

\usepackage [record, postdot, stylemods] {glossaries—extra}

As with earlier examples, convertgls2bib can be used to convert the entry definitions
into the required bib format. You may prefer to split the entries into separate files accord-
ing to type.® This is useful if you want to reuse a large database of entries across multiple
documents as it doesn’t lock you into using a specific glossary. For example:

$ convertgls2bib —--split-on-type ——preamble-only sampleNtn.tex

entries.bib

This will create a file called ent ries.bib that contains the entries that didn’t have a t ype
assigned in the original file, such as:

3Requires at least bib2g1s v2.0.

281

19 Sample Documents

@entry{gls:set,
name = {set},
description = {A collection of distinct objects}

}

It will also create a file called notation.bib that contains the entries that had the type
set to notation in the original file, such as:

@entry{not:set,
name = {\ensuremath{\mathcal{S}}},
description = {A \glspt{gls:set}}
}

Note that the type field has been removed. The above entry in the notation.bib file
references a term in the entries.bib file. It’s possible to strip all the prefixes from the
bib files and get bib2gls to automatically insert them. In which case, this cross-reference
needs adjusting to indicate that it’s referring to an entry in another file. This can be done
with one of the special ext (n) . prefixes:

@entry{set,
name = {\ensuremath{\mathcal{S}}},
description = {A \glspt{extl.set}}
}

The corresponding term in the entries.bib file is now:

@entry{set,
name = {set},
description = {A collection of distinct objects}

}
Now you can replace \makeglossaries with:

\GlsXtrLoadResources[src={entries},label-prefix={gls:}]
\GlsXtrLoadResources |[src={notation}, type=notation,
label-prefix={not:},ext—-prefixes={gls:}]

Remove all the \newglossaryentry definitions and replace \printglossaries with
\printunsrtglossaries.

Regardless of how many resource sets the document contains, only one bib2gls call is
required:

$ pdflatex sampleNtn
$ bib2gls sampleNtn

$ pdflatex sampleNtn

You may notice that the ordering in the notations list has changed from the original. This
is because the sort field was automatically removed by convertgls2bib, so the entries
are now sorted according to the name field (since they are defined with entry). You can
use your text editor’s search and replace function to replace all instances of Gent ry with
@symbol in the notations.bib file so that, for example, the set definition becomes:

282

bib2gls

19 Sample Documents

@symbol {set,
name = {\ensuremath{\mathcal{S}}},
description = {A \glspt{extl.set}}
}

Now these @symbol entries will be sorted according to their label. (The original label in
the bib file, not the prefixed label.) This will put them in the same order as the original
document. (See the “Examples” chapter of the bib2gls user manual for examples of
varying the sorting and also bib2gls gallery: sorting.)

sample—dual.tex

This document illustrates how to define an entry that both appears in the list of acronyms
and in the main glossary. To create the document do:

$ pdflatex sample-dual

$ makeglossaries sample-—dual
$ pdflatex sample-dual

This defines a custom command \newdualentry that defines two entries at once (a nor-
mal entry and an abbreviation). It uses \ gl sadd to ensure that if one is used then the other
is automatically indexed:

\newcommand* { \newdualentry} [5] []{%

Q

% main entry:
\newglossaryentry{main—-#2} {name={#41}, %
text={#3\glsadd{#2}}, %
description={#5},%
#1% additional options for main entry
1%
% abbreviation:
\newacronym{#2} {#3\glsadd{main-#2}}{#4}%
}

A sample dual entry is defined with this command:

\newdualentry{svm}% label
{SVM}% abbreviation
{support vector machine}% long form
{Statistical pattern recognition technique}$% description

This defines an acronym with the label svm that can be referenced with \gls {svm} but it
also defines an entry with the label main-svm. This isn’t used in the document with \gls
but it’s automatically added from the \glsadd{main-svm} in the short form of svm.

For this trivial document, this kind of dual entry is redundant and unnecessarily leads
the reader down a trail, first to the list of acronyms and from there the reader then has to go
to the main glossary to look up the description. It’s better to simply include the description
in the list of acronym:s.

If you want to switch over to bib2gls, first change to glossaries-extra:

283

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-dual.tex

19 Sample Documents

\usepackage [record, postdot, stylemods, acronym] {glossaries—extra}

Next, the definition needs to be converted to the bib format required by bib2gls. If you
do:

$ convertgls2bib —-preamble-only sample—dual.tex entries.bib

then convertgls2bib will report the following;:

Overriding default definition of \newdualentry with custom
definition. (Change \newcommand to \providecommand if you want
\newdualentry[options] {label}{short}{long}{description}
converted to @dualabbreviationentry.)

This is because convertgls2bib has its own internal definition of \newdualentry,
but if it encounters a new definition that will override its default. If you want to re-
tain convertgls2bib’s definition (recommended) then just replace \newcommand with
\providecommand in the document source and rerun convertgls2bib.

With \providecommand, the new entries.bib file created by convertgls2bib
contains:

@dualabbreviationentry{svm,
short = {SVM},
description = {Statistical pattern recognition technique},
long = {support vector machine}

}
If \newcommand is retained, it will instead contain:

@entry{main-svm,
name = {support vector machine},
description = {Statistical pattern recognition technique},
text = {SVM\glsadd{svm}}

@acronym{svm,
short = {SVM\glsadd{main-svm}},
long = {support vector machine}

}

In the first case, bib2gls creates two linked entries using its primary-dual mechanism. In
the second case, bib2gls creates two entries that simply reference each other.

Assuming that your entries.bib filejust contains €dualabbreviationentry, now
replace \makeglossaries with:

\GlsXtrLoadResources[src=entries, % entries.bib
type=acronym, dual-type=main,dual-prefix={main-}]

Then remove the definition of \newdualentry and the entry definition. Finally, replace
\printglossaries with \printunsrtglossaries. The document build is:

284

19 Sample Documents

$ pdflatex sample-dual
$ bib2gls sample-dual

$ pdflatex sample-dual

If, instead, your entries.bib file contains separate Gentry and @acronym, then you
need:

\setabbreviationstyle[acronym] {long-short}
\GlsXtrLoadResources [src=entries]

If you need number lists, the document build is now

$ pdflatex sample-dual
$ bib2gls sample-dual
$ pdflatex sample-dual

$ bib2gls sample-dual
$ pdflatex sample-dual

and this time bib2gls complains about the use of \glsadd within the short and text
fields as this can be problematic. (The extra bib2gls and IXIEX calls are to ensure the
number list is up to date for the main-svmentry, which can only be indexed with \glsadd
after svm has been defined.)

Dual entries make much more sense when one entry is for a glossary with the description
displayed but no number list, and the other is for the index without the description but
with a number list. This can be created with by replacing @dualabbreviationentry
with @dualindexabbreviation:

@dualindexabbreviation{svm,

description = {Statistical pattern recognition technique},
short = {SVM},
long = {support vector machine}

}
This can be mixed with @index terms for example:

@index{machlearn,
name={machine learning}

}

The document needs modifying:

\documentclass{article}

\usepackage [record, postdot,

nostyles, stylemods={bookindex,1list},% only want bookindex and list styles

acronym] {glossaries—-extra}

\setabbreviationstyle{long-short-desc}
\GlsXtrLoadResources [src=entries, % entries.bib

285

19 Sample Documents

dual-type=acronym,
label-prefix={idx.},dual-prefix={},
combine-dual-locations={primary}]

\glsxtrnewglslike{idx.} {\idx} {\idxpl}{\Idx}{\Idxpl}

\begin{document}
\gls{svm} and \idx{machlearn}.

\printunsrtglossary[type=main,style=altlist]
\printunsrtglossary[style=bookindex,title={Index}]
\end{document}

See the bib2gls manual for further details.

sample—-langdict.tex

This document illustrates how to use the glossaries package to create English to French
and French to English dictionaries. To create the document do:

$ pdflatex sample-langdict

$ makeglossaries sample-langdict
$ pdflatex sample-langdict

This example uses the nomain package option to prevent the creation of the main glossary.
This means that the document must provide its own glossaries:

\newglossary[glg] {english}{gls}{glo}{English to French}
\newglossary[flg] {french}{flx}{flo}{French to English}

This means that if you want to call makeindex explicitly you need to take these new
extensions into account:

$ makeindex -s sample-langdict.ist -t sample-langdict.glg -o
sample—-langdict.gls sample-langdict.glo

$ makeindex -s sample-langdict.ist -t sample-langdict.flg -o
sample—-langdict.flx sample-langdict.flo

As with the previous example, this document provides a custom command that defines
two related entries:

\newcommandx* { \newword} [4] {%
\newglossaryentry{en—#1} {type=english, name={#2},description={#3 #4}}%
\newglossaryentry{fr—#1}{type=french, name={#3 #4},text={#4}, sort={#4},

description={#2}1}%

}

This has the syntax:

\newword{(label)}{{english)}{(determiner)}{(french)}

286

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-langdict.tex

bib2gls

19 Sample Documents

(Note that this trivial example doesn’t take plurals into account.) This custom command
will define two terms with labels en-(1abel) (for the English term) and fr—(label) (for
the French term). So

\newword{cat}{cat}{le}{chat}
is equivalent to:

\newglossaryentry{en—-cat}{type=english, name={cat},description={le chat}}
\newglossaryentry{fr—cat}{type=french, name={le chat}, sort={chat},
description={cat}}

Unlike the previous example (sample-dual.tex), there’s no link between these two
entries. If the document only uses \gls{en-cat}, then the en-cat entry will appear in
the english glossary but the fr—cat entry won’t appear in the french one.

If you want to switch to bib2gls then you first need to convert the document so that
it uses glossaries-extra, but include the prefix option to ensure that glossaries-prefix is also
loaded:

\usepackage [record, prefix,postdot, stylemods, nomain] {glossaries—extra}

You don’t need to worry about file extensions now, so it’s simpler to use the starred form
of \newglossary:

\newglossary*{english}{English to French}
\newglossary*{french}{French to English}

Next the entries need to be converted to the bib format required by bib2gls:

$ convertgls2bib --only-preamble sample-langdict.tex entries.bib

This creates the file entries.bib that contains entries defined like:

@entry{en-cat,
name = {cat},
description = {le chat},
type = {english}

}

@entry{fr-cat,
name = {le chat},
description = {cat},
text = {chat},
type = {french}

}

(Note that the sort field has been omitted.)
This would be more flexible, and much briefer, if these entries were defined using
bib2gls’s dual entry system combined with the glossaries-prefix package:

287

19 Sample Documents

@dualentry{cat,
name = {chat},
description = {cat},
prefix = {le},
prefixplural = {les}
}

Similarly for the “chair” entry:

@dualentry{chair,
name = {chaise},
description = {chair},
prefix = {la},
prefixplural = {les}

With @dualentry, the English and French terms are now automatically linked from
bib2gls’s point of view. If only one is referenced in the document, the other will also be
added by default.

Now that the determiner has been moved out of the description, it won’t show in the
glossary. However, it’s possible to include it by providing a command to encapsulate the
description (which can also apply the language change as well).

\GlsXtrLoadResources[src=entries, % entries.bib
append-prefix—-field={space},

category={same as type},dual-category={same as type},
label-prefix={en-},dual-prefix={fr-},

type=english, dual-type=french,

sort=en,dual-sort=fr]

\newcommand{\FrEncap} [1]{%
\foreignlanguage{french}{\glsentryprefix{\glscurrententrylabel}#1}}
\newcommand{\EnEncap} [1] {\foreignlanguage{english}{#1}}

\glssetcategoryattribute{english}{glossnamefont}{EnEncap}
\glssetcategoryattribute{english}{glossdescfont}{FrEncap}
\glssetcategoryattribute{french}{glossnamefont} {FrEncap}
\glssetcategoryattribute{french}{glossdescfont}{EnEncap}

Remember to remove \makeglossaries, the definition of \newword and the entry
definitions from the document preamble, and replace \printglossary with:

\printunsrtglossary

Other refinements that you might like to make include using \glsxtrnewglslike so
you don’t have to worry about the label prefix (“en-” and “fr-").

288

19 Sample Documents

sample—-index.tex

This document uses the glossaries package to create both a glossary and an index. This re-
quires two makeglossaries (or makeglossaries-1lite) calls to ensure the document
is up to date:

$ pdflatex sample—index
$ makeglossaries sample-index

$ pdflatex sample-index
$ makeglossaries sample-index
$ pdflatex sample-index

19.5 Sorting

samplePeople.tex

This document illustrates how you can hook into the standard sort mechanism to adjust
the way the sort key is set. This requires an additional run to ensure the table of contents
is up-to-date:

$ pdflatex samplePeople
$ makeglossaries samplePeople

$ pdflatex samplePeople
$ pdflatex samplePeople

This provides two commands for typesetting a name:

\newcommand{\sortname} [2] {#2, #1}
\newcommand{\textname} [2] {#1 #2}

where the first argument contains the forenames and the second is the surname. The first
command is the one required for sorting the name and the second is the one required for
displaying the name in the document. A synonym is then defined:

\let\name\textname

This command defaults to the display name command (\textname) but is temporarily
redefined to the sort name command (\ sortname) within the sort field assignment hook:

\renewcommand{\glsprestandardsort} [3]{%
\let\name\sortname
\edef#l{\expandafter\expandonce\expandafter{#1}}%
\let\name\textname
\glsdosanitizesort

}
The people are defined using the custom \name command:

\newglossaryentry{joebloggs} {name={\name{Joe} {Bloggs}},
description={\nopostdesc}}

289

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-index.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/samplePeople.tex

bib2gls

19 Sample Documents

Since \name is temporarily changed while the sort key is being assigned, the sort value
for this entry ends up as “Bloggs, Joe”, but the name appears in the document as “Joe
Bloggs”.

If you want to use bib2gls, you first need to convert the document to use glossaries-extra
but make sure you include the record option:

\usepackage [record, stylemods, style=listgroup] {glossaries—extra}

Next it’s necessary to convert the entry definitions to the bib format required by bib2gls.
You can simply do:

$ convertgls2bib —-preamble-only samplePeople people.bib

which will create a file called people.bib that contains definitions like:

@entry{joebloggs,
name = {\name{Joe}{Bloggs}},
description = {\nopostdesc}

}

However, you may prefer to use the -—index-conversion (-1i) switch:

$ convertgls2bib -i —-preamble-only samplePeople people.bib

This will discard the description field and use @index instead of Gentry if the
description is either empty or simply set to \nopostdesc or \glsxtrnopostpunc.
The people.bib file now contains definitions like:

@index{joebloggs,
name = {\name{Joe}{Bloggs}}
}

Regardless of which approach you used to create the bib file, you now need to edit it to
provide a definition of the custom \name command for bib2gls’s use:

@preamble{"\providecommand{\name} [2] {#2, #1}"}

Note the use of \providecommand instead of \newcommand.

In the document (samplePeople.tex) you now need to delete \makeglossaries,
the definitions of \sortname, \textname, \name, \glsprestandardsort, and all the
entry definitions. Then add the following to the document preamble:

\newcommand{\name} [2] {#1 #2}
\GlsXtrLoadResources |[src=people]

Next, use your text editor’s search and replace function to subsitute all instances of
\glsentrytext in the chapter headings with \glsfmttext. For example:

\chapter{\glsfmttext{joebloggs}}

Finally, replace \printunsrtglossaries with

290

19 Sample Documents

\printunsrtglossaries
The document build is now:

$ pdflatex samplePeople
$ bib2gls samplePeople

$ pdflatex samplePeople
$ pdflatex samplePeople

The third IETEX call is required to ensure that the PDF bookmarks are up to date, as
the entries aren’t defined until after the bib2gls run (which is why you have to use
\glsfmttext instead of \glsentrytext).

This again leads to a list sorted by surname. The reason this works is because
bib2gls only sees the definition of \name provided in @preamble, but the document
uses the definition of \name provided before \GlsXtrLoadResources. The use of
\providecommand in @preamble prevents \name from being redefined within the doc-
ument.

See also the “Examples” chapter of the bib2gls user manual, which provides another
“people” example.

sampleSort.tex

This is another document that illustrates how to hook into the standard sort mechanism.
An additional run is required to ensure the table of contents is up-to-date:

$ pdflatex sampleSort
$ makeglossaries sampleSort

$ pdflatex sampleSort
$ pdflatex sampleSort

This document has three glossaries (main, acronym and a custom notation), so if you
want to use makeindex explicitly you will need to have three makeindex calls with the
appropriate file extensions:

$ pdflatex sampleSort

$ makeindex -s sampleSort.ist -t sampleSort.alg -o sampleSort.acr
sampleSort.acn

$ makeindex -s sampleSort.ist -t sampleSort.glg —-o sampleSort.gls

sampleSort.glo

$ makeindex -s sampleSort.ist -t sampleSort.nlg -o sampleSort.not
sampleSort.ntn

$ pdflatex sampleSort

$ pdflatex sampleSort

It’s much simpler to just use makeglossaries ormakeglossaries-lite.
In this example, the sort hook is adjusted to ensure the list of notation is sorted according
to the order of definition. A new counter is defined to keep track of the entry number:

291

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleSort.tex

glossaries-extra.sty

19 Sample Documents

\newcounter{sortcount}

The sort hook is then redefined to increment this counter and assign the sort key to that
numerical value, but only for the notation glossary. The other two glossaries have their
sort keys assigned as normal:

\renewcommand{\glsprestandardsort} [3]{%
\ifdefstring{#2}{notation}%
{%
\stepcounter{sortcount}%
\edef#l{\glssortnumberfmt {\arabic{sortcount}}}%

o° o

—_— e

\glsdosanitizesort

—
oe

}

This means that makeindex will sort the notation in numerical order.
If you want to convert this document to use glossaries-extra, a much simpler approach is
available with its hybrid method. First change the package loading line to:

\usepackage [postdot, stylemods, acronym] {glossaries—extra}

Either remove \setacronymstyle and replace all instances of \newacronym with
\newabbreviation or replace:

\setacronymstyle{long-short}
with:
\setabbreviationstyle[acronym] {long-short}

The custom counter and redefinition of \glsprestandardsort can now be removed.
The file extensions for the custom notation glossary are no longer relevant so the glos-
sary definition can be changed to:

\newglossary#*{notation} {Notation}

The \makeglossaries command now needs to be adjusted to indicate which glossaries
need to be processed by makeindex:

\makeglossaries[main, acronym]
Finally, \printglossaries needs to be replaced with:

\printglossary
\printacronyms
\printnoidxglossary|[type=notation, sort=def]

292

bib2gls

19 Sample Documents

Note that the notation glossary, which hasn’t been listed in the optional argument of
\makeglossaries, must be displayed with \printnoidxglossary.

This means that makeindex only needs to process the main and acronym glossaries.
No actual sorting is performed for the notation glossary because, when used with
sort=def, \printnoidxglossary simply iterates over the list of entries that have been
indexed.

The document build doesn’t need the third ITEX call now (since none of the glossaries
extend beyond a page break):

$ pdflatex sampleSort

$ makeglossaries sampleSort
$ pdflatex sampleSort

This time makeglossaries will include the message:

only processing subset 'main,acronym'

This means that although makeglossaries has noticed the notation glossary, it will be
skipped.

If you are explicitly calling makeindex then you need to drop the call for the notation
glossary:

$ pdflatex sampleSort

$ makeindex —-s sampleSort.ist -t sampleSort.alg —-o sampleSort.acr
sampleSort.acn

$ makeindex —-s sampleSort.ist -t sampleSort.glg -—-o sampleSort.gls
sampleSort.glo

$ pdflatex sampleSort

If you prefer to use bib2gls, the package loading line needs to be changed to:
\usepackage [record, postdot, stylemods, acronym] {glossaries—extra}

Next the entry definitions need to be convert to the bib format required by bib2gls.
For this example, it’s simpler to split the entries into different files according to the glos-
sary type. This can be done with the ——split-on-type or -t switch:

$ convertgls2bib -t —-preamble-only sampleSort.tex entries.bib

This will create three files:

entries.bib which contains the entries that were defined with \newglossaryentry.
For example:

@entry{gls:set,
name = set,
description = A collection of distinct objects

}

293

19 Sample Documents

abbreviations.bib which contains the entries that were defined with \newacronym.
For example:

@acronym{zfc,
short = {ZFC},
long = {Zermelo-Fraenkel set theory}

}

If you changed \newacronym to \newabbreviation then @abbreviation will
be used instead:

@abbreviation{zfc,
short = {ZFC},
long = {Zermelo-Fraenkel set theory}

}

notation.bib which contains the entries that were defined with t ype=notation. For
example:

@entry{not:set,

name = {\mathcal{S}},
description = {A set},
text = {\mathcal{S}}

}

You may prefer to replace @ent ry with @symbol in this file.

After the definition of the notation glossary (\newglossary), add

% abbreviation style must be set first:
\setabbreviationstyle[acronym] {long-short}
\GlsXtrLoadResources[src={entries, abbreviations}]
\GlsXtrLoadResources|[src={notation}, % notation.bib
type=notation, sort=unsrt]

Delete the remainder of the preamble (\makeglossaries and entry definitions).
Finally, replace the lines that display the glossaries with:

\printunsrtglossaries

The build process is now:

$ pdflatex sampleSort
$ bib2gls sampleSort

$ pdflatex sampleSort

In this case, I have one resource command that processes two glossaries (main and
acronym) at the same time. The entries in these glossaries are ordered alphabetically.
The second resource command processes the notation glossary but the entries in this
glossary aren’t sorted (and so will appear in the order of definition within the bib file).

See also sampleNtn.tex, bib2gls gallery: sorting and the bib2gls user manual for
more examples.

294

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

19 Sample Documents

19.6 Child Entries

sample.tex

This document illustrates some of the basics, including how to create child entries that use
the same name as the parent entry. This example adds the glossary to the table of contents
and it also uses \glsrefentry, so an extra KIEX run is required:

$ pdflatex sample
$ makeglossaries sample

$ pdflatex sample
$ pdflatex sample

You can see the difference between word and letter ordering if you add the package op-
tion order=letter. (Note that this will only have an effect if you use makeglossaries or
makeglossaries-lite. If you use makeindex explicitly, you will need to use the -1
switch to indicate letter ordering.)

One of the entries has its name encapsulated with a semantic command:

\newcommand{\scriptlang} [1] {\textsf{#1}}

\newglossaryentry{Perl}{name=\scriptlang{Perl}, sort=Perl,
description={A scripting language}}

This means that this entry needs to have the sort key set otherwise makeindex will
assign it to the “symbol” letter group, since it starts with a backslash (which makeindex
simply treats as punctuation).

The homograph entries “glossary” and “bravo” are defined as sub-entries that inherit
the name from the parent entry. The parent entry doesn’t have a description, but with
the default nopostdot=false setting this will lead to a spurious dot. This can be removed by
adding \nopostdesc to the description, which suppresses the post-description hook for
that entry.

Since the child entries have the same name as the parent, this means that the child entries
will have duplicate sort values unless the default is changed with the sort key:

\newglossaryentry{glossary}{name=glossary,
description={\nopostdesc},plural={glossaries}}

\newglossaryentry{glossarycol}{
description={collection of glosses},
sort={2},
parent={glossary}% parent label

}

\newglossaryentry{glossarylist}{
description={list of technical words},
sort={1},
parent={glossary}% parent label
}

295

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample.tex

glossaries-extra.sty

19 Sample Documents

(Remember that the entries are sorted hierarchically.) This will place glossarylist be-
fore glossarycol, but both will come immediately after their parent glossary entry.

If you switch to using glossaries-extra, remember that the default package options are
different:

\usepackage [postdot, stylemods, style=treenonamegroup, order=word,
subentrycounter] {glossaries—extra}

You may now want to consider replacing \nopostdesc in the descriptions with
\glsxtrnopostpunc (using your text editor’s search and replace function). This sup-
presses the post-description punctuation but not the category post-description hook.

You may have noticed that some of the descriptions include the plural form, but it’s not
done very consistently. For example:

\newglossaryentry{cow} {name=cow,

plural=cows, $ not required as this is the default

userl=kine,

description={ (\emph{pl.}\ cows, \emph{archaic} kine) an adult
female of any bovine animal}

}
which has the parenthetical material at the start of the description with emphasis,

\newglossaryentry{bravocry} {
description={cry of approval (pl.\ bravos)},
sort={1},
parent={bravo}

}

which has the parenthetical material at the end of the description without emphasis even
though it’s a regular plural,

\newglossaryentry{bravoruffian} {
description={hired ruffian or killer (pl.\ bravoes)},
sort={2},
plural={bravoes},
parent=bravo}

which has the parenthetical material at the end of the description without emphasis, and

\newglossaryentry{glossary}{name=glossary,
description={\nopostdesc},
plural={glossaries}}

which doesn’t show the plural in the description.
With glossaries-extra, you can remove this parenthetical material and implement it using
the category post-description hook instead. For example, the above definitions become:

\newglossaryentry{cow} {name=cow,
userl=kine,

296

19 Sample Documents

description={an adult female of any bovine animal}

}

\newglossaryentry{bravocry}{
description={cry of approval},
sort={1},
parent={bravo}

\newglossaryentry{bravoruffian}{
description={hired ruffian or killer},
sort={2},
plural={bravoes},
parent=bravo}

\newglossaryentry{glossary}{name=glossary,
description={\glsxtrnopostpunc},
plural={glossaries}}

The post-description hook for the general category can now be set:

\glsdefpostdesc{general}{%
% Has the user1 key been set?
\glsxtrifhasfield{useri}{\glscurrententrylabel}$%
{\space (\emph{pl.}\ \glsentryplural{\glscurrententrylabel},
\emph{archaic} \glscurrentfieldvalue)$%

o\

}
{%
% The user] key hasn’t been set. Is the plural the same as the
% singular form with the plural suffix appended?
\GlsXtrIfXpFieldEgXpStr{plural}{\glscurrententrylabel}%
{\glsentrytext{\glscurrententrylabel}\glspluralsuffix}%
{%
% Sibling check with bib2gls (see below)
1%
{%
% The plural isn’t the default. Does this entry have a parent?
\ifglshasparent{\glscurrententrylabel}$%
{%

% This entry has a parent.

% Are the plurals for the child and parent the same?
\GlsXtrIfXpFieldEgXpStr{plural}{\glscurrententrylabel}$%
{\glsentryplural{\glsentryparent{\glscurrententrylabel}}}$%
{}% child and parent plurals the same
{%

\space (\emph{pl.}\ \glsentryplural{\glscurrententrylabel})$%

-
o\°

1%

{\space (\emph{pl.}\ \glsentryplural{\glscurrententrylabel})}%

-
o\

297

19 Sample Documents

-
o\

}

(If you try this example out, notice the difference for the glossary entry if you use
\nopostdesc and then replace it with \glsxtrnopostpunc.) See the glossaries-extra
user manual for further details and also glossaries-extra and bib2gls: An Introductory
Guide.

The “bravo” homographs are an oddity where the singular form is identical but the
plural is different (“bravos” and “bravoes”). In the original, both descriptions included the
plural term. The above modifications drop the display of the regular “bravos” plural (for
the bravocry term) and only show the “bravoes” plural (for the bravoruffian term).
In this particular case it might be useful to show the regular plural in order to highlight the
difference.

While it’s straightforward to access an entry’s parent label (with \glsentryparent)
it’'s much harder to access entry’s children or siblings. The \ifglshaschildren com-
mand has to iterate over all entries to determine if any have a parent that matches the
given label. This is obviously very time-consuming if you have a large database of entries.
It also doesn’t provide a way of determining whether or not the child entries have been
indexed.

With bib2gls, it’s possible to save this information with the save-child-count and
save-sibling-count, which not only save the total but also save the child or sibling
labels in an etoolbox internal list. This makes the information much faster to access and also
only includes the labels of those entries that have actually been indexed.

In the above, the comment line:

% Sibling check with bib2gls (see below)

indicates where to put the extra code. If you switch to bib2gls and make sure to use
save-sibling-count then you can insert the following code in the block above where
that comment is:

\GlsXtrIfFieldNonZero{siblingcount} {\glscurrententrylabel}$%
{% siblingcount field value non-zero

\glsxtrfieldforlistloop $% iterate over internal list
{\glscurrententrylabel}$% entry label

{siblinglist}% label of field containing list

{\siblinghandler}% loop handler

1%

{}% siblingcount field value O or empty or missing
This uses a custom handler that’s defined as follows:

\newcommand{\siblinghandler} [1]{%
\GlsXtrIfXpFieldEgXpStr+{plural}{\glscurrententrylabell}$%
{\glsentryplural{#1}}%

{}% current entry’s plural same as sibling’s plural
{%

\space (\emph{pl.}\ \glsentryplural{\glscurrententrylabel})$%

298

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

bib2gls

19 Sample Documents

\listbreak

-
o\

}

The \1istbreak command is provided by etoolbox and is used for prematurely exiting
a loop. The handler tests if the sibling’s plural field is identical to the current entry’s
plural field. If they are the same, it does nothing. If they are different, it displays the
current entry’s plural and breaks the loop.

Note that this assumes that the parent entry hasn’t had the plural form explicitly set
to “bravoes” instead of the default “bravos”. In that case, the parent entry would show
the plural but the bravoruffian child entry wouldn’t show the plural (since this case
would led to the empty code block identified with the comment “child and parent plurals
the same”). The “bravoes” plural form would instead be shown for the parent, which
wouldn’t look right.

If you don’t use bib2gls or if you use it without the save-sibling-count resource
option then the sibling information won’t be available.

In order to switch to using bib2gls, it’s first necessary to switch to using glossaries-extra
(as above). Remember that the record option is required:

\usepackage [record, postdot, stylemods, style=treenonamegroup,
subentrycounter] {glossaries-extra}

Next the entry definitions need to be converted to the bib format required by bib2gls.
This can be done with convertgls2bib:

convertgls2bib —--preamble-only sample.tex entries.
The semantic command may be moved to the bib file to ensure it’s defined:
@preamble{"\providecommand{\scriptlang} [1]{\textsf{#1}}"}

The sort field typically shouldn’t be set when using bib2gls, so convertgls2bib
strips it. If the sort field is missing, bib2gls will obtain it from the sort fallback for
that entry type. In this case, Gentry has the name field as the sort fallback. If this is
also missing then its value is obtained from the parent’s name field (see bib2gls gallery:
sorting for other examples).

Therefore the “Perl” entry is simply defined as:

@entry{Perl,
name = {\scriptlang{Perl}},
description = {A scripting language}

}

This isn’t a problem for bib2gls. In this case, the command has been provided in the
@preamble, but bib2gls strips font information so the sort value becomes Perl. If the
definition isn’t placed in @preamble then bib2gls will simply ignore the command (as
xindy does) so the sort value will still end up as Perl.

The homograph entries have also had their sort fields omitted:

299

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

19 Sample Documents

@entry{glossarycol,
parent = {glossary},
description = {collection of glosses}

}

@entry{glossarylist,
parent = {glossary},
description = {list of technical words}

}

This means that the sort value for both these child entries is “glossary”. Whenbib2gls
encounters identical sort values it acts according toits identical-sort-action setting.
The default action is to sort by the label using a simple string comparison. In this case, it
would put glossarycol before glossarylist. In the original document, the sort
value was manually chosen to ensure that the entries are ordered according to first use.
This ordering can easily be obtained by changing bib2gls’s identical sort action (requires
at least bib2gls v2.0):

\GlsXtrLoadResources[src={entries},identical-sort—-action=use]

This command should replace \makeglossaries. If you want the sibling information
(see earlier), then you need to remember to add save-sibling-count to the list of op-
tions.

Note that this is a better solution than in the original example. If I edit the document so
that glossarycol is used first, then the ordering will be updated accordingly, but with
the original example, the sort keys would need to be manually changed.

The remainder of the preamble (that is, the definition of \scriptlang and all the entry
definitions) should now be removed.

Finally, replace \printglossaries with \printunsrtglossaries. The document
build is now:

$ pdflatex sample
$ bib2gls —-—-group sample

$ pdflatex sample
$ pdflatex sample

Note use of the ——group (or —g) switch, which is needed to support the treenonamegroup
style. The third IXTgX call is needed because the document contains \glsrefentry.

Note that you can’t use the order=letter package option with bib2gls. Instead use the
break-at=none resource option:

\GlsXtrLoadResources[src={entries}, identical-sort—action=use,
break—-at=none

]

sample—-inline.tex

This document is like sample.tex, above, but uses the inline glossary style to put the
glossary in a footnote. The document build is:

300

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-inline.tex

glossaries-extra.sty

19 Sample Documents

$ pdflatex sample-inline
$ makeglossaries sample-inline

$ pdflatex sample-inline
$ pdflatex sample-inline

If you want to convert this document to glossaries-exira, follow the same procedure as
above. If you want to use bib2gls then you don’t need the ——group switch since no
letter groups are required.

sampletree.tex

This document illustrates a hierarchical glossary structure where child entries have differ-
ent names to their corresponding parent entry. To create the document do:

$ pdflatex sampletree

$ makeglossaries sampletree
$ pdflatex sampletree

The document uses the alttreehypergroup glossary style, which needs to know the widest
name for each hierarchical level. This has been assigned manually in the preamble with
\glssetwidest:

\glssetwidest {Roman letters} % level 0 widest name

1
\glssetwidest[1] {Sigma} % level 1 widest name

(Level 0 is the top-most level. That is, entries that don’t have a parent.) It’s possible to get
glossaries to compute the widest top-level entry with \glsfindwidesttoplevelname
but this will iterate over all top-level entries, regardless of whether or not they appear in
the glossary. If you have a large database of entries, this will firstly take time and secondly
the width may be too large due to an unindexed entry with a big name.

This sample document doesn’t require any of the tabular styles so I've prevented those
packages from being loaded with nolong and nosuper. The reduces the overall package
loading.

\usepackage[style=alttreehypergroup, nolong, nosuper]
{glossaries}

(This example glossary is actually better suited for one of the topic styles provided with
glossary-topic, see below.)

This is obviously a contrived example since it’s strange to have the symbol names (such
as “Sigma”) in the glossary. The purpose is to demonstrate the alttreehypergroup with an
entry that’s noticeably wider than the others in the same hierarchical level. A more sensible
document would have the symbol in the name key.

If you want to switch to glossaries-extra, then you can instead use a combination of nostyles
and stylemods:

\usepackage[style=alttreehypergroup, postdot, nostyles,
stylemods=tree] {glossaries—extra}

301

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampletree.tex

19 Sample Documents

The stylemods package not only patches the original styles provided by the base glossaries
package (such as glossary-tree used in this example) but also provides extra helper com-
mands. In this case, it provides additional commands to calculate the widest name. For
example, instead of manually setting the widest entry with \glssetwidest, you could
add the following before the glossary:

\glsFindWidestUsedTopLevelName
\glsFindWidestUsedLevelTwo

This will only take into account the entries that have actually been used in the document,
but it can still be time-consuming if you have a large number of entries.

Note that the glossary must be at the end of the document (after all required entries

have been used) with this method. The alternative is to perform the calculation at the
end of the document and save the results in the aux file for the next run.

This example document is using top-level entries for topics without descriptions. This
means that the descriptions simply contain \nopostdesc to prevent the post-description
punctuation from being automatically inserted. For example:

\newglossaryentry{greekletter} {name={Greek letters},
text={Greek letter},
description={\nopostdesc}}

With glossaries-extra, you can convert this to \glsxt rnopostpunc which will prevent the
post-description punctuation without interfering with the category post-description hook.

In order to distinguish between the child entries, which are symbols, and the parent
entries, which are topics, it’s useful to give these two different types of entries different
categories. The topics can use the default general category, but the symbol entries can be
assigned to a different category. The value of the category key must be a label. For
example:

\newglossaryentry{C}{name={C},
description={Euler's constant},
category=symbol,
parent=romanletter}

There is some redundancy caused by a parenthetical note after the first use in some of
the symbol entries. For example:

\newglossaryentry{pi}{name={pi},
text={\ensuremath{\pi}},
first={\ensuremath{\pi} (lowercase pi)},
description={Transcendental number},
parent=greekletter}

With glossaries-extra this can be dealt with through the category post-link hook:

302

19 Sample Documents

\glsdefpostlink{symbol}{%
\glsxtrifwasfirstuse
{$ first use
\glsxtrifhasfield{useri}{\glslabel}$%
{ (\glscurrentfieldvalue)}{}%
1%
{}% not first use

}
The parenthetical material is now stored in the user1 key. For example:

\newglossaryentry{sigma} {name=Sigma,
text={\ensuremath\Sigma},
userl={uppercase sigma},
description={Used to indicate summation},
parent=greekletter}

The category post-description link is also set to ensure that the symbol is displayed after
the description in the glossary:

\glsdefpostdesc{symbol}{\space
($\glsentrytext{\glscurrententrylabel}$)}

These modifications only affect entries with the category set to symbol.
With glossaries-extra, it’s now possible to use the topic styles provided with the glossary-
topic package:

\usepackage[style=topic, postdot, nostyles, stylemods={tree, topic}]
{glossaries—extra}

The topic style is designed for this kind of hierarchy where all the top-level entries don’t
have descriptions. This means that the \nopostdot and \glsxtrnopostpunc com-
mands aren’t required. The top-level entries can simply be defined as:

\newglossaryentry{greekletter} {name={Greek letters},
text={Greek letter}, description={}}

\newglossaryentry{romanletter}{name={Roman letters},
text={Roman letter}, description={}}

I've now loaded both the glossary-tree and glossary-topic packages (via stylemods={tree,
topic}). The glossary-topic package can be used without glossary-tree, in which case it will
behave more like the normal tree rather than alttree styles (but with different indentation
and no description in the top-level). However, if you use \glssetwidest (provided by
glossary-tree) then the topic style will behave more like alttree.

Since there’s no description for the top-level entries, the topic style ignores the widest
name setting for the top-level, so I can just have the level 1 setting;:

\glssetwidest[1] {Sigma}

303

bib2gls

19 Sample Documents

If you want to convert this document so that it uses bib2gls, you first need to convert
it to using glossaries-extra, as described above, but remember that you now need the record
option.

\usepackage [record, style=topic, postdot,nostyles, stylemods={tree, topic}]
{glossaries—extra}

Next convert the entries to the bib format required by bib2gls:

$ convertgls2bib —--preamble-only sampletree.tex entries.bib

Now replace \makeglossaries with

\GlsXtrLoadResources[src=entries, set—widest]

I've used the set ~widest option here to get bib2gls to compute the widest name. (Ob-
viously, it can only do this if it can correctly interpret any commands contained in the name
field.)

This means that the \glssetwidest commands can now be removed completely. All
the \newglossaryentry commands also need to be removed from the preamble. Finally,
\printunsrtglossaries needs to be replaced with \printunsrtglossaries. The
document build is now:

$ pdflatex sampletree

$ bib2gls sampletree
$ pdflatex sampletree

This produces the same result as with just glossaries-extra and makeglossaries. How-
ever, there are some modifications that can be made to the bib file to make it neater.
The top-level entries are defined as:

@entry{greekletter,
name = {Greek letters},
description = {},
text = {Greek letter}

}

@entry{romanletter,

name = {Roman letters},
description = {},
text = {Roman letter}

}

This is a direct translation from the \newglossaryentry commands (after switching to
the topic style). There’s a more appropriate entry type:

@indexplural {greekletter,
text = {Greek letter}
}

304

19 Sample Documents

@indexplural {romanletter,
text = {Roman letter}

}

The @indexplural entry type doesn’t require the description and will set the name
field to the same as the plural field. Since the plural field hasn’t been set it’s obtained
by appending “s” to the text field.

Now let’s assume that the symbol entries are defined in a more rational manner, with
the actual symbol in the name field. For example:

@entry{sigma,
userl = {uppercase sigma},
parent = {greekletter},
description = {Used to indicate summation},
name = {\ensuremath{\Sigma}},
category = {symbol}
}

@entry{C,
parent = {romanletter},
name = {\ensuremath{C}},
description = {Euler's constant},
category = {symbol}

}

The category post-description hook (provided with \glsdefpostdesc) should now be
removed from the document.

If you make these changes and rebuild the document, you'll find that the order has
changed. Now the sigma entry is before the pi entry. This is because bib2gls is obtain-
ing the sort values from the name field, which is the sort fallback for @ent ry. This means
that the sort values end up as X and 7t (bib2gls recognises the commands \Sigma and
\pi and converts them to the Unicode characters 0x1D6F4 and 0x1D70B).

If you change Gentry to @symbol then you will once again get the order from the
original example (pi before Sigma). This is because the sort fallback for @symbol is the
label not the name. (Remember that the sort fallback is only used if the sort field isn’t
set. If you explicitly set the sort field then no fallback is required. See bib2gls gallery:
sorting.)

You can further tidy the bib file by removing the category fields. For example:
@symbol{sigma,

userl = {uppercase sigma},

parent = {greekletter},

description = {Used to indicate summation},

name = {\ensuremath{\Sigma}}

}
You can then assign the category in the resource set:

\GlsXtrLoadResources[src=entries, set-widest, category={same as entry}]

305

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-sorting

glossaries-extra.sty

19 Sample Documents

This means that all the entries defined with @symbol will have the category set to
symbol and all the entries defined with @indexplural will have the category set to
indexplural. (Only the symbol category is significant in this example.)

You can make the bib files even more flexible by introducing field and entry aliases
with field-aliases and entry-type-aliases. See the bib2gls manual for further
details.

19.7 Cross-Referencing

sample—-crossref.tex
This document illustrates how to cross-reference entries in the glossary.

$ pdflatex sample—crossref

$ makeglossaries sample-crossref
$ pdflatex sample—crossref

The document provides a command \alsoname to produce some fixed text, which can be
changed as appropriate (usually within a language hook):

\providecommand{\alsoname} {see also}

I've used \providecommand as some packages define this command. This is used to
create a “see also” cross-reference with the see key:

\newglossaryentry{apple} {name=apple,description={firm, round fruit},
see=[\alsoname] {pear}}

\newglossaryentry{marrow} {name={marrow},
description={long vegetable with thin green skin and white flesh},
see={[\alsoname]courgette}}

Note that “marrow” is included in the glossary even though it hasn’t been referenced in
the text. This is because the see key automatically triggers \glssee which indexes the
term. This behaviour is intended for documents where only the terms that are actually
required in the document are defined. It’s not suitable for a large database of terms shared
across multiple documents that may or may not be used in a particular document. In that
case, you may want to consider using glossaries-extra (see below).

This example is quite simple to convert to glossaries-extra. If you want the dot after the
description, you need the nopostdot=false or postdot package option. You may also want to
consider using the stylemods option.

In order to prevent the “marrow” entry from being automatically being added to the
glossary as a result of the cross-reference, you can use autoseeindex=false to prevent the
automatic indexing triggered by the see key (or the secalso key provided by glossaries-
extra).

\usepackage [autoseeindex=false, postdot, stylemods] {glossaries-extra}

306

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-crossref.tex

bib2gls

19 Sample Documents

The document build is the same, but now the “marrow” and “zucchini” entries aren’t
present in the document.

Note that the “fruit” entry is still included even though it hasn’t been used in the docu-
ment. This is because it was explicitly indexed with \glssee not via the see key.

The entries that contains see=[\alsoname] can be converted to use the secalso key:

\newglossaryentry{apple} {name=apple,description={firm, round fruit},
seealso={pear}}

\newglossaryentry{marrow} {name={marrow},
description={long vegetable with thin green skin and white flesh},
seealso={courgette}}

(The provided \alsoname definition may be removed.)
The original example redefines the cross-referencing format to use small caps:

\renewcommand{\glsseeitemformat} [1] {\textsc{\glsentryname{#1}}}

This will still produce the desired effect with glossaries-extra for this simple example but, as
with sampleAcrDesc. tex, this redefinition isn’t necessary if you have at least glossaries-
extra v1.42.

If you want to switch to bib2gls then you first need to switch to glossaries-extra, as
described above, but you now need the record option but no longer need the autoseeindex=
false option:

\usepackage [record, postdot, stylemods] {glossaries—extra}

Next the entry definitions need to be converted to the bib format required by bib2gls.

$ convertgls2bib sample-crossref.tex entries.bib

If you have at least v2.0 then convertgls2bib will absorb the cross-referencing informa-
tion supplied by:

\glssee{fruit} {pear, apple,banana}
into the fruit definition:

@entry{fruit,

see = {pear,apple,banana},
name = {fruit},
description = {sweet, fleshy product of plant containing seed}

}

Now remove \makeglossaries and all the entry definition commands (including
\glssee from the preamble) and add:

\GlsXtrLoadResources [src=entries.bib]

307

19 Sample Documents

Finally, replace \printglossaries with \printunsrtglossaries. The document
build is now:

$ pdflatex sample-crossref

$ bib2gls sample-crossref
$ pdflatex sample-crossref

The glossary now contains: apple, banana, courgette and pear. Note that it doesn’t contain
fruit, zucchini or marrow.
Now change the selection criteria:

\GlsXtrLoadResources[src=entries.bib,
selection={recorded and deps and see}]

The glossary now includes fruit, zucchini and marrow.

The fruit and zucchini use the see key which is a simple redirection for the reader.
There’s no number list for either of these entries. Whereas marrow uses the secalso key,
which is typically intended as a supplement to a number list but in this case there are no
locations as marrow hasn’t been used in the text.

With at least v2.0, there’s an alternative:

\GlsXtrLoadResources[src=entries.bib,
selection={recorded and deps and see not also}]

In this case, the glossary includes fruit and zucchini but not marrow.

19.8 Custom Keys

sample—newkeys.tex

This document illustrates how add custom keys (using \glsaddkey). There are two cus-

tom keys ed, where the default value is the text field with “ed” appended, and ing,

where the default value is the text field with “ing” appended. Since the default value

in both cases references the text field, the starred version \glsaddkey* is required to

ensure that the default value is expanded on definition if no alternative has been provided.
The entries are then defined as follows:

\newglossaryentry{jump} {name={jump}, description={1}}

\newglossaryentry{run}{name={run}, %
ed={ran}, %

ing={running},

description={}}

\newglossaryentry{waddle} {name={waddle}, %
ed={waddled}, %

ing={waddling}, %

description={}}

308

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-newkeys.tex

bib2gls

19 Sample Documents

Each custom key is provided a set of commands analogous to \glsentrytext, that
allows the key value to be accessed, and \glstext that allows the key value to be access
with indexing and hyperlinking (where applicable).

If you find yourself wanting to create a lot of custom keys that produce minor variations
of existing keys (such as different tenses) you may find it simpler to just use \glsdisp.
When editing the document source, it’s usually simpler to read:

The dog \glsdisp{jump}{jumped} over the duck.
than
The dog \glsed{jump} over the duck.

If you want to convert this document to use bib2gls, you first need to switch to
glossaries-extra, but remember that you need the record option:

\usepackage [record]glossaries—extra

Next convert the entry definitions to the bib format required by bib2gls:

$ convertgls2bib —--index-conversion —--preamble-only

sample—newkeys.tex entries.bib

The —-index-conversion switch requires at least v2.0 and will convert entries without
a description (or where the description is simply \nopostdescor \glsxtrnopostpunc)
to @index instead of Rent ry. This means that the new entries.bib file will contain:

@index{ jump,
name = {Jjump}

}

@index{run,

ing = {running},
name = {run},
ed = {ran}

}

@index{waddle,
ing = {waddling},
name = {waddle},

ed = {waddled}
}

Now replace \makeglossaries with

\GlsXtrLoadResources[src=entries]

and delete the \newglossaryentry commands. Finally replace \printglossaries
with \printunsrtglossaries.
The document build is now:

309

glossaries-extra.sty

19 Sample Documents

$ pdflatex sample-newkeys

$ bib2gls sample-newkeys
$ pdflatex sample—newkeys

Note that there’s no need for the nonumberlist package option when you don’t use
bib2gls’s ——group switch.
sample-storage—abbr.tex

This document illustrates how add custom storage keys (using \glsaddstoragekey).
The document build is:

$ pdflatex sample-storage-abbr

$ makeglossaries sample-storage-—abbr
$ pdflatex sample-storage—abbr

The custom storage key is called abbrtype which defaults to word if not explicitly set.
Its value can be accessed with the provided custom command \abbrtype.

\glsaddstoragekey{abbrtype} {word} {\abbrtype}

A custom abbreviation style is then defined that checks the value of this key and makes
certain adjustments depending on whether or not its value is the default word.

This essentially forms a very similar function to the glossaries-extra package’s category
key, which is also defined as a storage key:

\glsaddstoragekey{category}{general} {\glscategory}

This document is much simpler with the glossaries-extra package:

\documentclass{article}
\usepackage [postdot] {glossaries—extra}

\makeglossaries

\setabbreviationstyle[acronym] {short-long}

\newacronym{radar} {radar}{radio detecting and ranging}
\newacronym{laser}{laser}{light amplification by stimulated
emission of radiation}

\newacronym{scuba} {scuba}{self-contained underwater breathing
apparatus}

\newabbreviation{dsp}{DSP}{digital signal processing}
\newabbreviation{atm}{ATM} {automated teller machine}

\begin{document}

First use: \gls{radar}, \gls{laser}, \gls{scuba}, \gls{dsp},
\gls{atm}.

Next use: \gls{radar}, \gls{laser}, \gls{scuba}, \gls{dsp},

310

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-storage-abbr.tex

glossaries-extra.sty

19 Sample Documents

\gls{atm}.

\printglossaries
\end{document}
sample—-storage—abbr-desc.tex

An extension of the previous example where the user needs to provide a description.

sample—chap-hyperfirst.tex

This document illustrates how to add a custom key using \glsaddstoragekey and hook
into the \gls-like and \glstext-like mechanism used to determine whether or not to
hyperlink an entry. The document build is:

$ pdflatex sample-chap-hyperfirst

$ makeglossaries sample-—chap-hyperfirst
$ pdflatex sample-chap-hyperfirst

This example creates a storage key called chapter used to store the chapter number.
\glsaddstoragekey{chapter} {0} {\glschapnum}

It’s initialised to 0 and the \glslinkpostsetkeys hook is used to check this value
against the current chapter number. If the values are the same then the hyperlink is
switched off, otherwise the key value is updated unless the hyperlink has been switched
off (through the optional argument of commands like \gls and \glstext).

\renewcommand=* {\glslinkpostsetkeys}{%
\edef\currentchap{\arabic{chapter}}$%
\ifnum\currentchap=\glschapnum{\glslabel}\relax

\setkeys{glslink}{hyper=false}%
\else
\glsifhyperon{\glsfieldxdef{\glslabel} {chapter} {\currentchap}}{}%
\fi
}

Since this key isn’t intended for use when the entry is being defined, it would be more
appropriate to simply use an internal field that doesn’t have an associated key or helper
command, but \glsfieldxdef requires the existence of the field. The glossaries-extra
package provides utility commands designed to work on internal fields that don’t have an
associated key and may not have had a value assigned.

If you want to switch to glossaries-extra you need to change the package loading line:

\usepackage [postdot] {glossaries—extra}

The custom storage key (provided with \glsaddstoragekey) can be removed, and the
\glslinkpostsetkeys hook can be changed to:

311

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-storage-abbr-desc.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-chap-hyperfirst.tex

19 Sample Documents

\renewcommand=* {\glslinkpostsetkeys}{%
\edef\currentchap{\arabic{chapter}}$%
\GlsXtrIfFieldEgNum#* {chapter}{\glslabel}{\currentchap}
{%

\setkeys{glslink}{hyper=false}$%

o\

o\

}
{
\glsifhyperon{\xGlsXtrSetField{\glslabel} {chapter}{\currentchap}}{}%

o

}
}

The field name is still called chapter but there’s no longer an associated key or command.

19.9 Xindy (Option 3)

Most of the earlier makeindex sample files can be adapted to use xindy instead by adding
the xindy package option. Situations that you need to be careful about are when the sort
value (obtained from the name if the sort key is omitted) contains commands (such as
name={\pi}) or is identical to another value (or is identical after xindy has stripped all
commands and braces). This section describes sample documents that use features which
are unavailable with makeindex.

samplexdy.tex

The document uses UTF8 encoding (with the inputenc package). This is information that
needs to be passed to xindy, so the encoding is picked up by makeglossaries from the
aux file.

By default, this document will create a xindy style file called samplexdy.xdy, but if
you uncomment the lines

\setStyleFile{samplexdy-mc}
\noist
\GlsSetXdyLanguage{}

it will set the style file to samplexdy-mc.xdy instead. This provides an additional let-
ter group for entries starting with “Mc” or “Mac”. If you use makeglossaries or
makeglossaries-lite, you don’t need to supply any additional information. If you
don’t use makeglossaries, you will need to specify the required information. Note that
if you set the style file to samplexdy-mc.xdy you must also specify \noist, otherwise
the glossaries package will overwrite samplexdy-mc.xdy and you will lose the “Mc” let-
ter group.
To create the document do:

$ pdflatex samplexdy

$ makeglossaries samplexdy
$ pdflatex samplexdy

312

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/samplexdy.tex

19 Sample Documents

If you don’t have Perl installed then you can’t use makeglossaries, but you also can’t
use xindy! However, if for some reason you want to call xindy explicitly instead of using
makeglossaries (or makeglossaries—lite):

¢ if you are using the default style file samplexdy .xdy, then do (no line breaks):

$ xindy -L english -C utf8 -I xindy -M samplexdy -t

samplexdy.glg —o samplexdy.gls samplexdy.glo

¢ if you are using samplexdy-mc.xdy, then do (no line breaks):

$ xindy -I xindy -M samplexdy-mc -t samplexdy.glg —o

samplexdy.gls samplexdy.glo

This document creates a new command to use with the format key in the optional
argument of commands like \gls to format the location in the number list. The usual type
of definition when a hyperlinked location is required should use one of the \hyper(xx)
commands listed in table 6.1:

\newcommandx { \hyperbfit} [1] {\textit {\hyperbf{#1}}}

Unfortunately, this definition doesn’t work for this particular document and some adjust-
ments are needed (see below). As a result of the adjustments, this command doesn’t actu-
ally get used by TgX, even though hyperbfit is used in the format key. It does, however,
need to be identified as an attribute so that xindy can recognise it:

\GlsAddxXdyAttribute{hyperbfit}

This will add information to the xdy file when it’s created by \makeglossaries. If you
prevent the creation of this file with \noist then you will need to add the attribute to
your custom xdy file (see the provided samplexdy-mc.xdy file).

In order to illustrate unusual location formats, this sample document provides a com-
mand called \tallynum{(n)} that represents its numerical argument with a die or dice
where the dots add up to (n):

o\

\newrobustcmd* {\tallynum} [1] {
\ifnum\number#1<7
S\csname dicel\romannumeral#l\endcsname$$%

\else
\dicevis
\expandafter\tallynum\expandafter{\numexpr#1-61}%
\fi

}

This command needs to be robust to prevent it from being expanded when it’s written to
any of the auxiliary files. The \dicei, ..., \dicevi commands are provided by the stix
package, so that needs to be loaded.

313

19 Sample Documents

An associated command \tally{(counter)} is defined that formats the value of the
named (counter) according to \tallynum:

\newcommandx {\tally}[1]{\tallynum{\arabic{#1}}}

(This shouldn’t be robust as it needs the counter value to expand.) The page numbers are
altered to use this format (by redefining \thepage).

This custom location format also needs to be identified in the xdy file so that xindy can
recognise it and determine how to form ranges if required.

\GlsAddXdyLocation{tally}{% tally location format
:sep "\string\tallynum\space\glsopenbrace"
"arabic-numbers"

:sep "\glsclosebrace"

}

Again this information is written to the xdy file by \makeglossaries so if you use
\noist then you need to manually add it to your custom xdy file.
When xindy creates the associated glossary files, the locations will be written using;:

\glsX{counter)X(format){(hyper—-prefix)}{(location)}
In this case:

\glsXpageXglsnumberformat{}{\tallynum{(number)}}
or

\glsXpagethperbfit{}{\tallynum{(number}}}

This means that although \hyperbf is designed to create hyperlinked locations, the pres-
ence of \tallynum interferes with it. In order to make the hyperlinks work correctly, the
definitions of \glsXpageXhyperbfit need to be redefined in order to grab the number
part in order to work out the location’s numeric value. If the value of \tally is changed
so that it expands differently then these modifications won’t work.

Remember that in both cases, the second argument #2 is in the form \tally{(n)}:

\renewcommand{\glsXpageXglsnumberformat} [2] {%
\linkpagenumber#2%

}

\renewcommand{\glsXpageXhyperbfit} [2]{%
\textbf{\em\linkpagenumber#2}%

}

These need a command that can grab the actual number and correctly encapsulate it:

\newcommand{\linkpagenumber} [2] {\hyperlink{page.#2}{#1{#2}}}

314

bib2gls

19 Sample Documents

If you want to try out the samplexdy-mc.xdy file, the entries starting with “Mac” or
“Mc” will be placed in their own “Mc” letter group. Ideally it should be possible to do this
simply with \Gl1sAddLetterGroup (and not require a custom xdy file) but unfortunately
the “M” letter group will have already been defined and take precedence over “Mc”, which
is why a custom file is required and the normal language module must be suppressed:

\setStyleFile{samplexdy-mc}
\noist
\GlsSetXdyLanguage{}

This “Mc” group is suitable for names like “Maclaurin” but not for “Mach”. To prevent
this, the sort key for that value is set to lower case:

\newglossaryentry{mach} {name={Mach, Ernst},
first={Ernst Mach}, text={Mach},

sort={mach, Ernst},

description={Czech/Austrian physicist and philosopher}}

If you want to convert this document so that it uses bib2gls, you first need to switch
to glossaries-extra and use the record package option:

\usepackage [record, postdot] {glossaries—extra}

The xindy-only commands can now all be removed (attribute \G1sAddXdyAttribute,
location \GlsAddXdyLocation, language \GlsSetXdyLanguage, location encapsu-
lators \glsX(counter)x(format) and the custom helper \linkpagenumber). Also
\noist and \setStyleFile aren’t relevant with bib2gls and so should be removed.
The definitions of \hyperbfit should be retained (as well as \tallynum, \tally and
the redefinition of \thepage).
The entries all need to be converted to the bib format required by bib2gls.

$ convertgls2bib —--preamble-only samplexdy.tex entries.bib

Next replace \makeglossaries with:

\GlsXtrLoadResources[src=entries]

and remove all the entry definitions from the preamble. Use the search and replace func-
tion on your text editor to replace all instances of \glsentryfirst with \glsfmtfirst,
and all instances of \glsentryname with \glsfmtname.

Finally, replace \printglossaries with \printunsrtglossaries. The document
build is now:

$ pdflatex samplexdy

$ bib2gls —--group samplexdy
$ pdflatex samplexdy

This results in a slightly different ordering from the original document (without
the “Mc” letter group). In the original example, “Mach number” was listed before

315

19 Sample Documents

“Mach, Ernest”. The modified document now has “Mach, Ernest” before “Mach num-
ber”. This difference is due to bib2gls’s default break-at=word setting, which
marks word boundaries with the pipe (|) character, so the sort values for bib2gls are
Mach|Earnest | and Mach |number|. See the bib2gls manual for further details of
this option, and also see the examples chapter of that manual for alternative approaches
when creating entries that contain people’s names.

If you want the “Mc” letter group, it can be obtained by providing a custom sort rule:

\GlsXtrLoadResources[src=entries,
sort=custom,
sort-rule={\glsxtrcontrolrules
; \glsxtrspacerules; \glsxtrnonprintablerules
;\glsxtrcombiningdiacriticrules, \glsxtrhyphenrules
<\glsxtrgeneralpuncrules<\glsxtrdigitrules
<a,A<b,B<c,C<d,D<e, E<f,F<qg, G<h, H<i, I<]j,J<k,K<]1l, L<Mc=Mac<m, M<o, O
<p, P<qg, O<r,R<s, S<t, T<u, U<v,V<r, R<s, S<t, T<u, U<v, V<w, W<x, X<y, Y<z, Z
}

]

Unfortunately, as with xindy, this puts “Mach” into the “Mc” letter group.
One way to get around this problem is to define a custom command to help identify
genuine “Mc”/“Mac” prefixes with names that happen to start with “Mac”. For example:

@entry{mcadam,
name = {\Mac{Mc}Adam, John Loudon},
description = {Scottish engineer},
text = {McAdam},
first = {John Loudon McAdam}

@entry{maclaurin,

name = {\Mac{Mac}laurin, Colin},

description ={Scottish mathematician best known for the
\gls{maclaurinseries}},

text = {Maclaurin},

first = {Colin Maclaurin}

}
but not for “Mach”:

@entry{mach,
name = {Mach, Ernst},
description = {Czech/Austrian physicist and philosopher},
text = {Mach},
first = {Ernst Mach}
}

With I&TEX, this command should simply do its argument:

\newcommand{\Mac} [1] {#1}

316

19 Sample Documents

However, when bib2gls works out the sort value, it needs to be defined with something
unique that won’t happen to occur at the start of another term. For example:

\providecommand{\Mac} [1] {MC}

(Remember that break-at=word will strip spaces and punctuation so don’t include them
unless you switch to break—at=none.)

So add the first definition of \Mac to the tex file and modify entries.bib so that it
includes the second definition:

@preamble{"\providecommand{\Mac} [1]{MC}"}

Then modify the “Mc”/“Mac” entries as appropriate (see the above “McAdam” and
“Maclaurin” examples).
The custom sort rule needs to be modified:

\GlsXtrLoadResources [src=entries,
write-preamble=false,
sort=custom,
sort—-rule={\glsxtrcontrolrules
; \glsxtrspacerules; \glsxtrnonprintablerules
;\glsxtrcombiningdiacriticrules, \glsxtrhyphenrules
<\glsxtrgeneralpuncrules<\glsxtrdigitrules
<a,A<b,B<c,C<d,D<e, E<f,F<g, G<h, H<i, I<]j,Jd<k,K<1l,L<MC<m,M<o,0
<p,P<qg, O0<r,R<s, S<t, T<u, U<v, V<r,R<s, S<t, T<u, U<v, V<w, W<x, X<y, ¥Y<z, Z
}

]

This will create a “Mc” letter group that only includes the names that start with the custom
\Mac command.

Other alternatives include moving €preamble into a separate bib file, so that you can
choose whether or not to include it. See the “Examples” chapter of the bib2gls user
manual for further examples.

samplexdy?2.tex

This document illustrates how to use the glossaries package where the location numbers
don’t follow a standard format. This example will only work with xindy. To create the
document do:

$ pdflatex samplexdy2

$ makeglossaries samplexdy2
$ pdflatex samplexdy2

The explicit xindy call is:

$ xindy -L english -C utf8 -I xindy -M samplexdy2 -t

samplexdy2.glg —o samplexdy2.gls samplexdy2.glo

This example uses the sect ion counter with xindy:

\usepackage [xindy, counter=section] {glossaries}

317

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/samplexdy2.tex

bib2gls

19 Sample Documents

The document employs an eccentric section numbering system for illustrative purposes.
The section numbers are prefixed by the chapter number in square brackets:

\renewcommand= { \thesection}{ [\thechapter]\arabic{section}}
Parts use Roman numerals:
\renewcommand~ { \thepart} {\Roman{part}}

The section hyperlink name includes the part:
\renewcommandx { \theHsection} {\thepart.\thesection}

This custom numbering scheme needs to be identified in the xdy file:

\GlsAddXdyLocation["roman—-numbers—uppercase"] {section}{:sep "["
"arabic-numbers" :sep "]" "arabic-numbers"

}

If the part is 0 then \thepart will be empty (there isn’t a zero Roman numeral). An extra
case is needed to catch this:
\GlsAddXdyLocation{zero.section}{:sep "["

"arabic-numbers" :sep "]" "arabic-numbers"

}

Note that this will stop xindy giving a warning, but the location hyperlinks will be invalid
if no \part is used.

If you want to switch to bib2gls, you first need to switch to glossaries-extra but remem-
ber to use record instead of xindy:

\usepackage [record, counter=section] {glossaries—extra}

Next remove the \GlsAddXdyLocation commands and convert the entry definitions to
the bib format required by bib2gls:

$ convertgls2bib —-preamble-only samplexdy2.tex entries.bib

Now replace \makeglossaries with:

\GlsXtrLoadResources[src=entries]

and remove the \newglossaryentry commands. Finally, replace \printglossaries
with \printunsrtglossaries.
The document build is:

$ pdflatex samplexdy2

$ bib2gls samplexdy2
$ pdflatex samplexdy2

With unusual numbering systems, it’s sometimes better to use record=nameref:
\usepackage [record=nameref, counter=section] {glossaries—extra}

In this case, the locations will be the actual section headings, rather than the section num-
ber. In order to make the number appear instead you need to define:

\newcommand*{\glsxtrsectionlocfmt} [2] {#1}

(Make sure you have at least v1.42 of glossaries-extra.) See also the earlier sampleSec.tex.

318

bib2gls

19 Sample Documents

samplexdy3.tex

This document is very similar to samplexdy . tex but uses the command \Numberstring
from the fmtcount package to format the page numbers instead of the \tally command
from the earlier example.

sampleutf8.tex

This is another example that uses xindy. Unlike makeindex, xindy can cope with non-
Latin characters. This document uses UTF-8 encoding. To create the document do:

$ pdflatex sampleutf8

$ makeglossaries sampleutf8
$ pdflatex sampleutf8

The explicit xindy call is (no line breaks):

$ xindy -L english —-C utf8 -I xindy -M sampleutf8 -t
sampleutf8.glg —o sampleutf8.gls sampleutf8.glo

If you remove the xindy option from sampleut£8.tex and do:

$ pdflatex sampleutf8
$ makeglossaries sampleutf8
$ pdflatex sampleutf8

$ pdflatex sampleutf8
$ makeglossaries-lite sampleutf8
$ pdflatex sampleutf8

you will see that the entries that start with an extended Latin character now appear in the
symbols group, and the word “manceuvre” is now after “manor” instead of before it. If
you want to explicitly call makeindex (no line breaks):

$ makeindex -s sampleutf8.ist -t sampleutf8.glg —-o sampleutf8.gls
sampleutf8.glo

If you want to switch to bib2gls, you first need to switch to glossaries-extra but replace
xindy with record:

\usepackage [record, postdot, stylemods, style=listgroup] {glossaries—extra}

Note that you don’t need the nonumberlist option with bib2gls. You caninstructbib2gls
to simply not save the number lists, but in this case there won’t be any locations as there’s
no actual indexing.

The entries need to be converted to the bib format required by bib2gls:

$ convertgls2bib --preamble-only —--texenc UTF-8 --bibenc UTF-8

sampleutf8.tex entries.bib

319

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/samplexdy3.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleutf8.tex

19 Sample Documents

Note the first line of the entries.bib file:
% Encoding: UTF-8

This is the encoding of the bib file. It doesn’t have to match the encoding of the tex file,

but it’s generally better to be consistent. When bib2g1ls parses this file, it will look for this

encoding line. (If the ——texenc and ~-bibenc switches aren’t used, convertgls2bib

will assume your system’s default encoding. See the bib2gls manual for further details.)
Next replace \makeglossaries with:

\GlsXtrLoadResources [src=entries, selection=all]

and remove all the \newglossaryentry commands.

Iterative commands like \glsaddall don’'t work with bib2gls. Instead, you can se-
lect all entries using the selection=all option. Thisis actually better than \glsaddall,
which enforces the selection of all entries by indexing each entry. As a result, with
makeindex and xindy (and Option 1), every entry will have the same location (which
is the location of the \glsaddall command, in this case page 1). With selection=all,
bib2gls will automatically selection all entries even if they don’t have any records (in-
dexing information) so in this case there are no number lists.

Finally, replace \printglossaries with \printunsrtglossaries. The build pro-
cess is now:

$ pdflatex sampleutf8

$ bib2gls —--group sampleutf8
$ pdflatex sampleutf8

bib2gls picks up the encoding of the tex file from the aux file:

\glsxtr@texencoding{utf8}

If you experience any encoding issues, check the aux file for this command and check
the bib file for the encoding comment line. Also check bib2gls’s glg transcript file for
encoding messages, which should look like:

TeX character encoding: UTF-8

The document language, if it has been set, is also added to the aux file when the record
option is used. In this case, no language package has been used, so bib2gls will fallback
on the system’s default locale. If no sort method is set, the entries will be sorted according
to the document language, if set, or the default locale. You can specify a specific locale
using the sort key with a locale tag identifier. For example:

\GlsXtrLoadResources [src=entries, selection=all, sort=de—-CH-1996]

(Swiss German new orthography) or:

\GlsXtrLoadResources[src=entries, selection=all, sort=is]

(Icelandic).

320

19 Sample Documents

19.10 No Indexing Application (Option 1)

sample—noidxapp.tex

This document illustrates how to use the glossaries package without an external indexing
application (Option 1). To create the complete document, you need to do:

$ pdflatex sample—noidxapp
$ pdflatex sample-—-noidxapp

Note the need to group the accent command that occurs at the start of the name:

\newglossaryentry{elite}{%
name={{\'e}lite},
description={select group of people}

}

This is necessary to allow the term to work with \G1s. Notice also how the number lists
can’t be compacted into ranges. For example, the list “1, 2, 3” would be converted to “1-3"
with a proper indexing application (Options 2 or 3 or, with glossaries-extra, Option 4).

The larger the list of entries, the longer the document build time. This method is very
inefficient for large glossaries. See Gallery: glossaries performance for a comparison.

sample—noidxapp—-utf8.tex

As the previous example, except that it uses the inputenc package. To create the complete
document, you need to do:

$ pdflatex sample-noidxapp-utf8
$ pdflatex sample—noidxapp-utf8

This method is unsuitable for sorting languages with extended Latin alphabets or non-
Latin alphabets. Use Options 3 or 4 instead.

19.11 Other

sampledcol.tex

This document illustrates a four column glossary where the entries have a symbol in addi-
tion to the name and description. To create the complete document, you need to do:

$ pdflatex sampledcol
$ makeglossaries sample4dcol
$ pdflatex sampledcol

$ pdflatex sampledcol
$ makeglossaries—lite sampledcol
$ pdflatex sampledcol

321

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-noidxapp.tex
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-noidxapp-utf8.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample4col.tex

glossaries-extra.sty

19 Sample Documents

The vertical gap between entries is the gap created at the start of each group. This can be
suppressed using the nogroupskip package option. (If you switch to bib2gls, simply omit
the ——group command line option.)

This example uses the long4colheaderborder. This style doesn’t allow multi-line descrip-
tions. You may prefer to use altlong4colheaderborder with long descriptions. However,
in either case a style that uses booktabs is preferable. For example, long4col-booktabs or
altlongragged4col-booktabs. Note that this requires glossary-longbooktabs, which needs to be
explicitly loaded. The style can only be set once this package has been loaded:

\usepackage{glossaries}
\usepackage{glossary-longbooktabs}
\setglossarystyle{altlongragged4col-booktabs}

The glossaries-extra package provides a more compact way of doing this with the style-
mods option:

\usepackage[style=altlongragged4col-booktabs, stylemods=longbooktabs]
{glossaries—extra}

The glossaries-extra package provides additional styles, including more “long” styles with
the glossary-longextra package. For example, the long-name-desc-sym-loc style:

\usepackage [style=long—name—-desc—sym-loc, stylemods=longextra]
{glossaries-extra}

If you use the stylemods option with an argument, you may prefer to use it with nostyles to
prevent unwanted styles from being automatically loaded. For example:

\usepackage[style=long-name-desc-sym-loc,nostyles, stylemods=longextral
{glossaries-extra}

See also the gallery of predefined styles.

sample—numberlist.tex

This document illustrates how to reference the number list in the document text. This
requires an additional IXTEX run:

$ pdflatex sample-numberlist
$ makeglossaries sample—numberlist

$ pdflatex sample-numberlist
$ pdflatex sample—numberlist

This uses the savenumberlist package option, which enables \glsentrynumberlist and
\glsdisplaynumberlist (with limitations). The location counter is set to chapter, so
the number list refers to the chapter numbers.

\usepackage [savenumberlist, counter=chapter] {glossaries}

322

https://www.dickimaw-books.com/gallery/glossaries-styles/
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-numberlist.tex

bib2gls

19 Sample Documents

The number list can’t be obtained until makeindex (or xindy) has created the glossary
tile. The number list is picked up when this file is input by \printglossary and is then
saved in the aux file so that it’s available on the next I&TEX run.

This document contains both commands:

This is a \gls{sample} document. \Glspl{sample}
are discussed in chapters~\glsdisplaynumberlist{sample}
(or \glsentrynumberlist{sample}).

Without hyperref, the first list shows as “1-3, 5 & 6” and the second list shows as “1-3, 5, 6”.
Note that you can’t use \glsdisplaynumberlist with hyperref and Options 2 or 3. If
you do, you will get the warning:

Package glossaries Warning: \glsdisplaynumberlist doesn't work with
hyperref.
Using \glsentrynumberlist instead

Now both lists show as “1-3, 5, 6”.

If you switch to Option 1 (replace \makeglossaries with \makenoidxglossaries
and replace \printglossaries with \printnoidxglossaries), then the document
build is simply:

$ pdflatex sample-numberlist
$ pdflatex sample—numberlist

Now \glsdisplaynumberlist works with hyperref, however there are no ranges, so the
first list shows as “1, 2, 3, 5, & 6” and the second list shows as “1, 2, 3,4, 5, 6”.

If you want to switch to bib2gls, you first need to switch to glossaries-extra (at least
v1.42) but remember to include the record option:

\usepackage [record, counter=chapter] {glossaries—extra}

Note that the savenumberlist option is no longer required. Next convert the entry to the bib
format required by bib2gls:

$ convertgls2bib sample—numberlist.tex entries.bib

Replace \makeglossaries with:

\GlsXtrLoadResources[src=entries.bib]

and remove the \newglossaryentry command from the document preamble. Finally,
replace \printglossaries with \printunsrtglossaries. Thebuild processis now:

$ pdflatex sample—numberlist

$ bib2gls sample—numberlist
$ pdflatex sample—numberlist

Now both ranges and hyperlinks work. The first list shows “1-3, 5, & 6” and the second
list shows “1-3, 5, 6”. You can also use:

323

glossaries-extra.sty

19 Sample Documents

\glsxtrfieldformatlist{sample}{loclist}

which will show the complete list without ranges “1, 2, 3,5 & 6”.

This method works much better than using the savenumberlist option because bib2gls
saves the formatted number list in the 1ocation field (which is an internal field pro-
vided by glossaries-extra for the benefit of bib2gls) and the unformatted number list in
the loclist internal field (which is also used by Option 1).

With Options 2 and 3, both makeindex and xindy simply create a file containing the
commands to typeset the glossary, which is input by \printglossary. This means that
it’s quite hard to gather information obtained by the indexing application.

bib2gls, on the other hand, doesn’t write a file containing the glossary. It writes a file
containing the entry definitions and uses internal fields to save the indexing information.
The glossary is then displayed with \printunsrtglossary, which simply iterates over
all defined entries and fetches the required information from those internal fields.

The \glsdisplaynumberlist and \glsentrynumberlist commands are rede-
fined by glossaries-extra-bib2gls to simply access the 1ocation field. However, if you want
a complete list without ranges you can use:

\glsxtrfieldformatlist{sample}{loclist}

In this example, this produces “1, 2, 3,5 & 6”.
Note the difference if you use the record=nameref package option instead of just record.
sample—nomathhyper.tex

This document illustrates how to selectively enable and disable entry hyperlinks in
\glsentryfmt. The document build is:

$ pdflatex sample—nomathhyper

$ makeglossaries sample—nomathhyper
$ pdflatex sample—-nomathhyper

This disables the hyperlinks for the main glossary with:

\GlsDeclareNoHyperList{main}

and then redefines \glsentryfmt so that it adds a hyperlink if not in maths mode and
the hyperlinks haven’t been forced off (with the hyper=false key).

If you want to switch to glossaries-extra, then you can instead use the hook that comes
before the keys are set. The preamble is much simpler:

\usepackage{glossaries—-extra}
\makeglossaries
\renewcommand{\glslinkpresetkeys}{%
\ifmmode \setkeys{glslink}{hyper=false}\fi
}

% entry definition

324

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-nomathhyper.tex

glossaries-extra.sty

19 Sample Documents

sample—-entryfmt.tex

This document illustrates how to change the way an entry is displayed in the text. (This
is just a test document. For a real document, I recommend you use the siunitx package to
typeset units.) The document build is:

$ pdflatex sample—-entryfmt

$ makeglossaries sample-entryfmt
$ pdflatex sample—-entryfmt

This redefines \glsentryfmt to add the symbol on first use:

\renewcommand*{\glsentryfmt}{%

\glsgenentryfmt

\ifglsused{\glslabel}{}{\space (\glsentrysymbol{\glslabel})}%
}

Note the use of \glsentrysymbol not \glssymbol (which would result in nested link
text).

If you want to switch to the glossaries-extra package, you can make use of the category
post-link hook instead:

\usepackage[stylemods, style=tree] {glossaries—extra}
\makeglossaries
\glsdefpostlink{unit} {\glsxtrpostlinkAddSymbolOnFirstUse}

\newglossaryentry{distance} {
category={unit},

name=distance,

description={The length between two points},
symbol={km} }

Note that in this case the symbol is now outside of the hyperlink.

sample-prefix.tex

This document illustrates the use of the glossaries-prefix package. An additional run is re-
quired to ensure the table of contents is up-to-date:

$ pdflatex sample-prefix
$ makeglossaries sample-prefix

$ pdflatex sample-prefix
$ pdflatex sample-prefix

Remember that the default separator between the prefix and \gls (or one of its variants)
is empty, so if a space is required it must be inserted at the end of the prefix. However, the
xkeyval package (which is used to parse the (key)=(value) lists) trims leading and trailing
space from the values, so an ordinary space character will be lost.

325

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-entryfmt.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-prefix.tex

glossaries-extra.sty

bib2gls

19 Sample Documents

\newglossaryentry{sample} {name={sample},
description={an example},
prefix={a~},
prefixplural={the\space}%

}

\newglossaryentry{oeil} {name={oeil},
plural={yeux},
description={eye},
prefix={1"'},
prefixplural={les\space}}

If you want to convert this example to use glossaries-extra, then (as from v1.42) you can
use the prefix option:

\usepackage [prefix, postdot, acronym] {glossaries—extra}

(Alternatively load glossaries-prefix after glossaries-extra.) The rest of the document is the
same as for the base glossaries package, unless you want to switch to using bib2gls.

If you want to switch to bib2gls, first switch to glossaries-extra (as above) but make sure
you include the record package option:

\usepackage [record, prefix,postdot,acronym] {glossaries—extra}

Next convert the entries into the bib format required by bib2gls:

$ convertgls2bib —-preamble-only sample-prefix.tex entries.bib

Replace \makeglossaries with

\setabbreviationstyle[acronym] {long-short}
\GlsXtrLoadResources [src=entries]

remove the entry definitions from the preamble, and replace

\printglossary[style=plist]
\printacronyms

with

\printunsrtglossary[style=plist]
\printunsrtacronyms

The document build is now:

$ pdflatex sample-prefix

$ bib2gls sample-prefix
$ pdflatex sample-prefix

With bib2gls v2.04, you don’t need to manually insert the spaces at the end of the
prefixes. Instead you can instruct bib2gls to insert them. To try this out, remove the
trailing ~ and \space from the entries.bib file:

326

19 Sample Documents

@entry{sample,

prefix = {a},

name = {sample},
description = {an example},
prefixplural = {the}

}

@entry{oeil,
plural = {yeux},
prefix = {1'},
name = {oeil},
description = {eye},
prefixplural = {les}
}

@acronym{svm,

prefixfirst = {a},

prefix = {an},

short = {SVM},

long = {support vector machine}

}
Now add the append-prefix-field={space or nbsp} resource option:

\GlsXtrLoadResources[src=entries, append-prefix—-field={space or nbsp}]

See the bib2gls manual for further details.

sampleaccsupp.tex

This document uses the glossaries-accsupp package (see Section 18). That package automat-
ically loads glossaries and passes all options to the base package. So you can load both
packages at once with just:

\usepackage [acronym] {glossaries—accsupp}

This provides additional keys that aren’t available with just the base package, which may
be used to provide replacement text. The replacement text is inserted using accsupp’s
\BeginAccSupp and \EndAccSupp commands. See the accsupp package for further de-
tails of those commands.

Note that this example document is provided to demonstrate glossaries-accsupp as suc-
cinctly as possible. The resulting document isn’t fully accessible as it’s not tagged. See the
accessibility and tagpdf packages for further information about tagging documents.

It’s not essential to use glossaries-accsupp. You can simply insert the replacement text
directly into the field values. For example:

\newglossaryentry{Drive} {
name={\BeginAccSupp{Actual=Drive}Dr.\EndAccSupp{}},
description={Drive}

327

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleaccsupp.tex

19 Sample Documents

}
\newglossaryentry{image} {name={sample image},
description={an example image},
userl={\protect\BeginAccSupp{Alt={a boilerplate image used in
examples} }\protect\includegraphics
[height=20pt] {example—-image} \protect\EndAccSupp{}}

}

However, this can cause interference (especially with case-changing). With glossaries-
accsupp it’s possible to obtain the field values without the accessibility information if re-
quired. (If in the future \includegraphics is given extra options to provide replace-
ment text then the image example here won’t be necessary. However, the example can be
adapted for images created with TgX code.)

The acronym style is set using;:

\setacronymstyle{long-short}
The first abbreviation is straightforward:
\newacronym{eg}{e.g.}{for example}

The shortaccess replacement text is automatically set to the long form. The next ab-
breviation is awkward as the long form contains formatting commands which can’t be
included in the replacement text. This means that the shortaccess key must be sup-
plied:

\newacronym|[shortaccess={TiKZ ist kein Zeichenprogramm}]

{tikz} {Ti\emph{k}Z}{Ti\emph{k}Z ist \emph{kein} Zeichenprogramm}

In the above two cases, the short form obtained in \ g1s will use the “E” PDF element.

By way of comparison, there are some entries that are technically abbreviations but are
defined using \newglossaryentry instead of \newacronym. The replacement text is
provided in the access key:

\newglossaryentry{Doctor}{name=Dr,description={Doctor}, access={Doctor}}
\newglossaryentry{Drive} {name={Dr.},plural={Drvs},description={Drive},
access={Drive}}

These will use PDF’s “ActualText” element (not “E”).
The next entry is a symbol (the integration symbol [). This could be defined simply as:

\newglossaryentry{int}{name={int}, description={integral},
symbol={\ensuremath{\int}}}

and then referenced in the text like this:

Symbol: \gls{int} (\glssymbol{int}).

328

19 Sample Documents

This results in the text “Symbol: integral ([).” However if you copy and paste this from
the PDF you will find the resulting text is “Symbol: int (R).” This is what’s actually read
out by the text-to-speech system.

It would be better if the actual text was the Unicode character 0x222B. This would not
only assist the text-to-speech system but also make it easier to copy and paste the text. The
simplest method is to identify the character by its hexadecimal code, but in order to do this
the \BeginAccSupp command needs to have the options adjusted.

In order to determine whether to use “E”, “ActualText” or “Alt” for a particular field,
glossaries-accsupp will check if the command \gls(field)accsupp exists (wWhere (field)
is the internal field label, see table 4.1). Only two of these commands are predefined:
\glsshortaccsupp and \glsshortplaccsupp, which is why the shortaccess field
uses “E”. If the given command doesn’t exist then the generic \glsaccsupp command is
used instead.

This means that in order to simply set symbolaccess to the hexadecimal character
code, I need to provide a command called \glssymbolaccsupp:

\newcommand{\glssymbolaccsupp} [2]{%
\glsaccessibility [method=hex,unicode] {ActualText} {#1}{#2}%
}

Now I can adjust the definition of the int entry:

\newglossaryentry{int} {name={int},description={integral},
symbol={\ensuremath{\int}}, symbolaccess={222B}
}

The final entry has an image stored in the userl key. (The image file is provided
with the mwe package.) This should use “Alt” instead of “ActualText” so I need to de-
fine \glsuseriaccsupp:

\newcommand{\glsuseriaccsupp}[2]{%
\glsaccessibility{Alt}{#1}{#2}%

}
The image description is provided in the userlaccess key:

\newglossaryentry{sampleimage} {name={sample image},
description={an example image},
userl={\protect\includegraphics[height=20pt] {example-image}},
userlaccess={a boilerplate image used in examples}

}

(Note the need to protect the fragile \includegraphics. The alternative is to use
\glsnoexpandfields before defining the command. See Section 4.4.)
If you try this example and inspect the PDF* then you will find content like:

*You can either uncompress the PDF file and view it in a text editor or you can use a tool such as the PDFDe-
bugger provided with PDFBox.

329

https://pdfbox.apache.org/

19 Sample Documents

/Span << /ActualText (Doctor) >> BDC
BT
/F8 9.9626 Tf
73.102 697.123 Td
[(Dr)] TJ
ET
EMC

This shows that “ActualText” was used for \gls{Doctor}. The integral symbol () cre-
ated with \glssymbol{int} is:

/Span << /ActualText (\376\377"+) >> BDC
BT
/F1 9.9626 Tf
97.732 650.382 Td
[(R)] TJ
ET
EMC

Again, “ActualText” has been used, but the character code has been supplied. The image
created with \glsuseri{sampleimage} is:

/Span << /Alt (a boilerplate image used in examples) >> BDC
1 001 106.588 618.391 cm
q
0.08301 0 0 0.08301 0 0 cm
Sl
100100 cm
/Iml Do
Q

Q
EMC

This shows that “Alt” has been used.
The first use of \gls{eg} produces the long form (not reproduced here) followed by
the short form:

/Span << /E (for example) >> BDC
BT
/EF8 9.9626 Tf
161.687 563.624 Td
[(e.g.) 1 TJ
ET
EMC

The subsequent use also has the “E” element:

/Span << /E (for example) >> BDC
BT
/EF8 9.9626 Tf

330

glossaries-extra.sty

19 Sample Documents

118.543 551.669 Td

[(e.g.)] TJ
ET
EMC

Similarly for \acrshort{eg}. You can also use the debug=showaccsupp package option.
This will show the replacement text in the document, but note that this is the content before
it’s processed by \BeginAccSupp.

If the \setacronymstyle command is removed (or commented out) then the result
would be different. The first use of \gls uses “E” for the short form but the subsequent
use has “ActualText” instead. This is because without \setacronymstyle the original
acronym mechanism is used, which is less sophisticated than the newer acronym mecha-
nism that’s triggered with \setacronymstyle

If you want to convert this example so that it uses glossaries-extra, make sure you have
at least version 1.42 of the extension package.

If you want to convert this example so that it uses glossaries-extra, you need to replace
the explicit loading of glossaries-accsupp with an implicit load through the accsupp package
option:

\usepackage [abbreviations,accsupp] {glossaries—extra}

I'm switching from \newacronym to \newabbreviation, which means that the de-
fault category is abbreviation and also the file extensions are different. If you are using
makeglossaries or makeglossaries-1lite you don’t need to worry about it. How-
ever, if you're not using those helper scripts then you will need to adjust the file extensions
in your document build process.

The style command \setacronymstyle{long-short} needs to be replaced with:

\setabbreviationstyle{long-short}

This is actually the default so you can simply delete the \setacronymstyle line. Substi-
tute the two instances of \newacronym with \newabbreviation. For example:

\newabbreviation{eg}{e.g.}{for example}

Note that for the t 1k z entry you can now remove the explicit assignment of shortaccess
with glossaries-extra v1.42 as it will strip formatting commands like \emph:

\newabbreviation
{tikz}{Ti\emph{k}Z}{Ti\emph{k}Z ist \emph{kein} Zeichenprogramm}

It’s also necessary to replace \acrshort, \acrlongand \acrfull with \glsxtrshort,
\glsxtrlongand \glsxtrfull.

You may notice a slight difference from the original example. The shortaccess field
now shows (long) ((short)) instead of just (long). This is because glossaries-extra redefines
\glsdefaultshortaccess to include the short form.

331

19 Sample Documents

Now that the extension package is being used, there are some other modifications that
would tidy up the code and fix a few issues.

The “Doctor” and “Drive” entries should really be defined as abbreviations but they
shouldn’t be expanded on first use. The short-nolong style can achieve this and it happens
to be the default style for the acronym category. This means that you can simply replace the
“Doctor” definition with:

\newacronym{Doctor} {Dr} {Doctor}

The first use of \gls{Doctor} isjust “Dr”. This means that the “E” element will be used
instead of “ActualText”. Now I don’t need to supply the accessibility text as its obtained
from the long form.

The “Drive” entry can be similarly defined but it has the awkward terminating full stop.
This means that I had to omit the end of sentence terminator in:

\gls{Doctor} Smith lives at 2, Blueberry \gls{Drive}

This looks odd when reading the document source and it’s easy to forgot. This is very
similar to the situation in the sample-dot-abbr.tex example. I can again use the dis-
cardperiod attribute, but I need to assign a different category so that it doesn’t interfere with
the “Doctor” entry.

The category is simply a label that’s used in the construction of some internal command
names. This means that it must be fully expandable, but I can choose whatever label I
like (general, abbreviation, acronym, index, symbol and number are used by various commands
provided by glossaries-extra).

In this case, I've decided to have a category called shortdotted to indicate an abbre-
viation that ends with a dot but only the short form is shown on first use:

\setabbreviationstyle[shortdotted] {short-nolong-noreg}
\glssetcategoryattribute{shortdotted}{discardperiod}{true}
\newabbreviation[category=shortdotted] {Drive} {Dr.\Q@}{Drive}

In the sample-dot—-abbr.tex example, I also used the insertdots attribute to automati-
cally insert the dots and add the space factor (which is adjusted if discardperiod discards a
period). In this case I'm inserting the dot manually so I've also added the space factor with
\ @ in case the abbreviation is used mid-sentence. For example:

\gls{Doctor} Smith lives at 2, Blueberry \gls{Drive}. Next sentence.
\gls{Doctor} Smith lives at 2, Blueberry \gls{Drive} end of sentence.

(The spacing is more noticeable if you first switch to a monospaced font with \tt family.)

The “e.g.” abbreviation similarly ends with a dot. It's not usual to write “for example
(e.g.)” in a document, so it really ought to have the same shortdotted category, but it
has a long-short form for illustrative purposes in this test document. In this case I need to
choose another category so that I can apply a different style. For example:

332

19 Sample Documents

\setabbreviationstyle[longshortdotted] {long-short}
\glssetcategoryattribute{longshortdotted}{discardperiod} {true}
\newabbreviation[category=longshortdotted] {e.g.}{e.g.\Q@}{for
example}

To further illustrate categories, let’s suppose the symbol and image should be in the
name field instead of the symbol and userl fields. Now the \glssymbolaccsupp and
\glsuseriaccsupp commands won't be used. I can’t deal with both cases if I just pro-
vide \glsnameaccsupp.

I could provide category-field versions, such as \glsxtrsymbolnameaccsupp, but
remember that this only covers accessing the name field, which is typically only done in
the glossary. I would also need similar commands for the first, firstplural, text
and plural keys. This is quite complicated, but since I don’t need to worry about any of
the other fields it’s simpler to just provide the \glsxtr(category)accsupp version:

\newcommand{\glsxtrsymbolaccsupp} [2]{%
\glsaccessibility[method=hex,unicode] {ActualText} {#1}{#2}%

}

\newcommand{\glsxtrimageaccsupp} [2]{%
\glsaccessibility{Alt}{#1}{#2}%

}

\newglossaryentry{int} {category=symbol,
name={\ensuremath{\int}}, access={222B},
description={integral}

}

\newglossaryentry{sampleimage} {category=image,
description={an example image},
name={\protect\includegraphics[height=20pt] {example-image}},
access={a boilerplate image used in examples}

}

If it’s necessary to provide support for additional fields, then the category-field command
\glsxtr(category)(field)accsupp could be used to override the more general cate-
gory command \glsxtr(category)accsupp.

sample-ignored.tex

This document defines an ignored glossary for common terms that don’t need a definition.
The document build is:

$ pdflatex sample—ignored

$ makeglossaries sample-ignored
$ pdflatex sample-—-ignored

A new “ignored” glossary is defined with:

\newignoredglossary{common }

333

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-ignored.tex

glossaries-extra.sty

bib2gls

19 Sample Documents

There are no associated files with an ignored glossary. An entry is defined with this as its
glossary type:

\newglossaryentry{commonex} {type=common, name={common term} }

Note that the description key isn’t required. This term may be referenced with \gls
(which is useful for consistent formatting) but it won’t be indexed.

sample—entrycount.tex

This document uses \glsenableentrycount and \cgls (described in Section 14.1) so
that acronyms only used once don’t appear in the list of acronyms. The document build is:

$ pdflatex sample—entrycount
$ pdflatex sample-entrycount

$ makeglossaries sample—entrycount
$ pdflatex sample-—-entrycount

Note the need to call ATEX twice before makeglossaries, and then a final IATEX call is
required at the end.

The glossaries-extra package has additions that extend this mechanism and comes with
some other sample files related to entry counting.

If you switch to bib2gls you can use record counting instead. See the bib2gls man-
ual for further details.

334

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-entrycount.tex

20 Troubleshooting

In addition to the sample files listed in Section 19, the glossaries package comes with
some minimal example files, minimalgls.tex, mwe-gls.tex, mwe-acr.tex and
mwe-acr-desc.tex, which can be used for testing. These should be located in the
samples subdirectory (folder) of the glossaries documentation directory. The location
varies according to your operating system and TgX installation. For example, on my
Linux partition it can be found in /usr/local/texlive/2014/texmf-dist/doc/
latex/glossaries/. The makeglossariesgui application can also be used to test
for various problems. Further information on debugging IXIEX code is available at http:
//www.dickimaw-books.com/latex/minexample/.

If you have any problems, please first consult the glossaries FAQ!. If that doesn’t help, try
posting your query to somewhere like the comp. text .tex newsgroup, the IETEX Com-
munity Forum? or TgX on StackExchange®. Bug reports can be submitted via my package

bug report form*.

IThttp://www.dickimaw—books.com/fags/glossariesfaqg.html
2http: //www.latex—community.org/

3http: //tex.stackexchange.com/
4http://www.dickimaw-books.com/bug-report .html

335

http://www.dickimaw-books.com/latex/minexample/
http://www.dickimaw-books.com/latex/minexample/
http://www.dickimaw-books.com/faqs/glossariesfaq.html
http://www.latex-community.org/
http://tex.stackexchange.com/
http://www.dickimaw-books.com/bug-report.html

Index

"Requires glossaries-extra.

Symbols
N 321
N 271,332
\Q@gls@codepageuuuuuunwn.. 54
\Q@gls@reference 55
\Qglsorderouuiiiiennen.. 54
\@glsxtr@altmodifier 55
\@glsxtr@newglslike 55
\@glsxtr@prefixlabellist 55
\@istfilenamec....... 54
\@NEWJLlOSSATY « vt v v ite it 54
\@xdylanguageooouenmuen.. 54
A
NBA 18
Tabbreviation styles:

footnote 263
long-short 254,269, 271
long-short—-sc 259
long-short-sc-desc 260
postfootnote 263
short-nolong 254,332
short-sc-footnote 263
short—-sc—footnote—-desc 263,264,267

short-sc-postfootnote-desc ...
.................... 263, 264, 267
N e 181
NG vt e 181
accessibility package 248,251, 327
accsupp package 247,248, 251, 327
NACE o 181
Nact o 181
NACED it 181
NacCEp 181
NACL o 181
Nacl 181
NACID ittt 181
NACLID et e 181
NBACD vttt 181

NBCD ettt e 181
NACREULL o it e 180
\Acrfull 180, 181
\acrfull 180,181,184, 186,190, 202, 259, 261
\acrfullfmt 180, 188, 190
\acrfullformat 180, 182
\ACRFULIPL o iiit i e 180
\Acrfullpl 180, 181
Nacrfullpl 180,181
NACRIONG &t ottt e e e 179
\ACTIONG v vttt it ee e 179,181
\acrlong 179,181, 259, 261, 271
\ACRIoNngpl .. iviii i 179
\Acrlongpliiiin... 179, 181
\acrlongpliiiiie... 179, 181
acronym styles:
AU « e 184, 186, 188
dua—desc ...t 186
footnote 184, 186, 188
footnote-desc 186
footnote-sc 186
footnote-sc-desc 186, 187, 263
footnote—-sm 186
footnote-sm-desc 186
long—-sc—-short 184, 185, 188, 259
long-sc-short-desc 185, 260
long—-short 139, 184, 185, 187, 188
long-short-desc 185, 186, 188
long-sm-short 184, 185
long-sm-short-desc 185
long-sp-short 184, 185
long-sp-short-desc 185
sc-short-long 185
sc-short-long-desc 185
short-long 185
short-long-desc 185
sm-short-long 185
sm-short-long-desc 185
\acronymentry 183,185, 187,192

336

Index

\acronymfont
86,178, 184, 184, 185, 187, 195, 260
\aCronymname 40,176
\acronymsort 183,185, 187,191
\acronymtypeiiiiin...
...... 65,79, 83,110,144, 175, 176, 198
\ACRShOTtt 179
\Acrshort 179, 181
\acrshort . 13,178,181, 195, 259, 261, 271
\ACRshortpl 179
\Acrshortpl 179, 181
\acrshortpl 179,181
NS vttt 181
NBCS vttt e e 181
NACSD v ettt e 181
NBCSD t ettt e 181
\addcontentsline 62
\alsSonameouiiiinieneann 306
\altnewgloSSaryou... 174
amsgenpackage 1,197
amsmath package 127,203
\andnameiii. 149
arara 16, 21, 27,33, 47, 54, 55, 279
array package 214,218
\AtBeginDocument 109
Atom .. 62
attributes see category attributes

(glossaries-extra) or xindy attributes

auto-completion 61
B

\babel i i 78
babel package 20,

38, 39, 41, 42, 59, 60, 92, 109, 112, 175, 280

beamerclass 127,202,203

beamer package 41

\BeginAccSUPP .« -« .vvou.n. 249, 327, 329
bib2gls 1,9,9,25-33,37, 42,

46,47, 49, 53, 55, 59, 61, 66, 69, 70, 72,
73,77,89,94,96,97, 109, 114, 115, 120,
144-146, 161, 175, 207, 252, 255-257,
261, 262, 268, 272, 277-279, 281-288,
290, 291, 293, 294, 297-301, 304-307,
309, 310, 315-320, 322-324, 326, 327, 334

——gIOoUP « .ttt 27,33,257,300, 301
——map-format 279
L 300
e (N 279

"bib2gls entry types

@abbreviation 25,26,261,262,29
@acronym 261,262,6284,285,294,327
@dualabbreviationentry 284,285
@dualentry 288
@dualindexabbreviation 285

@entry ...t 25,

26,30, 273,282, 284, 285, 287, 290, 293,
294, 299, 300, 304, 305, 307, 309, 316, 327
@index . ..vvvivnn... 33, 285, 290, 309
@indexplural 304-306
@preamble 290, 291, 299, 317
@symbol 25,26,273,282,283,294, 305, 306
booktabs package 213,214, 216, 322
\bottomrule 216

C
fcategories
abbreviation
.... 254,259,262, 265, 268, 271, 331, 332
ACTONYIM & v v v et et e e e

.... 254,259,260, 262, 265, 268, 271, 332
general 266,297,302, 332
INdeX oo v it e 332
NUMDET . ..ttt ettt et e e e e e 332
symbol 303, 306, 332
fcategory attributes: 177
discardperiod 269,271, 332
glossdesc 31, 265, 266, 274
glossdescfont 31
glossname 32
glosssymbolfont 276
hyperoutside 3
indexonlyfirst 71
insertdots 269, 271, 332
nohyperfirst 61
noshortplural 269
pluraldiscardperiod 269
retainfirstuseperiod 269
textformat 3
NCGLS vttt 205
NCOLS i 205,334
\cGlsformat 206
\cglsformat 205
NCGLsPl « vt 205
Neglspl oo 205
\cGlsplformat 206
\cglsplformat 206
\chapter 162, 290

337

Index

\chapter*0o...... 65,162
classicthesis package 67,68,211,213
1Lconvertglstib 9,9, 255, 256,
272,277,278, 281, 282, 284, 299, 307, 320
\currentgloSSaryo.uouenr.n. 229
D
datatool package 1,161
datatool-base package 1
\DeclareAcronymList ... 84,136,176,233
\defentryfmt 178
\defglsentry 10, 132
\defglsentryfmt

.... 123,126,131, 136, 136, 176, 183, 187

\DefineAcronymSynonyms 84
NdelimN 228
NdelimR ...ttt 228
\descriptionname 40
Ndgls oo 55
\Ndicedl ... 313
docpackage 3,88
\dtlcompareocuuuiue... 161
\dtlicompareoouuuu... 161
\dtlletterindexcompare 161
\dtlwordindexcompare 161
E
Nedef ... 137
Nemph ... 124
ENCAD - v v vt e 114
\ENdACCSUPD vttt ieeieee 249, 327
\ensuremath 276
entry location 9
\entrynameouiininia.n.. 40
environments:
theglossaryc.ovuuvue... 226

etoolbox package 1,75,137, 236,238, 239, 298, 299
Extended Latin Alphabet

extended Latin character . 9,10,10-12,92, 319

file types

alg
AUX ettt e e 9,
21,24,31,37,49, 50, 53, 55, 59, 70, 115,

122, 165, 204, 280, 281, 302, 312, 320, 323
bib 9,18, 25, 26, 33, 37,
55, 61, 72, 91, 144, 255, 256, 261, 272,

273, 278, 281-284, 287, 290, 293, 294,
299, 304-307, 309, 315, 317-320, 323, 326

dict oo 42
docdefs ... 58, 62
glg o 49, 52,53, 320
Glg2 o e 3
glo ... 21, 23,50, 52, 53, 80, 278
Glo2 e 3
LS it 52,53
GLlS2 v e 3
glsdefs 55,109, 112
glslabels ..., 61
glstex ... 55
ist oo 21,53,54,77,89, 90
1df .. 42
TUA ¢t e 51
tex ... 9,37,52,53,262,317, 320
EOC vttt e e e 259, 263
xdy . 23,52,54,77,89,90, 164, 313-315, 318
firstuse 10
flag 10
text ... 10
\firstacronymfont . 139,184,184, 185
flowfram package 217
fmtcount package 170, 319
fontspec package 97,173
\footnote 186, 264-266, 268
\forallacronyms 233
\forallglossaries 233
\forallglsentries 234
\foreignlanguage 288
\forglsentries 233
G
\Genacrfullformat 139
\genacrfullformat . 138,139, 183, 187-189
\GenericAcronymFields 188,192
\Genplacrfullformat 139
\genplacrfullformat 139, 139
\glolinkprefix 126, 162
glossaries package 33, 39, 60,

79, 87, 88, 109, 116, 123, 124, 145, 247, 259
glossaries-accsupp package
57,87,92,247-249, 327-329, 331

glossaries-babel package 59,60
glossaries-extra-bib2gls package 324
glossaries-extra-stylemods package 69, 208, 211
glossaries-polyglossia package 59

338

glossaries-prefix package

Index

. 87,92,241, 242, 258, 259, 287, 325, 326
glossary counters:
glossaryentryo..o... 66
glossarysubentry 67
glossary package 2,87,199
glossary styles:
altlist 185, 186, 194, 212, 260
altlistgroupcvvivvnnn.. 212
altlisthypergroup 212
altlongdcol 210, 214
altlongd4col-booktabs 216
altlongdcolborder 214
altlongd4colheader 214, 216
altlongd4colheaderborder ... 214,322
altlongragged4col 215
altlongragged4col-booktabs 216,322
altlongragged4colborder 215
altlongragged4colheader ... 215,216
altlongragged4colheaderborder 215
altsuperdcol 210,217,218
altsuperdcolborder 218
altsuperdcolheader 218
altsuperdcolheaderborder 218
altsuperragged4col 219
altsuperragged4colborder 219
altsuperragged4colheader 219
altsuperragged4colheaderborder
........................... 219
alttree 210, 220-224, 303
alttreegroup 223,224
alttreehypergroup 223,224,301
hookindex « oo 32,33
index 68,211, 212, 220, 221, 223, 224
indexgroup « ..o vv vt 221,224
indexhypergroup 220,221,224
inline ... 224,300
list .. 68,211,212,226-228, 230,231, 245
listdotted 210, 211, 213
listgroup 74,209, 211
listhypergroup .. 211,212,220-223, 227
1ONG « i et ettt e e e 210, 213
long-booktabs 216
flong-name-desc-sym-loc 322
long3col 209, 213, 214
long3col-booktabs 216
long3colborder 209, 213
long3colheader 209, 213, 216
long3colheaderborder 209, 213

339

long4col ... 210,214
long4col-booktabs 216, 322
longdcolborder 214
long4colheader 214,216
long4colheaderborder 214,322
longborder, 213
longheader 213, 216, 226
longheaderborder 163,213
longraggedciii... 214, 215
longragged-booktabs 216
longragged3col 215
longragged3col-booktabs 216
longragged3colborder 215
longragged3colheader 215, 216
longragged3colheaderborder ... 215
longraggedborder 215
longraggedheader 215,216
longraggedheaderborder 215
mcolalttree 224
mcolalttreegroup 224
mcolalttreehypergroup 224
mcolalttreespannav 224
mcolindex 223,224
mcolindexgroupvvuv e .. 224
mcolindexhypergroup 224
mcolindexspannav 224
mcoltree i 224
MCOLlLreegroup « v v v v v v e v e v .. 224
mcoltreehypergroup 224
mcoltreenoname 224
mcoltreenonamegroup 224
mcoltreenonamehypergroup 224
mcoltreenonamespannav 224
mcoltreespannav 224
SUPET v o vt ettt e et e 217
super3col i 217
super3colborder 217
super3colheader 217
super3colheaderborder 217
superd4col 210,217,218
superdcolborder 218
superdcolheader 218
superd4colheaderborder 218
superborder 217
superheader 217
superheaderborder 163,217
superragged 218, 219
superragged3col 219
superragged3colborder 219

superragged3colheader 219
superragged3colheaderborder .. 219
superraggedborder 218
superraggedheader 219
superraggedheaderborder 219
Ttopic v 303, 304
tree 192, 220-222, 224, 303
Lreegroup « v v v v v v i i e 221,224
treehypergroup 212,221,224
treenoname 220-222, 224
treenonamegroup 222,224,300
treenonamehypergroup 222,224
glossary-bookindex package 32,208
glossary-inline package 224
glossary-list package 67,68,163,211, 260
glossary-long package 67, 163, 213, 214, 216, 258
glossary-longbooktabs package 216, 322
*glossary-longextra package 259, 322
glossary-longnoloc package 208
glossary-longragged package 214,216
glossary-mcols package 68, 222-224
glossary-ragged package 216
glossary-super package ... 67,68, 163,217,218
glossary-superragged package 218
*glossary-topic package 301, 303
glossary-topic package 303

glossary-tree package
67, 68,163, 219, 222, 223, 302, 303

glossaryentry (counter) 66, 66, 67
\glossaryentrynumbers 228
\glossaryheader 226,226,229
\glosSsaryname 40, 59
\glossarypostamble 162,226
\glossarypreamble 66,162,226
\glossarysection 224
\glossarystyle 160
glossarysubentry (counter) 67
\glossentry 227,227,229
\Glossentrydesc 153,274
\glossentrydesc 31, 153, 227, 266, 274
\Glossentryname 152,230
\glossentryname 152,227,230
\glossentrynameother 33
\Glossentrysymbol 154
\glossentrysymbol 30, 31, 154, 227
\GLS oot 10,93, 127, 242
\Gls 10,37,93,97,127,178,181,199, 242, 321

\NGLlS o 10, 31, 32,
48,60, 61,79, 80,93,127,132, 137-140,
147, 167, 177, 181, 189, 195, 199, 200, 242
NGLS* e e 60
f\glsabbrvfont 264
\glsaccessibility 249, 329, 333
\Glsaccesslong 267
\glsaccesslong 267
\Glsaccesslongpl 267
\glsaccesslongpl 267
f\glsaccessshort 267
f\glsaccessshortpl 267, 268
\NglSaACCSUPD vttt vieeeee e 249, 329
\glsacrpluralsuffix 177
\glsSacSpPace, 185
\glsadd 30, 31, 58, 70, 144, 283, 285
\glsaddall 114, 144, 256, 320
\glsaddall options
EYPES v et e 144
\glsaddallunused 145
\glsaddkey 95, 98, 99, 99, 308
\GlsAddLetterGroup 315
\glsaddprotectedpagefmt 117
\glsaddstoragekey

95, 101, 143, 194, 269, 270, 310, 311
\GlsAddXdyAttribute 125,166, 278
\GlsAddxXdyCounters 166, 169
\GlsAddxXdyLocation 167,171
\glsautoprefix 64
\glsbackslash 164
\glscapscase 137,138, 187

\glscategoryoouuiiiuni... 310
\glsclearpageouueunenun.. 63
\glsclosebrace 164
\glscurrententrylabel 288,297, 303
\glscurrentfieldvalue 236,297,303
\glscustomtext 137,138,178
\GlsDeclareNoHyperList . 80, 82,324
\glsdefaultshortaccess 249, 331
\glsdefaulttype 83, 109, 110, 136, 233

\glsdefpostdesc 297, 303, 305

f\glsdefpostlink 266, 303, 325
\GLSAESC v vttt 134
\G1lSAESC v vt 134
\glsdesc ..., 134,274,281
\glsdescwidth 209, 213-215, 217-219
\glsdisablehyper .. 124,6137,141,142,157
\glsdisp 10, 60, 93,127, 131

340

Index

\glsdisplay
\glsdisplayfirst
\glsdisplaynumberlist

18, 65,157, 322-324

\glsdoifexists 234
\glsdoifexistsordo 235
\glsdoifexistsorwarn 235
\glsdoifnoexists 234
\glsdoifnoexistsordo 235
\glsdosanitizesort 74,289
\glsenableentrycount 204, 334
\glsenablehyper 141
\glsentrycounterlabel 228
\GlsEntryCounterLabelPrefix 66
\glsentrycurrcount 204
\Glsentrydesc 29-31, 153, 266
\glsentrydesc 31,153, 264, 266, 268
\Glsentrydescplural 154
\glsentrydescplural 154
\Glsentryfirst 153
\glsentryfirst 153,315
\Glsentryfirstplural 153
\glsentryfirstplural 153
\glsentryfmt 123,
126, 131, 136, 140-142, 176, 266, 324, 325
\Glsentryfull 182
\glsentryfull 182,184,186, 188, 190
\Glsentryfullpl 182
\glsentryfullpl 182
\glsentryitem 228,230
\Glsentrylong 139, 181, 190, 192
\glsentrylong 181,190, 192
\Glsentrylongpl 182, 190
\glsentrylongpl 182,190
\Glsentryname 28,151
\glsentryname 28, 151,157,307, 315
\glsentrynumberlist ... 65,157,322-324
\glsentryparent 239, 298
\Glsentryplural 152
\glsentryplural 152,297
\Glsentryprefix 245
\glsentryprefix 244,288
\Glsentryprefixfirst 245
\glsentryprefixfirst 244
\Glsentryprefixfirstplural 245
\glsentryprefixfirstplural 244
\Glsentryprefixplural 245
\glsentryprefixplural 244
\glsentryprevcount 204

\Glsentryshort 182
\glsentryshort 182
\Glsentryshortpl 182
\glsentryshortpl 182
\glsentrysort 239
\Glsentrysymbol 154
\glsentrysymbol . 29,31, 140, 154, 275, 325
\Glsentrysymbolplural 155
\glsentrysymbolplural 155
\Glsentrytext 100, 122, 152, 181, 245
\glsentrytext

100, 122, 149, 152, 157, 181, 260, 297, 303
\glsentrytitlecase 132, 151
\glsentrytype 239
\Glsentryuseri 156
\glsentryuseri 156, 227
\Glsentryuserii 156
\glsentryuserii 156
\Glsentryuseriii 156
\glsentryuseriii 156
\Glsentryuseriv 156
\glsentryuseriv 156
\GlSentryuserv 156
\glsentryuserv 156
\Glsentryuservi 156
\glsentryuservi 156
\glsexpandfields 106
\gls(field)accsupp 249, 250, 329
\glsfieldacCsupp .. .:«e'eeuuu... 249
\glsfielddef 240
\glsfieldedef 240
\glsfieldfetch 239
\glsfieldgdef 240
\glsfieldxdef 143, 240, 311
\glsfindwidesttoplevelname .. 222,301

\glsFindWidestUsedLevelTwo 302
f\glsFindWidestUsedTopLevelName . 302
\GLSEirstuiiiiiinennnn.. 132
\Glsfirst, 132
\glsfirst 132
\glsfirstabbrvscfont 267, 268
f\glsfirstlongfootnotefont ... 267,268
\GLSfirstplural 133
\Glsfirstplural 133
\glsfirstplural 133
INGLSEMEFITSE w oot oo 315
f\Glsfmtlongovvvvenon... 264, 268
\glsfmtname 260, 261, 315

341

Index

\Nglsfmtshortouuuuiun... 264
\glsfmttext 260, 290, 291
\glsgenacfmt 138,139,183, 187, 189, 195
\glsgenentryfmt ... 138,187,189, 266, 325
\glsgetgrouptitle 226
\glsglossarymark 63, 64,162,162
\glsgroupheading 226,229
\glsgroupskip 210, 227,229
\glshyperlink 142,151, 157
\glshypernavsep 211
\glsifhyper 137
\glsifhyperon 137,311, 312
\glsIfListOfAcronyms 84
\glsifplural 137,138,187, 198
\glsSignoreuouueiuine.on. 115
\glsinlinedescformat 225
\glsinlineemptydescformat 225
\glsinlinenameformat 225
\glsinlineparentchildseparator
........................ 225,225
\glsinlineseparator 225,225
\glsinlinesubdescformat 226
\glsinlinesubnameformat 225
\glsinlinesubseparator 225,225
\glsinsert 137,138
\glslabelcciiiiiine...
61,137,138,178, 195, 197, 266, 275, 303
\glslabeltok 188, 264
\glsletentryfield 154
\glslink 60, 131, 131, 166, 191, 274
\glslink options
COUNLEeTr .ottt 126, 166
format 114,

115, 124, 125, 157, 166, 274, 277, 278, 313

hyper 60,124, 137,138, 141, 144, 324
Thyperoutside 126
local vve i 126
fhoindex ..o 126
forefix .o 126
Ttextformato... .. 126
TtheHvaluecoiiin .. 126
fthevalueo 126
fwrgloss oo 126
\glslinkcheckfirsthyperhook 61
\glslinkpostsetkeys
........ 61,138, 139, 143,198, 311, 312
\glslinkprefix 162
\glslinkpresetkeys 324

\glslinkvar
\glslistdottedwidth
\glslistnavigationitem
\glslocalreset
\glslocalresetall
\glslocalunset
\glslocalunsetall

+\glslongfont
\glslongtok

\glsmcols
\glsmoveentry
\GLSname
\Glsname
\Nglsnameuiiiueeran..
\glsnamefont
\glsnavhypertarget
\glsnavigation
\glsnoexpandfields

\glsnoidxdisplayloc
\glsnumberformat .. 114,118,169, 278,
\glsnumberlistloop
\glsnumbersgroupname

\glsnumbersgrouptitle
\glsnumlistlastsep
\glsnumlistsep
\glsopenbrace

\glspagelistwidth
\glspar
\glspatchtabularx
\glspercentchar
\GLSpl
\Glspl
\glspl
\GLSplural
\Glsplural
\glsplural
\glspluralsuffix
\glspostdescription
\glspostinline
\glspostlinkhook
\glsprefixsep
\glsprestandardsort
*\glsps
f\glspt
\glsquote
\glsrefentry
\glsreset
\glsresetall
\glsresetentrycounter

10, 93, 94, 130,
10, 93, 94, 97, 130, 181,
10, 93, 94, 130, 132, 137,

93, 97,177,
210,
225,
138,139, 197,

74,94,

66, 67,161, 295,
71,177,

342

. 210, 213-215, 217~

281-

264

227

120
279
120

219
93

164
243
243
181
133

133
297
266
225
198
242
289
281
283
164
300
201
201

Index

\glsrestoreLToutput 216
\glssee 13, 69, 148, 148, 306, 307
\glsseeformat 149,150
\glsseeitemformat . 149,260,261, 264, 307
\glsseelastsepc.ouuuen. 149
\glsseelistvuuno.. 150
\NGLSSEESED .« vttt 149
\glsSetAlphaCompositor 90,171

\glssetcategoryattribute
32,265, 266, 269,271, 274, 288, 332, 333

\glsSetCompositor 90,171
\glssetexpandfield 106
\glssetnoexpandfield 106
\GlsSetQuote 20, 38
\glsSetSuffixF 119
\glsSetSuffixFF 119
\glssetwidest 222,301-304
\GlsSetWriteIstHook 121
\GlsSetXdyCodePage 49,77,165
\GlsSetXdyFirstLetterAfterDigits 173
\GlsSetXdyLanguage 49,77,88,165
\GlsSetXdyLocationClassOrder . 171
\GlsSetXdyMinRangeLength 119,172
\GlsSetXdyNumberGroupOrder 173
\glsshortaccsupp 249, 329
\glsshortplaccsupp 249, 329
\glsshorttok 188, 264, 268
\glsSShOWACCSUPP vttt vt v eeee e 57
\glsshowtarget 57,57
\glsshowtargetfont 57
\glsshowtargetouter 57
\glssortnumberfmt 74
\glssubentrycounterlabel 229
\glssubentryitem 229,230
\GLSsymbolt 134
\Glssymboluiiiiiinennan. 134
\glssymbol 133, 140, 275, 276
\glssymbolacCSupp .. .«.vevuune... 329
\glssymbolsgroupname 40, 227
\glstarget 228,229
\GLStexXtiiinn... 100, 132
\Glstext 100, 132
\glstext 60, 61,100, 132
\glstextformat 123,126,140, 151,178
\glstextup ..o 189
\glstildechar 164
\glstocfalsecouiiiinuenon. 62
\glstoctruec.. ..., 62
\glstreechildpredesc 220

\glstreegroupheaderfmt 220
\glstreeindent 221
\glstreeitemco..... 220
\glstreenamebox 223
\glstreenamefmt 219
\glstreenavigationfmt 220
\glstreepredesc 220
\glstreesubitem 221
\glstreesubsubitem 221
\glstype, 61,137,138
\glsunsetc.oiiiinn.. 201
\glsunsetall 142, 201
\GlsUseAcrEntryDispStyle 188
\GlsUseAcrStyleDefs 188
\GLSUSeriuiiiiiiii.. 134
NGLSUSETL v ittt ieeeeenn 134
\glsuseriouiiiiiinnin.. 134
\glsuUusSeriacCCsupp .« .« ..veeeuuen.. 329
\GLSUSETril ...t 135
\Glsuserii 135
\glsuseriiooiiiiiiii... 134
\GLSuseriii 135
\Glsuseriii 135
\glsuseriiioviiiini... 135
\GLSUSETiV + vttt et 135
\GlSUSETriV .. iiiiie .. 135
\glsuseriv, 135
\GLSUSEIV + ot vttt ettt 135
\GLlSUSEIV .+t vttt it 135
NGLSUSELV vttt ittt et e 135
\GLSUSETrvVi ... 136
\GlSUSETrVI ..ttt 136
\NglSUSErvVL ...t 135
\glswrallowprimitivemodsfalse 119
\glswrite 121
\glswriteentry 71
\glsX(counter)X(format) 314, 315
f\glsxtr@makeglossaries 54
*\glsxtr@record 55
f\glsxtr@record@nameref 55
f\glsxtr@recordsee 55
f\glsxtrlresource 55
f\glsxtr@texencoding 320
f\glsxtrabbrvfootnote 264, 268
\glsxtrabbrvtypeououu.... 83
f\glsxtrbookindexname 33
+\glsxtr(category>accsupp 250, 333

343

Index

+\glsxtr(category><field>accsupp .

........................ 250, 333
+\glsxtrcombiningdiacriticrules

........................ 316,317
+\glsxtrcontrolrules 316,317
\glsxtr(counter)locfmt 279
\glsxtrdigitrules 316,317
\glsxtrdopostpunc 266
\glsxtrequationlocfmt 279
f\glsxtrfieldforlistloop 298
\glsxtrfieldformatlist 324
\glsxtrfmt 273,276,277
\GlsxXtrFmtField 275
+\glsxtrfootnotedescname 264, 268
+\glsxtrfootnotedescsort 264, 268
\glsxtrfull 259, 261, 271, 331
f\glsxtrfullsep 264, 267, 268
f\glsxtrgeneralpuncrules 316,317
\glsxtrglossentry 29-31
\glsxtrhyphenrules 316, 317
\GlsXtrIfFieldEqNum 312
\GlsXtrIfFieldNonZero 298
\glsxtrifhasfield 297,303

\glsxtrifwasfirstuse 266, 303
\GlsXtrIfXpFieldEqXpStr 297,298
f\Glsxtrinlinefullformat 267
\glsxtrinlinefullformat 267
f\Glsxtrinlinefullplformat 267
f\glsxtrinlinefullplformat 267
f\GlsXtrLoadResources . 25,26,29,

31, 32, 73, 77, 255, 257, 261, 262, 273,
279, 282, 285, 288, 290, 294, 300, 304,
305, 307-309, 315-318, 320, 323, 326, 327
+\GlthrLoadResourcesOptions
abbreviation-sort-fallback ...
append-prefix-field

261
327

break-at 77,300, 316, 317
category ..t 288
combine-dual-locations 286
dual-category 288
dual-prefix 284, 286, 288
dual—-sort ... 288
dual-type 284, 286, 288
entry-type-aliases 306
ext-prefixes 281
field-aliasesuuvu... 306

identical-sort-action 300
ignore-fields 262
label-prefixuun... 281
loc—-counters 277
name—-case-change 32
primary-location-formats 277
replicate-fields 32
save-child-count 298
save—locations 31, 32, 66
save—-loclist 66
save-sibling-count 298-300
save—locations 29, 32
selection 26, 308, 320
set-widest 304
sort . 26,29, 32,257, 288,294, 316, 317, 320
sort-rule 317
ST v e e e e e e 25,
26, 29, 31, 32, 255, 257, 261, 262, 273,
282, 284, 285, 288, 290, 294, 300, 304,
305, 307-309, 315-318, 320, 323, 326, 327
EYPE it et e e 282,284, 288
\glsxtrlong 259, 261, 271, 331
f\glsxtrnewgls 281
\glsxtrnewglslike 55, 281, 286, 288
f\glsxtrnewnumber 81
+\glsxtrnewsymbol 15,17,23, 81
f\glsxtrnonprintablerules 316,317
f\glsxtrnopostpunc
........ 93, 290, 296-298, 302, 303, 309
INGLSKELD o« oo e 281
f\glsxtrparen 264, 267, 268
+\glsxtrpostlinkAddSymbolOnFirstUse
........................... 325
f\glsxtrsectionlocfmt 279, 318
f\GlsxtrSetAltModifier 55, 274
f\glsxtrshort 13, 259, 261, 271, 331
f\glsxtrspacerules 316, 317
\GlsxtrUseAbbrStyleFmts 267
f\GlsxtrUseAbbrStyleSetup 267
H
htmipackage 141
\hyperbf 125,272,274, 277, 278
\hyperbfit 279
\hyperbsf 125
\hyperemph 125
\hyperit 125, 278

344

Index

\hyperlink 125,141
\hypermd 125
\hyperpageuiuienin... 125
hyperref package 3,

31, 59, 72, 119, 120, 122-125, 131, 137,
141, 151, 157, 168, 169, 228, 252, 272, 323

\hyperrm 125, 166, 272
\hyperscoiiiiiii... 125
\hypersf, 125
\hypersl 125
\hypertarget 141
\hypertt 125
\NypPerup 125
\hyper(xx), 125, 313
I
\ifglossaryexists 234
\ifglsdescsuppressed 236
\ifglsentryexists 234
\ifglsfieldcseqg 239
\ifglsfielddefeq 238
\ifglsfieldeq 197, 236
\ifglshaschildren 235,298
\ifglshasdescc..... 236
\ifglshasfield 236
\ifglshaslong 61,104, 105, 187, 235
\ifglshasparent 235
\ifglshasprefix 243
\ifglshasprefixfirst 244
\ifglshasprefixfirstplural 244
\ifglshasprefixplural 243
\ifglshasshort 187, 235, 260
\ifglshassymbol 31, 230, 235
\ifglsucmarkouuuuiuune... 64
\ifglsusedvuiiiiin.
61,138, 187,198, 202, 235, 258, 266, 325
+\ifglsxtrinsertinside 267,268
\ifignoredglossary 175
imakeidx package 82
\includecuiii. 109
\includegraphics 329
\index ... 82,124
index package 82
\indexnameciiiie.n.. 175
\indexspace 211, 220, 227, 230
\input 33,109
inputenc package . 37,94,97,165,173,312, 321
\inputencodingname 165

internal fields:

Tlocation «oovvn .. 18, 324
loclist v 324
fsiblingcount 298
USErl v vttt i i e e e 275
Nditem 211,212
]
\Jjobname 90
L
\Nlabel 64
latex ..o 3,123
latexmK .o 47
Latin alphabet 10, 19, 37
Latin character 9,10,10,11,174
linktext 10,

31, 32, 122, 123, 126-136, 140, 178-

180, 242, 248, 265, 266, 274-276, 281, 325
\listbreak 299
\loadglsentries
17,19, 22,28, 30, 33, 109, 177
see number list
.. 91,99,109, 211

\longnewglossaryentry

\longprovideglossaryentry 92
longtable package 67,213
M
\makeatletter 197
\makeatother 197
\makefirstuc 64,127,139, 268

makeglossaries

11,11, 21, 22, 24, 25, 37, 38, 47-54,
66, 7678, 80, 115, 147, 157, 159, 165,
166, 174, 253, 255-258, 260, 278-280,
289, 291, 293, 295, 304, 312, 313, 331, 334

—d 51
S 50
s 11 S 50
T e e 50
L 50
PR e 50
\makeglossaries . 19,22,38,47, 56,

58,70,78,79,89,96,119, 120, 122, 147,
159, 160, 166, 167, 172, 173, 175, 278, 292
makeglossaries—-lite 11, 21,
22, 24, 48, 51, 159, 253, 255, 256, 258,
260, 278, 280, 289, 291, 295, 312, 313, 331
makeglossariesgui 11, 48, 335

345

makeidx package 82
makeindex 9,10,11, 11, 19-22, 25,37, 38,42,
47-51, 53, 54, 59, 66, 68, 70, 72, 74, 77,
78,89, 107, 114-116, 118, 119, 121, 122,
124, 125, 149, 157, 159, 174, 209, 221,
226, 253, 255-257, 272, 277, 278, 280,
286, 291-293, 295, 312, 319, 320, 323, 324
e 20, 38
22,49, 53, 295
\makenoidxglossaries
........ 17,70,78,79, 89,147, 159, 160

\MakeTextUppercase 64, 268
\markboth 63
memoirclass 63, 64
\memUCheadcouiuiuinie.... 64
mfirstuc package 1,37,97,128, 130
\mfirstucMakeUppercase 64
\midruleiiii 216
multicol package 223
mwe package, 34,329
N
nameref package 65

f\newabbreviation
. 14,35, 83, 96, 254, 255, 259-262,
265, 268, 269, 271, 292, 294, 310, 331-333
f\newabbreviationstyle 267
\NEWACTONYM . vt e et ee e e 35,
83, 85, 86, 95, 96, 103, 110, 111, 122,
127, 138, 148, 176, 177-179, 185-188,
197, 199, 204, 235, 236, 247-249, 258-
262, 265, 268, 271, 294, 310, 328, 331, 332

\newacronymstyle 187,189
\newdualentry 146, 283
\newglossary 52,53, 80, 166, 169, 174, 280
\newglossary* 174,257, 280
\newglossaryentry 10,

17, 18, 69, 73, 74, 81, 91, 91, 96, 99,
109, 111, 122, 127, 131, 176, 177, 187,
204, 241, 262, 266, 274, 275, 293, 295, 328
\newglossaryentry options
BCCESS vt vttt 247,328
33, 36, 96, 261
+category
. 35,96, 269, 271, 302, 303, 305, 306, 310
description
. 35,92,93,97,104, 106, 134, 177,
185, 186, 188, 236, 247, 262, 290, 305, 334

descriptionaccess 247

346

descriptionplural 93, 106, 247
descriptionpluralaccess 247
entrycounter 161
first oo 10,

93,97,124,127,132,133, 138, 152, 153,
178, 183, 201, 240, 241, 247, 250, 262, 333
firstaccess ...t ie . 247

firstplural . 10,93,98, 106, 130, 132,
133, 138, 139, 153, 177, 241, 247, 250, 333
firstpluralaccess 247
1ONg v v i e 61,96,97,104,
124, 127, 138, 176, 179, 183, 235, 247, 268
1ONgACCESS vttt ettt e 247
longplural
. 44,96,106, 131, 138,176, 177, 179, 248
longpluralacCessvu... 248
NAME + v v v een 17,23, 26, 32,

34-36, 46, 73, 74, 76, 92-95, 106, 108,
129, 133, 149, 151, 157, 183, 186, 192,
226, 240, 247, 250, 262, 267, 268, 273,
276, 282, 299, 301, 304, 305, 312, 321, 333
nonumberlist 95
parent 92,93,107
plural 44,93,98,108, 130,132,133, 138§,
152, 177, 240, 241, 247, 250, 299, 305, 333

pluralaccessuovevunn... 247
prefix 241-244, 288
prefixfirst 241,242,244
prefixfirstplural 241, 243, 244
prefixplural 241,243, 244, 288
SEE t i 13, 36, 58, 69,

70, 72,96, 112, 147-149, 260, 261, 306-308
+

seealso 36,72,96,261,265,306-308
short 26,96,97,124,127,138,
176, 178, 183, 235, 248, 249, 262, 281, 285
shortaccess 248, 249, 328, 329, 331
shortplural 44,
96, 106, 131, 138, 176, 177, 179, 248, 249
shortpluralaccess 248
SOTL v vt e e 11,17,

23,26,38,46,73,74,92,94, 95,97, 106,
108, 112, 128, 161, 183, 186, 187, 226,
262, 263, 267, 268, 272, 273, 282, 287,
289, 290, 295, 299, 300, 305, 312, 315, 317
subentrycounter 161
symbol 31,34,693,94,97,6106, 124,
133, 139, 141, 192, 235, 247, 275, 276, 333
symbolaccess 247,329
symbolplural 94,106, 247

Index

symbolpluralaccess 247

text .. 32,33,93,97,124,127,129,132,
133, 138, 152, 178, 183, 201, 240, 241,
247, 250, 262, 276, 281, 285, 305, 308, 333

textaccess ... i 247
type 21,24,95,109, 176,281, 282,294
userl 7,34-36, 95, 106,
134, 231, 236, 237, 248, 275, 303, 329, 333
USErlacCCessS v v v v viinnnn 248, 329
user2 95,106, 134, 231, 248
USET28CCESS v v v vt e eee e e 248
USEr3 v iiee i 95, 106, 135, 248
USETr3aCCEeSS + v v vt i e it e eie e 248
userd ... 95, 106, 135, 248
USETr4acCCeSS v v v vt i i e 248
userb ... 95, 106, 135, 248
USEr5aCCesSS v v v vt i it e e 248
user6 7,95,106, 135, 231, 248
USET6ACCESS « vt vt v eie e e 248
\newglossarystyle . 210, 226, 227,230
\newignoredglossary
........... 60,111, 160, 175, 234, 333
\newlinec....... 93, 210
\newterm 81,148
ngerman package 38, 164
\nohyperpageou... 119
\noist 90,119,120, 165, 167,172,173, 312, 313
Non-Latin Alphabet 11
non-Latin character
....... 10,11, 11, 37, 42, 45, 92,97, 319
\nopostdesc 81, 92,
107, 108, 211, 236, 290, 295, 296, 302, 309
\nopostdot 303
\NnUull . 159
\NUMDbEerttt 119
numberlist 11, 19, 20,

27,28,47,49, 59, 65, 66, 68, 69, 72, 90,
95, 96,107, 108, 114, 115, 118, 120, 122,
144, 148, 157, 159, 166, 171, 172, 174,
211-215, 217-219, 224, 227, 229, 256,
272,273, 277, 278, 285, 308, 313, 319-324
\numberline 62

\oldacronym 199, 199

package options:

Tabbreviations . . 15, 83, 176, 247, 254, 255, 260

347

facesupp ... 87,247,331
acronym ... 40,52,53,56,65,80,82-84,
88, 110, 145, 175, 198, 247, 253-255, 260

true 56, 83
acronymlists 84,136, 175,176, 233
aCroNymMS . . ot e e 80, 83
automake 20,47,78

false 78

immediate 78

true 78

Tautoseeindex 72

false 306, 307
compatible-2.07 87,88, 90
compatible-3.07 83, 87,136
counter 69, 90, 114, 166, 169

equation L. 273

PAGE .« v e 69
counterwithin 66, 208, 228, 230
debug L 56-58

fall oo 57

false 57

showaccsupp « « .« v v v e 57,249, 331

showtargets 57

fshowwrglosso 57

true 57
description (deprecated) 85, 86
disablemakegloss 78,79

Tdocdef ..o 62

atom 55, 61

false 18

restricted 18, 55, 59

true 18, 62
dua (deprecated) 85, 86
entrycounter 66, 67,208, 228, 230

false 66

true e 66

fequations 72
esclocations 70
false 70,116
true e 70
Mloats ... oo 72
footnote (deprecated) 85, 86
hyperfirst 60, 142

false 60, 124, 141, 186, 265

true 60
index ... 80-82, 175

Tindexcounter 72
Tindexcrossrefs 71

Index

indexonlyfirst 70,71,114 only 18, 66,73,79,272,279
false 70 record 320, 323
kernelglossredefs 87 restoremakegloss 79
false 87 sanitizesort 18,73,74
makeindex 56,77, 88 false 17,73,74, 95
noglossaryindex 82 true 17,73,94, 95,97, 161
nogroupskipo savenumberlist 65,157, 322-324
69, 161, 209, 210, 216, 227, 231, 322 false 65
false . . ., 69 Savewrites 58, 59
nohyperfirst 61 falsel 58
nohypertypes .. 60,79,123,124,137,141,175 section 62,162
INAEX .+ o o e, 82 seeautonumberlist 69, 96, 148
nolangwarn 1,56 seenoindex 70,96
NONSt oot 68, 88,211 ignore 70
nolong 67, 88,210,213, 301 WarN . . e 70
nomain 80-83, 87, 88, 175, 260, 286 shortcuts 84, 180
fnomissingglstext 87 smallcaps (deprecated) 85, 86, 88
nonumberlist 11, smaller (deprecated) 85, 86
68, 69, 95, 114, 144, 212, 228, 257, 310, 319 SOt 73
nopostdot 69, 211 def 17,73-75, 94, 108, 209
FISE + ot 69, 259, 295, 306 MONE .. 18,27,30,73,74
fue . 69, 259 standard 73-75
noredefwarn 56 USE e e 17,73-75, 94,108, 209
NOSHyleS - .o 30,32, style 67, 68, 160, 208, 214, 216, 218
68,88, 210,211, 213, 217, 219, 258, 301, 322 |.ndex 67
MOSUDEF v o v v enes s 68, 88, 210, 217, 301) list .. 67
notranslate 39, 60, 88 stylemodsl
N 68, 88,219, 223 - 15,69, 258, 260, 272, 301-303, 306, 322
AOWAMN - o o 56, 57 subentrycounter .. 67,107,108, 208, 229, 230
numberedsection 63, 64, 160, 162 sy:llasoels """"" 1'5' 1721 23 24 801%
oo o G e 22,62, 160,259, 20
false 62
nameref 65
nolabel 64 HUB e 62
numberline - 62 translate 59, 60, 88
babel 39,41, 42, 60
numbers, 80, 81,175
false, 39, 59, 60
order 73,76,161 true 59 60
letter 22,25,49,76,295,300 oottt !
ucmark 63, 64
word 49,76
+ false 64
erostdot 15, 69, 259, 266, 272, 306 HUE o oo oo 64
erostpunc """""""""""" 69 fundefaction 61
prefix ... 87,259,287, 326 writeglslabels 55, 61
frecord 26, 30, Xindy ... 23,37, 49,
37,66, 72,255, 261, 272, 278, 281, 290, 52, 53, 77, 88, 164, 166, 172, 312, 318, 319
299, 304, 307, 309, 315, 318, 319, 324, 326 Xindygloss 77,88
alsoindex 26, 55 xindynoglsnumbers 78, 88
nameref L L. 26, page (counter) 168, 169
55, 66, 73,79, 272, 273, 279, 281, 318, 324 page type precedence 121

348

Index

\pagelistname 40
pdflatex 3,123
A\PGLS oot 242
NPGLS ot 242
\PGLS t i 242,258
\PGLSPL vttt et i 243
\Pglspl .ottt 243
\Pglspl .ot 243
NP e 305
polyglossia package 39, 41, 59, 60
\Primaryooiiiii.. 278
\printacronyms 82,176,198
\printglossaries
111, 159, 174, 199, 229, 234, 279, 292, 315
\printglossary 19, 22, 68,

80-83, 160, 176, 198, 208, 210, 229, 234, 273
\printglossary options

entrycounter 161
Mabel v o 161
nogroupskipo oL 160
nonumberlist 160
nopostdot 160
numberedsection 160
Torefix oo 161
style 68, 160, 208, 210, 216
subentrycounter 161
Ttarget ... 33, 161
ftargetnameprefix 162
title oo 1,41,160, 176
toctitle ..ot 160
LYPE vttt 160
\printindexiii.... 82
\printnoidxglossaries 159,199
\printnoidxglossary 17,

73, 75, 76, 80-83, 160, 198, 208, 210, 293
\printnoidxglossary options

SOrt v i 73,75,76,161, 293
\printnumbers 81
\printsymbols 80

f\printunsrtacronyms 326

+\printunsrtglossaries
15, 26, 28, 255, 279, 282, 284, 291,

294, 300, 304, 308, 309, 315, 318, 320, 323
f\printunsrtglossary 25—

28, 33, 161, 262, 273, 286, 288, 324, 326

\providecommand 290, 291
\provideglossaryentry 92,111
\provideignoredglossary 175

R
relsize package 12, 86, 184
NROMAN + v vttt e e et ettt e e e e e e 168
S
NS e 279
sanitize 11, 73,74, 149, 157
scrwfile package L. 59
\section*oo........ 65,162
f\seealsonameuuiuuunio.. 96
\seenameii... 147-149

+\setabbreviationstyle

14, 254, 255, 259-265, 268,

269, 271, 285, 292, 294, 310, 326, 332, 333
\setabbreviationstyle 331
\SetAcronymLists 84
\setacronymstyle

85, 127,177,183, 188,259, 271, 331
\setentrycounter 228
\setglossarypreamble 67,162
\setglossarysection 63,162
\setglossarystyle

........... 68, 208, 210, 223, 224, 230
\setStyleFile 52,53, 90
\setupglossaries 88
\NSIgMa v it 305
siunitx package 14, 325
smallcaps

11,177,184, 187,192, 225, 267, 268, 307
\NSPACE ittt 258
standard IXTgX extended Latin character 12,97
stix package 168, 313
\subglossentry 228
supertabular package 68,217,218
\symbolnameo.uuuuu... 40

T

tabularx package 127,203
tagpdf package 248, 251, 327
\texorpdfstring 31,122
\textbf i 124,274
textcase package 1,64
\textrm 166
\textsc ..., 11,184, 189, 192
\textsmaller 12, 86, 184
\textulc 189
NEEXEUD v vt e 189
\the ... 119, 188
theglossary (environment) 226

349

Index

\theHequation 272

\thepage 170, 314

\toprule 216

tracklang package 1,42

translator package 39,41-44, 46,59, 60, 175
U

\usepackageiiiiii.. 285
W

\writel8 59,78

\writeist, 121
X

xforpackage 1

\xGlsXtrSetField 312

xindy .. 9-11,12,16,22-25,27,37, 38, 42,
47-54, 59, 66, 68, 70, 72,74,77,78, 89,
95,97,114-116, 118, 119, 121, 122, 125,
126, 157, 159, 161, 164-167, 169, 172,
174, 221, 226, 227, 253, 255, 257, 272,
278, 280, 299, 312-317, 319, 320, 323, 324

“C e 24,37,49, 166
e 52
e T 24,49, 166
e S 49
xindy attributes 48,126, 166, 167
:locref ... 118
xkeyval package 1, 143, 325
\XSPACE « ottt 199
xspace package 199, 200

350

	Contents
	List of Examples
	List of Tables
	Glossary
	Introduction
	Indexing Options
	Option 1 (TeX)
	Option 2 (makeindex)
	Option 3 (xindy)
	Option 4 (bib2gls)
	Option 5 (no sorting)
	Option 6 (standalone)

	Dummy Entries for Testing
	Multi-Lingual Support
	Changing the Fixed Names

	Generating the Associated Glossary Files
	Using the makeglossaries Perl Script
	Using the makeglossaries-lite Lua Script
	Using xindy explicitly (Option 3)
	Using makeindex explicitly (Option 2)

	Note to Front-End and Script Developers
	MakeIndex and Xindy
	Entry Labels
	Bib2Gls

	Package Options
	General Options
	nowarn
	nolangwarn
	noredefwarn
	debug
	savewrites
	translate
	notranslate
	hyperfirst
	writeglslabels
	undefaction (glossaries-extra.sty)
	docdef (glossaries-extra.sty)

	Sectioning, Headings and TOC Options
	toc
	numberline
	section
	ucmark
	numberedsection

	Glossary Appearance Options
	savenumberlist
	entrycounter
	counterwithin
	subentrycounter
	style
	nolong
	nosuper
	nolist
	notree
	nostyles
	nonumberlist
	seeautonumberlist
	counter
	nopostdot
	nogroupskip
	stylemods (glossaries-extra.sty)

	Indexing Options
	seenoindex
	esclocations
	indexonlyfirst
	indexcrossrefs (glossaries-extra.sty)
	autoseeindex (glossaries-extra.sty)
	record (glossaries-extra.sty)
	equations (glossaries-extra.sty)
	floats (glossaries-extra.sty)
	indexcounter (glossaries-extra.sty)

	Sorting Options
	sanitizesort
	sort
	order
	makeindex
	xindy
	xindygloss
	xindynoglsnumbers
	automake
	disablemakegloss
	restoremakegloss

	Glossary Type Options
	nohypertypes
	nomain
	symbols
	numbers
	index
	noglossaryindex

	Acronym and Abbreviation Options
	acronym
	acronyms
	abbreviations (glossaries-extra.sty)
	acronymlists
	shortcuts
	Deprecated Acronym Style Options
	description
	smallcaps
	smaller
	footnote
	dua

	Other Options
	accsupp (glossaries-extra.sty)
	prefix (glossaries-extra.sty)
	nomissingglstext (glossaries-extra.sty)
	compatible-2.07
	compatible-3.07
	kernelglossredefs

	Setting Options After the Package is Loaded

	Setting Up
	Option 1
	Options 2 and 3

	Defining Glossary Entries
	Plurals
	Other Grammatical Constructs
	Additional Keys
	Document Keys
	Storage Keys

	Expansion
	Sub-Entries
	Hierarchical Categories
	Homographs

	Loading Entries From a File
	Moving Entries to Another Glossary
	Drawbacks With Defining Entries in the Document Environment
	Technical Issues
	Good Practice Issues

	Number lists
	Encap Values
	Locations
	Range Formations
	Style Hook

	Links to Glossary Entries
	The gls-Like Commands (First Use Flag Queried)
	The glstext-Like Commands (First Use Flag Not Queried)
	Changing the format of the link text
	Enabling and disabling hyperlinks to glossary entries

	Adding an Entry to the Glossary Without Generating Text
	Cross-Referencing Entries
	Customising Cross-reference Text

	Using Glossary Terms Without Links
	Displaying a glossary
	Xindy (Option 3)
	Language and Encodings
	Locations and Number lists
	Glossary Groups

	Defining New Glossaries
	Acronyms and Other Abbreviations
	Changing the Abbreviation Style
	Predefined Acronym Styles
	Defining A Custom Acronym Style

	Displaying the List of Acronyms
	Upgrading From the glossary Package

	Unsetting and Resetting Entry Flags
	Counting the Number of Times an Entry has been Used (First Use Flag Unset)

	Glossary Styles
	Predefined Styles
	List Styles
	Longtable Styles
	Longtable Styles (Ragged Right)
	Longtable Styles (booktabs)
	Supertabular Styles
	Supertabular Styles (Ragged Right)
	Tree-Like Styles
	Multicols Style
	In-Line Style

	Defining your own glossary style

	Utilities
	Loops
	Conditionals
	Fetching and Updating the Value of a Field

	Prefixes or Determiners
	Accessibility Support
	Sample Documents
	Basic
	minimalgls.tex
	sampleDB.tex

	Acronyms and First Use
	sampleAcr.tex
	sampleAcrDesc.tex
	sampleDesc.tex
	sampleFnAcrDesc.tex
	sampleCustomAcr.tex
	sample-FnDesc.tex
	sample-custom-acronym.tex
	sample-dot-abbr.tex
	sample-font-abbr.tex

	Non-Page Locations
	sampleEq.tex
	sampleEqPg.tex
	sampleSec.tex

	Multiple Glossaries
	sampleNtn.tex
	sample-dual.tex
	sample-langdict.tex
	sample-index.tex

	Sorting
	samplePeople.tex
	sampleSort.tex

	Child Entries
	sample.tex
	sample-inline.tex
	sampletree.tex

	Cross-Referencing
	sample-crossref.tex

	Custom Keys
	sample-newkeys.tex
	sample-storage-abbr.tex
	sample-storage-abbr-desc.tex
	sample-chap-hyperfirst.tex

	Xindy (Option 3)
	samplexdy.tex
	samplexdy2.tex
	samplexdy3.tex
	sampleutf8.tex

	No Indexing Application (Option 1)
	sample-noidxapp.tex
	sample-noidxapp-utf8.tex

	Other
	sample4col.tex
	sample-numberlist.tex
	sample-nomathhyper.tex
	sample-entryfmt.tex
	sample-prefix.tex
	sampleaccsupp.tex
	sample-ignored.tex
	sample-entrycount.tex

	Troubleshooting
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

