
Package mathfont v. 1.6 User Guide
Conrad Kosowsky

December 2019
kosowsky.latex@gmail.com

For easy, off-the-shelf use, type the following in your docu-
ment preamble and compile using X ELATEX or LuaLATEX:

\usepackage[〈font name〉]{mathfont}

Abstract

The mathfont package provides a flexible interface for changing the font of math-
mode characters. The package allows the user to specify a default unicode font for each
of six basic classes of Latin and Greek characters, and it provides additional support for
unicode math and alphanumeric symbols, including punctuation. Crucially, mathfont
is compatible with both X ELATEX and LuaLATEX, and it provides several font-loading
commands that allow the user to change fonts locally or for individual characters within
math mode.

Handling fonts in TEX and LATEX is a notoriously difficult task. Donald Knuth origi-
nally designed TEX to support fonts created with Metafont, and while subsequent versions
of TEX extended this functionality to postscript fonts, Plain TEX’s font-loading capabilities
remain limited. Many, if not most, LATEX users are unfamiliar with the fd files that must
be used in font declaration, and the minutiae of TEX’s \font primitive can be esoteric and
confusing. LATEX 2ε’s New Font Selection System (nfss) implemented a straightforward syn-
tax for loading and managing fonts, but LATEX macros overlaying a TEX core face the same
versatility issues as Plain TEX itself. Fonts in math mode present a double challenge: after
loading a font either in Plain TEX or through the nfss, defining math symbols can be unin-
tuitive for users who are unfamiliar with TEX’s \mathcode primitive. More recent engines
such as Jonathan Kew’s X ETEX and Hans Hagen, et al.’s LuaTEX significantly extend the
font-loading capabilities of TEX.1 Both support TrueType and OpenType font formats and
provide many additional primitives for managing fonts, and the fontspec package by Will
Robertson and Khaled Hosny acts as a front-end for the font management built into these
two engines.2

The mathfont package applies fontspec’s advances in font selection to mathematics type-
setting, and this document explains the package’s user-level commands. Section 1 presents

Acknowledgements: Thanks to Lyric Bingham for her work checking my unicode hex values. Thanks to
Herbert Voss and Andreas Zidak for pointing out bugs in previous versions of mathfont.

1Information on X ETEX is available at https://tug.org/xetex/, and information on LuaTEX is avail-
able at the official website for LuaTEX: http://www.luatex.org/.

2Will Robertson and Khaled Hosny, “fontspec—Advanced font selection in X ELATEX and LuaLATEX,”
https://ctan.org/pkg/fontspec.

1

2 User Guide Basic Functionality

the basic functionality and related packages. Section 2 explains how to use the default font-
change commands, and users in a hurry will find the most important information here. Sec-
tion 3 describes the local font-change commands, and section 4 discusses mathematical sym-
bols and aspects of their implementation. Section 5 addresses error messages. For version
history and code implementation, see mathfont_code.pdf, and for a list of all symbols ac-
cessible with mathfont, see mathfont_symbol_list.pdf. Both of these documentation files
are included with the mathfont installation and are available on ctan.

1 Basic Functionality

The mathfont package uses fontspec as a back end to load fonts for use in math mode, and it
provides two ways to do this: (1) changing the default font for certain classes of math-mode
characters; and (2) defining new commands that change the font locally for the so-called
“math-alphabet” characters. The package can change the default math-mode font used for
Latin, Greek, Cyrillic, and Hebrew letters; Arabic numerals; roughly 300 unicode math sym-
bols; and standard unicode alphanumeric characters. The package accepts any OpenType or
TrueType font, and tables 1 and 2 display the specific classes of characters that mathfont’s
default font-change command acts on. The default math-alphabet characters are Latin let-
ters, Arabic numerals, upper-case Greek characters, and diacritics. When mathfont sets the
default font for any of these four character classes, it preserves their math alphabet status,
and when the package sets the default font for lower-case Greek, ancient Greek, Cyrillic, or
Hebrew characters, it recodes each symbol in the class as math-alphabet type. At that point,
the local font-change commands will act on any characters in those classes.

The package must be loaded with X ELATEXor LuaLATEX. It can be loaded with the stan-
dard \usepackage syntax, and it accepts one optional argument. It treats the argument as
a font name and changes all main fonts to that option. Specifically, the package invokes both
\mathfont and fontspec’s \setmainfont, and it defines the four local font-changing com-
mands \mathrm, \mathit, \mathbf, and \mathbfit to produce text from the desired font
in combinations of upright, italic, and bold styles according to the control sequences’ last
letters. X ETEX users may run into trouble with fonts whose name contains multiple words
because LATEX eats spaces during package-option parsing. In this case, you will have to load
the package and separately declare \setfont in your preamble. The package loads fontspec
with the no-math option if and only if the user has not already loaded fontspec. Users who
want fontspec without no-math or with other options in place can manually load it before
requiring mathfont. Regardless, I strongly recommend that fontspec be loaded with no-math

because otherwise some font changes may not render properly.
During loading, mathfont redefines three LATEX internal macros to make symbol decla-

ration compatible with unicode fonts, and default math-font changes work only with the
redefinitions in place. Because the internal changes are relatively unobtrusive, mathfont’s
adjustments almost certainly do not affect LATEX packages loaded later, and the package
does not restore the commands automatically. Instead, \restoremathinternals returns
the internal commands to their default definitions, and users who want the previous defini-
tions should reset the kernel manually. The corollary is that \mathfont and \setfont work
before \restoremathinternals but not after. As of version 1.6, the package optional argu-

Basic Functionality User Guide 3

ments packages, operators, and no-operators are depreciated. Instead, mathfont offers
\restoremathinternals as the only way to interact directly with the kernel.3 For changes
to big operators, use the bigops keyword in section 2.

The functionality of mathfont is most closely related to that of the mathspec package by
Andrew Gilbert Moschou.4 These two packages incorporate the use of individual unicode
characters into math mode, and their symbol declaration process is similar. Both use fontspec
as a back end, and both create font-changing commands for math-mode characters. However,
the functionality differs in three crucial respects: (1) mathfont is compatible with LuaLATEX;
(2) it can adjust the font of basic mathematical symbols such as those in the first half of
table 2; and (3) mathfont lacks mathspec’s convenient space-adjustment character ".5 Further,
as far as I am aware, this package is the first to provide support for the unicode alphanumeric
symbols listed in Table 2, even in the context of fonts without built-in math support. (Please
let me know if this is incorrect!) In this way mathfont, like mathspec, is more versatile than
the unicode-math package, although potentially less far-reaching.6

Users who want to stick with pdfLATEX should consider Jean-François Burnol’s mathastext
as a useful alternative to mathfont.7 This package allows the user to specify the math-mode
font for a large subset of the ASCII characters and is the most closely related package to
mathfont among those packages designed specifically for pdfLATEX. Whereas mathfont works
exclusively in the context of unicode fonts, mathastext was designed for the T1 and related
encodings of Plain TEX and LATEX. However, the mathastext functionality extends beyond

3To be clear, as of version 1.6, mathfont does not restore the LATEX kernel when the user loads other
packages. Given the scope and nature of the changes, I determined that the convenience factor of being able
to use \mathfont anywhere in the preamble outweighs the incredibly small risk of interfering with another
package. As far as I can tell, the biggest change is using a different primitive to code math symbols, but even
that will probably never affect practical applications. The test \if\mathchar\alpha succeeds both before
and after calling \mathfont, even though afterwards \alpha is defined with \Umathchar instead.

4Andrew Gilbert Moschou, “mathspec—Specify arbitrary fonts for mathematics in X ETEX,”
https://ctan.org/pkg/mathspec.

5Compatibility with LuaLATEX comes at the expense of mathspec’s space-adjustment character ", and
spacing-conscientious users can either manually add \kern or \muskip to their equations or redefine an active
version of ". For example, the code

\catcode‘\"=\active

\def"#1{\ifmmode

\kern〈dimension〉\relax #1\kern〈other dimension〉\relax
\else

\char‘\"#1%

\fi}

will serve as a hack that very roughly approximates mathspec’s ". This code will redefine " to typeset a
right double quotation mark in horizontal mode, but in math mode, the character will insert dimension
and other dimension of white space on each side respectively of the next character. More advanced users
can automate the dimensions by using TEX’s \if or LATEX’s \@ifnextchar conditionals to test whether the
following character needs a particular spacing adjustment.

6Will Robertson, “unicode-math—Unicode mathematics support for X ETEX and LuaTEX,”
https://ctan.org/pkg/unicode-math.

7Jean-François Burnol, “mathastext—Use the text font in maths mode,”
https://ctan.org/pkg/mathastext. In several previous versions of this documentation, I mistakenly stated
that mathastext distorts TEX’s internal mathematics spacing. In fact the opposite is true: mathastext pre-
serves and in some cases extends rules for space between various math-mode characters.

4 User Guide Setting the Default Font

that of mathfont in two notable aspects: (1) mathastext makes use of math versions, extra
spacing, and italic corrections; and (2) mathastext allows users to change the font for the
twenty-five non-alphanumeric characters supported by that package multiple times. After
setting the default font for a class of characters, mathfont allows only the local font changes
outlined in section 3.

2 Setting the Default Font

The \mathfont command sets the default font for certain classes of characters. Its structure
is given by

\mathfont[〈optional character classes〉]{〈font name〉},

where the optional character classes can be any set of keywords from Tables 1 and 2 sepa-
rated by commas, and the font name can be any OpenType or TrueType font in a directory
searchable by TEX.8 The command loops through all keywords in the optional argument,
and for each keyword, it changes the math-mode font for every character in that class to the
font name.9 Currently, mathfont does not support OpenType features in math mode. To
change both math and text fonts simultaneously, the package provides the command

\setfont{〈font name〉},

which calls both \mathfont and fontspec’s \setmainfont using the font name as arguments.
The package’s optional argument is equivalent to calling \setfont and three local font-
change commands from section 3, and most users will find this command sufficient for most
applications. Both \mathfont and \setfont should appear only in the document preamble,
i.e. before \begin{document}.

The user should specify any optional arguments for \mathfont as entries in a comma-
separated list. The order is irrelevant, and spaces throughout the optional argument are
permitted. The argument should contain no braces! Leaving out the optional argument
will cause the command to revert to its default behavior, where it acts on keyword classes
upper, lower, diacritics, greekupper, greeklower, digits, operator, and symbols. For
example, if the user writes

\mathfont{Arial},

mathfont will change the font of all Latin characters, Greek characters, diacritics, digits,
operators such as log or sin, and symbols characters to Arial whenever they come up in math
mode. The package provides control sequences to typeset many symbols that LATEX does not
include by default, and users gain access to these commands when they call \mathfont or
\setfont with the appropriate keyword-option. In total, the package is capable of acting
on some 800 unicode characters, and for a full list of symbols and control sequences, see
mathfont_symbol_list.pdf, which is included in the mathfont installation and is available

8When specifying the font name, users need to input a name that fontspec will recognize and be able to
load. Advanced users will note that \mathfont uses \fontspec_set_family:Nnn and therefore loads fonts
in the same way as \fontspec and related macros from that package.

9These changes happen through LATEX’s \DeclareMathSymbol, and \mathfont is basically a very elabo-
rately wrapped version of this command.

Setting the Default Font User Guide 5

Table 1: Math Alphabet Characters

Keyword Meaning Default shape

upper Capital Latin Letters Italic
lower Minuscule Latin Letters Italic
diacritics Diacritics Upright
greekupper Capital Greek Letters Upright
greeklower Minuscule Greek Letters Italic
agreekupper Capital Ancient Greek Letters Upright
agreeklower Minuscule Ancient Greek Letters Italic
cyrillicupper Capital Cyrillic Letters Upright
cyrilliclower Minuscule Cyrillic Letters Italic
hebrew Hebrew Letters Upright
digits Arabic Numerals Upright
operator Operator Font Upright

on ctan. Users can feed \mathfont a control sequence as its optional argument as long as
the macro eventually expands to a comma-separated list of keywords and suboptions without
braces.10 Finally, \mathfont and \setfont will not change the default font for a class of
symbols once one of them has already done so.

By default, mathfont will use one of an upright or italic shape for every character class,
and users can override this setting by writing an = next to the keyword and either roman or
italic following that. These two suboptions correspond respectively to an upright shape—
normal shape in the language of the nfss—and an italic shape. Table 1 includes the default
shape-values for each keyword, and the package declares characters for all keywords in table 2
as upright by default. For example, the command

\mathfont[upper=roman,lower=roman]{Times New Roman}

changes all math-mode Latin letters to Times New Roman with upright shape.
The package provides access to several types of letterlike symbols that appear frequently

in mathematical writing, and the last five keywords in table 2 constitute these classes. Unlike
with other keywords, mathfont doesn’t create control sequences to access the symbols directly
but rather defines a new command that converts letters into the appropriate style. When
the user calls \mathfont with any of the last five keywords from table 2, the package both
declares the appropriate unicode characters as math symbols and defines the macro

\math〈keyword〉{〈argument〉}

to typeset them. For example,

\mathfont[bcal]{STIXGeneral}

will set STIXGeneral as the font for bold calligraphic characters and define the command

10Technically, \mathfont expands its optional argument inside an \edef. When it scans an optional argu-
ment, mathfont temporarily converts spaces to catcode 9 and ignores them. However, if you feed \mathfont

a macro with spaces in it, TEX has already scanned and tokenized those spaces, so we use \zap@space from
the LATEX kernel instead. Braces will wreck both this process and the \@for loop that comes later.

6 User Guide Local Font Changes

Table 2: Letter-Like and Other Symbols

Keyword Meaning

symbols Basic Symbols
extsymbols Extended Symbols
delimiters Parentheses, Brackets, and Braces
arrows Arrows
bigops “Big” Operators (see section 4)
extbigops Extended “Big” Operators
bb Blackboard Bold (double-struck)
cal Caligraphic
frak Fraktur
bcal Bold Caligraphic
bfrak Bold Fraktur

\mathbcal to access them in math mode. For the bb case, the associated command acts on
Latin letters and Arabic numerals, and for the other four keywords, the associated command
acts just on Latin letters. TEX will ignore and issue a warning in response to any other
characters in the argument.

3 Local Font Changes

With mathfont, users can locally change the font in math mode by creating and then us-
ing a new control sequence for each new font desired.11 The control sequences created this
way function analogously to the standard math font macros such as \mathrm, \mathit, and
\mathnormal from the LATEX kernel, and the package provides four basic commands to pro-
duce them. Table 3 lists these commands. All four have the same argument structure: a
control sequence as the first mandatory argument and a font name as the second. For exam-
ple, the macro \newmathrm looks like

\newmathrm{〈control sequence〉}{〈font name〉}.

It defines the control sequence in its first argument to accept a string of characters that it
then converts to the font name in the second argument with upright shape and medium
weight. Writing

\newmathrm{\matharial}{Arial}

would create the macro

\matharial{〈argument〉},

which can be used only in math mode and which converts the math alphabet characters in its
argument into the Arial font with upright shape and medium weight. The other three com-
mands in table 3 function in the same way except that they select different series or shape val-
ues for the font in question. Table 3 lists this information. As of version 1.6, \newmathbold
has been renamed to \newmathbf to put it in line with nfss naming conventions.

11The five macros in this section are basically wrapped versions of LATEX’s \DeclareMathAlphabet.

Math Symbols User Guide 7

Table 3: Font-changing Commands

Command Font Characteristics

\newmathrm Upright shape; medium weight
\newmathit Italic shape; medium weight
\newmathbf Upright shape; bold-expanded weight
\newmathbfit Italic shape; bold-expanded weight

Together these four commands will provide users with the tools for almost all desired local
font changes, but they inevitably will be insufficient for some particular case. Accordingly,
mathfont provides the more general \newmathfontcommand macro that functions similarly to
the commands from table 3 but allows for more general font characteristics.12 Its structure
is

\newmathfontcommand{〈control sequence〉}{〈font name〉}{〈series〉}{〈shape〉},

where the control sequence in the first argument again becomes the macro that allows the
user to access the specified font. The font name means any OpenType or TrueType font in a
directory searchable by TEX, and the series and shape information refers to the nfss codes
for these attributes. Like \mathfont and \setfont, these commands should appear only in
the document preamble.

Unlike the traditional \mathrm and company, mathfont’s local font change commands
create macros that can act on Greek characters. If the user specifies the font for Greek
letters using \mathfont, macros created with the commands from Table 3 will affect those
characters; otherwise, they will not.13 Similarly, the local font-change commands will act on
Cyrillic and Hebrew characters after the user calls \mathfont for those keyword-classes.

4 Math Symbols

Choosing which unicode characters to recode is something of a delicate task because few
unicode fonts contain more than the most basic math symbols. In designing this portion
of mathfont, I attempted to find the largest set of characters that reliably appears in ev-
ery or nearly every major unicode font, and I coded those characters in the symbols key-
word. This keyword contains punctuation and common symbols such as ±, ÷, and ∞, and
it will be sufficient for basic math typesetting. That being said, most math relies on a much
broader collection of characters and arrows, and in other keywords, I coded every unicode
math symbol that I could reasonably see being useful. The extended math symbols keyword
extsymbols contains quantifiers, set and element relations, just about any binary relation
you can imagine, and a few miscellaneous symbols such as \sharp and \flat. The arrows

12The package defines the four commands from table 3 in terms of \newmathfontcommand, and it specifies
their style characteristics according to the kernel commands \updefault, \itdefault, \mddefault, and
\bfdefault. Changing these macros will implicitly change the characteristics of the commands in table 3.

13LATEX 2ε defines lower-case Greek letters as \mathord characters, and mathfont changes this classifi-
cation to \mathalpha type when it declares them as symbols. The local font change commands act only
on characters of class \mathalpha, so these commands will act on lower-case Greek letters if \mathfont

redefines them to be \mathalpha.

8 User Guide Handling Errors

keyword contains a swath of hooked, curved, and bar arrows and even one lightning bolt
arrow. Most standard unicode fonts don’t contain many of those glyphs, and users who call
\mathfont for a font without certain characters will see blank spaces in their final output
instead of the corresponding symbols from mathfont_symbol_list.pdf. If this happens,
check the log file because it will display any missing characters in your fonts.

It’s worth emphasizing three aspects of mathfont’s symbol declaration process. First,
the package does not provide any symbols in and of itself but rather gives users access to
symbols that already exist on their computers. This is why mathfont provides no additional
symbols directly at loading and why some package commands can create blank spaces rather
than their intended output. Second, mathfont’s functionality currently does not include math
symbols of variable sizes.14 Recoded delimiters do not respond to \left and \right, and
LATEX replaces them with their original Latin Modern equivalents before rescaling appropri-
ately. Thus \mathfont with the delimiters keyword will produce normally sized delimiters
in the font of your choice and big delimiters in Latin Modern Roman. Similarly, big opera-
tors such as \sum and \prod appear normally sized instead of larger after setting their font
with \mathfont. This is undesirable! I have isolated all delimiter and big operator charac-
ters in their own keywords, and I hope to address this limitation in future updates. Third,
the package provides an extra comma character, similar to LATEX’s \colon.15 TEX users
have likely noticed the extra space surrounding commas in math mode, e.g. 10, 000 versus
10,000, and mathfont’s \comma addresses this problem. Here the first ten thousand uses a
standard , while the second uses \comma. As a rule of thumb, use , as a punctuation mark
and \comma as a character separator.

5 Handling Errors

I have tried to make mathfont’s error messages as clear as possible, and the help text will
contain instructions for how to resolve the problem. Nevertheless, some of the possible error
messages warrant additional explanation.

The most salient errors are the “Could not find fontspec” and “Missing X ETEX or LuaTEX”
fatal errors. When the user loads mathfont, TEX must be able to find the package file
fontspec.sty, and TEX must be operating under the X ETEX or LuaTEX engine. If either
condition fails, TEX will stop reading in mathfont.sty.16 As of version 1.6, mathfont’s fatal

14Dynamic math-mode character sizing is a surprisingly thorny task. OpenType font designers specif-
ically code certain characters to change size when they design the font, and LuaTEX’s \Udelimiter and
\Umathoperatorsize depend on this embedded feature. Because most unicode fonts come without resizing
information, mathfont would have to manually add these settings to the LuaTEX font table. I intend to add
this functionality in some future update, but I do not know what the timeframe looks like for those changes.

15Consider {x : x 6= 0} versus {x:x 6= 0}. The first specification uses : while the second uses \colon. As
a rule of thumb, use : for ratios and \colon as a punctuation mark.

16Note that mathfont doesn’t actually determine the typesetting engine. Rather, it checks whether the
X ETEX and LuaTEX primitives \Umathcode, \Umathchardef, and \Umathaccent are defined, so if for some
reason these control sequences have definitions when the user loads mathfont with another engine, fontspec’s
more robust engine checks will take over and cause TEX to abort. The reasoning here is straightforward:
mathfont verifies only that the current typesetting engine provides the commands that it directly needs, so
its potential functionality remains as broad as possible. If fontspec becomes compatible with a third engine
that also provides (analogues of) these primitives, there is no reason to prevent mathfont from working with

Handling Errors User Guide 9

errors prevent TEX from reading in the rest of the sty file but do not crash the compilation
process, and users who continue past one of mathfont’s fatal error messages will see an “in-
valid command” error if they call a user-level command in their document. I designed these
errors to be unobtrusive, and users can safely ignore them. Because of how mathfont per-
forms its engine check, it is theoretically possible that users with very old X ETEX or LuaTEX
distributions may see the second fatal error even when running one of these two engines,
and the solution is probably to upgrade to a more recent version of the engine in question.
Unfortunately, I do not know what the exact cutoff for X ETEX and LuaTEX versions is.17

The fontspec package includes a “no-math” option, and mathfont expects fontspec to be
loaded with this option. As mentioned previously, mathfont loads fontspec by default, but
users can load fontspec before mathfont if they want to manually specify the package options.
Alternatively, LATEX’s \PassOptionsToPackage may be an even better way to proceed. If
mathfont detects that fontspec was loaded without the no-math option, it will issue an error
message saying so. This error is not paramount in the sense that the document will compile
normally if a user ignores it, but mathfont will probably have trouble changing the font of
certain math-mode characters in this situation. During development, Arabic numerals posed
a particular challenge in this regard.

The “internal commands restored” error arises when the user calls \mathfont after the
package already restored the small portion of the LATEX kernel that it adjusts when loaded.
Typically this happens when the user calls \mathfont after \restoremathinternals. The
package will ignore any \mathfont commands in this situation, so while the error is techni-
cally harmless, you may not see some font changes you might have been expecting. Similarly,
if the user tries to set the default font multiple times for some character class, the package
will ignore any additional attempts, issue a warning, and continue the compilation process.

What should you do if you can’t resolve an error? First, always, always make sure that
you spelled all of your commands correctly and closed all braces and brackets. Then check
the mathfont documentation—you may be trying to do something outside the scope of the
package, or you may be dealing with a special case. The internet is a great resource, and
websites such as the TEX StackExchange, ShareLATEX, and Wikibooks’ LATEX wiki are often
invaluable when dealing with TEX-related issues. Definitely ask another human as well! At
that point you should email the author about your code—you might have identified a bug. I
welcome emails about mathfont and will make every effort to write back to correspondence
about the package, but I cannot guarantee a timely response.

that engine as well.
17However, the manual for a beta version of LuaTEX, v. 0.70.1, includes these primitives, so they are at

least as old as May 2011. See
https://osl.ugr.es/CTAN/obsolete/systems/luatex/base/manual/luatexref-t.pdf

