
mfirstuc.sty v2.06: uppercasing first
letter

Nicola L.C. Talbot

Dickimaw Books
http://www.dickimaw-books.com/

2017-11-14

1

http://www.dickimaw-books.com/

Contents

1 Introduction 3

2 Capitalising the First Letter of a Word 5

3 Capitalise the First Letter of Each Word in a Phrase or Sentence
(Title Case) 8
3.1 PDF Bookmarks . 14
3.2 Excluding Words From Case-Changing 14

4 UTF-8 17

Index 20

2

1 Introduction

The mfirstuc package was originally part of the glossaries bundle for use with com-
mands like \Gls, but as the commands provided by mfirstuc may be used without
glossaries, the two have been split into separately maintained packages.

The commands described here all have limitations. To minimise problems, use
text-block style semantic commands with one argument (the text that requires
case-changing), and avoid scoped declarations.

Here are some examples of semantic commands:

1. Quoted material:

\newcommand{\qt}[1]{``#1''}

(or use the csquotes package). With this, the following works:

\makefirstuc{\qt{word}}

This produces:

“Word”

Whereas

\makefirstuc{``word''}

fails (no case-change and double open quote becomes two single open quotes):

‘‘word”

2. Font styles or colours:

\newcommand*{\alert}[1]{\textcolor{red}{#1}}

Now the following is possible:

\makefirstuc{\alert{word}}

3

This produces

Word

Note that \makefirstuc{\textcolor{red}{word}} fails (with an error) be-
cause the case-changing interferes with the label.

Define these semantic commands robustly if you intend using any of the com-
mands that fully expand their argument (\emakefirstuc, \ecapitalisewords and
\ecapitalisefmtwords).

4

2 Capitalising the First Letter of a
Word

A simple word can be capitalised just using the standard LATEX upper casing com-
mand. For example,

\MakeUppercase word

but for commands like \Gls the word may be embedded within the argument of an-
other command, such as a font changing command. This makes things more com-
plicated for a general purpose solution, so the mfirstuc package provides:

\makefirstuc{〈stuff 〉}\makefirstuc

This makes the first object of 〈stuff 〉 upper case unless 〈stuff 〉 starts with a control
sequence followed by a non-empty group, in which case the first object in the group
is converted to upper case. No expansion is performed on the argument.

If 〈stuff 〉 starts with a control sequence that takes more than one argument, the
case-changing will always be applied to the first argument. If the text that
requires the case change is in one of the other arguments, you must hide the
earlier arguments in a wrapper command. For example, instead of
\textcolor{red}{text} you need to define, say, \red as \color{red} and use
\red{text}.

Examples:

• \makefirstuc{abc} produces Abc.

• \makefirstuc{\emph{abc}} produces Abc (\MakeUppercase has been ap-
plied to the letter “a” rather than \emph). Note however that

\makefirstuc{{\em abc}}

produces ABC (first object is {\em abc} so this is equivalent to \MakeUppercase{\em abc}),
and

{\makefirstuc{\em abc}}

produces abc (\em doesn’t have an argument therefore first object is \em and
so is equivalent to {\MakeUppercase{\em}abc}).

5

• \makefirstuc{{\’a}bc} produces Ábc.

• \makefirstuc{\ae bc} produces Æbc.

• \makefirstuc{{\ae}bc} produces Æbc.

• \makefirstuc{{ä}bc} produces Äbc.

Note that non-Latin or accented characters appearing at the start of the text should
be placed in a group (even if you are using the inputenc package). The reason for this
restriction is detailed in Section 4.

New to version 2.04: There is now limited support for UTF-8 characters with the
inputenc package, provided that you load datatool-base (at least v2.24) before mfirstuc
(datatool-base is loaded automatically with newer versions of glossaries). If available
mfirstuc will now use datatool-base’s \dtl@getfirst@UTFviii command which is
still experimental. See the datatool manual for further details.

\documentclass{article}

\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}

\usepackage{datatool-base}[2016/01/12]% v2.24+
\usepackage{mfirstuc}

\begin{document}
\makefirstuc{élite}
\end{document}

(Package ordering is important.)

In version 1.02 of mfirstuc, a bug fix resulted in a change in output if the first
object is a control sequence followed by an empty group. Prior to version 1.02,
\makefirstuc{\ae{}bc} produced æBc. However as from version 1.02, it now
produces Æbc.

Note also that

\newcommand{\abc}{abc}
\makefirstuc{\abc}

produces: ABC. This is because the first object in the argument of \makefirstuc is
\abc, so it does \MakeUppercase{\abc}. Whereas:

\newcommand{\abc}{abc}
\expandafter\makefirstuc\expandafter{\abc}

6

produces: Abc. There is a short cut command which will do this:

\xmakefirstuc{〈stuff 〉}\xmakefirstuc

This is equivalent to \expandafter\makefirstuc\expandafter{〈stuff 〉}. So

\newcommand{\abc}{abc}
\xmakefirstuc{\abc}

produces: Abc.

\xmakefirstuc only performs one level expansion on the first object in its
argument. It does not fully expand the entire argument.

As from version 1.10, there is now a command that fully expands the entire argu-
ment before applying \makefirstuc:

\emakefirstuc{〈text 〉}\emakefirstuc

Examples:

\newcommand{\abc}{\xyz a}
\newcommand{\xyz}{xyz}
No expansion: \makefirstuc{\abc}.
First object one-level expansion: \xmakefirstuc{\abc}.
Fully expanded: \emakefirstuc{\abc}.

produces: No expansion: XYZA. First object one-level expansion: XYZa. Fully ex-
panded: Xyza.

If you use mfirstuc without the glossaries package, the standard \MakeUppercase
command is used. If used with glossaries, \MakeTextUppercase (defined by the
textcase package) is used instead. If you are using mfirstuc without the glossaries
package and want to use \MakeTextUppercase instead, you can redefine

\glsmakefirstuc{〈text 〉}\glsmakefirstuc

For example:

\renewcommand{\glsmakefirstuc}[1]{\MakeTextUppercase #1}

Remember to also load textcase (glossaries loads this automatically).

7

3 Capitalise the First Letter of Each
Word in a Phrase or Sentence
(Title Case)

New to mfirstuc v1.06:

\capitalisewords{〈text 〉}\capitalisewords

This command applies \makefirstuc to each word in 〈text〉 where the space char-
acter is used as the word separator. Note that it has to be a plain space character, not
another form of space, such as ~ or \space. Note that no expansion is performed on
〈text〉. See Section 3.2 for excluding words (such as “of”) from the case-changing.

The actual capitalisation of each word is done using (new to version 2.03):

\MFUcapword{〈word 〉}\MFUcapword

This just does \makefirstuc{〈word〉} by default, but its behaviour is determined by
the conditional:

\ifMFUhyphen\ifMFUhyphen

If you want to title case each part of a compound word containing hyphens, you
can enable this using

\MFUhyphentrue\MFUhyphentrue

or switch it back off again using:

\MFUhyphenfalse\MFUhyphenfalse

Compare

\capitalisewords{server-side includes}

which produces:

Server-side Includes

with

8

\MFUhyphentrue
\capitalisewords{server-side includes}

which produces:

Server-Side Includes

Formatting for the entire phrase must go outside \capitalisewords (unlike
\makefirstuc). Compare:

\capitalisewords{\textbf{a sample phrase}}

which produces:

A sample phrase

with:

\textbf{\capitalisewords{a sample phrase}}

which produces:

A Sample Phrase

As from version 2.03, there is now a command for phrases that may include a for-
matting command:

\capitalisefmtwords{〈phrase 〉}

where 〈phrase〉 may be just words (as with \capitalisewords) or may be entirely
enclosed in a formatting command in the form

\capitalisefmtwords{〈cs 〉{〈phrase 〉}}
or contain formatted sub-phrases

\capitalisefmtwords{〈words 〉 〈cs 〉{〈sub-phrase 〉} 〈words 〉}
Avoid scoped declarations.

\capitalisefmtwords is only designed for phrases that contain text-block
commands with a single argument, which should be a word or sub-phrase.
Anything more complicated is likely to break. Instead, use the starred form or
\capitalisewords.

The starred form only permits a text-block command at the start of the phrase.
Examples:

9

1. Phrase entirely enclosed in a formatting command:

\capitalisefmtwords{\textbf{a small book of rhyme}}

produces:

A Small Book Of Rhyme

2. Sub-phrase enclosed in a formatting command:

\capitalisefmtwords{a \textbf{small book} of rhyme}

produces:

A Small Book Of Rhyme

3. Nested text-block commands:

\capitalisefmtwords{\textbf{a \emph{small book}} of rhyme}

produces:

A Small Book Of Rhyme

4. Indicating words that shouldn’t have the case changed (see Section 3.2):

\MFUnocap{of}
\capitalisefmtwords{\textbf{a \emph{small book}} of rhyme}

produces:

A Small Book of Rhyme

5. Starred form:

\MFUnocap{of}
\capitalisefmtwords*{\emph{a small book of rhyme}}

10

produces:

A Small Book of Rhyme

6. The starred form also works with just text (no text-block command):

\MFUnocap{of}
\capitalisefmtwords*{a small book of rhyme}

produces:

A Small Book of Rhyme

If there is a text-block command within the argument of the starred form, it’s as-
sumed to be at the start of the argument. Unexpected results can occur if there are
other commands. For example

\MFUnocap{of}
\capitalisefmtwords*{\emph{a small} book \textbf{of rhyme}}

produces:

A Small Book Of rhyme

(In this case \textbf{of rhyme} is considered a single word.) Similarly if the text-
block command occurs in the middle of the argument:

\MFUnocap{of}
\capitalisefmtwords*{a \emph{very small} book of rhyme}

produces:

A Very small Book of Rhyme

(In this case \emph{very small} is considered a single word.)
Grouping causes interference:

\capitalisefmtwords{{a \emph{small book}} of rhyme}

produces:

A Small book Of Rhyme

As with all the commands described here, avoid declarations. For example, the fol-
lowing fails:

\capitalisefmtwords{{\bfseries a \emph{small book}} of rhyme}

11

produces:

a Small book Of Rhyme

Avoid complicated commands in the unstarred version. For example, the following
breaks:

\newcommand*{\swap}[2]{{#2}{#1}}
\capitalisefmtwords{a \swap{bo}{ok} of rhyme}

However it works okay with the starred form and the simpler \capitalisewords:

\newcommand*{\swap}[2]{{#2}{#1}}
\capitalisefmtwords*{a \swap{bo}{ok} of rhyme}

\capitalisewords{a \swap{bo}{ok} of rhyme}

Produces:

A okBo Of Rhyme
A okBo Of Rhyme

Note that the case change is applied to the first argument.

\xcapitalisewords{〈text 〉}\xcapitalisewords

This is a short cut for \expandafter\capitalisewords\expandafter{〈text〉}.
As from version 1.10, there is now a command that fully expands the entire argu-

ment before applying \capitalisewords:

\ecapitalisewords{〈text 〉}\ecapitalisewords

There are also similar shortcut commands for the version that allows text-block
commands:

\xcapitalisefmtwords{〈text 〉}\xcapitalisefmtwords

The unstarred version is a short cut for \expandafter\capitalisefmtwords\expandafter
{〈text〉}. Similarly the starred version of \xcapitalisefmtwords uses the starred
version of \capitalisefmtwords.

For full expansion:

\ecapitalisefmtwords{〈text 〉}\ecapitalisefmtwords

Take care with this as it may expand non-robust semantic commands to replace-
ment text that breaks the functioning of \capitalisefmtwords. Use robust seman-

12

tic commands where possible. Again this has a starred version that uses the starred
form of \capitalisefmtwords.

Examples:

\newcommand{\abc}{\xyz\space four five}
\newcommand{\xyz}{one two three}
No expansion: \capitalisewords{\abc}.
First object one-level expansion: \xcapitalisewords{\abc}.
Fully expanded: \ecapitalisewords{\abc}.

produces:

No expansion: ONE TWO THREE FOUR FIVE.
First object one-level expansion: ONE TWO THREE four Five.
Fully expanded: One Two Three Four Five.

(Remember that the spaces need to be explicit. In the second case above, using
\xcapitalisewords, the space before “four” has been hidden within \space so it’s
not recognised as a word boundary, but in the third case, \space has been expanded
to an actual space character.)

Examples:

1. \capitalisewords{a book of rhyme.}

produces: A Book Of Rhyme.

2. \capitalisewords{a book\space of rhyme.}

produces: A Book of Rhyme.

3. \newcommand{\mytitle}{a book\space of rhyme.}
\capitalisewords{\mytitle}

produces: A BOOK OF RHYME. (No expansion is performed on \mytitle.)
Compare with next example:

4. \newcommand{\mytitle}{a book\space of rhyme.}
\xcapitalisewords{\mytitle}

produces: A Book of Rhyme.

However

\ecapitalisewords{\mytitle}

produces: A Book Of Rhyme. (\space has been expanded to an actual space
character.)

5. \newcommand*{\swap}[2]{{#2}{#1}}
\capitalisewords{a \swap{bo}{ok} of rhyme}

13

\ecapitalisewords{a \swap{bo}{ok} of rhyme}

produces:

A okBo Of Rhyme

A OKbo Of Rhyme

This is because the argument of \ecapitalisewords is fully expanded before
being passed to \capitalisewords so that last example is equivalent to:

\capitalisewords{a {ok}{bo} of rhyme}

3.1 PDF Bookmarks

If you are using hyperref and want to use \capitalisewords,
\capitalisefmtwords or \makefirstuc (or the expanded variants) in a section
heading, the PDF bookmarks won’t be able to use the command as it’s not
expandable, so you will get a warning that looks like:

Package hyperref Warning: Token not allowed in a PDF string
(PDFDocEncoding):
(hyperref) removing `\capitalisewords'

If you want to provide an alternative for the PDF bookmark, you can use hyperref’s
\texorpdfstring command. For example:

\chapter{\texorpdfstring
{\capitalisewords{a book of rhyme}}% TeX
{A Book of Rhyme}% PDF

}

Alternatively, you can use hyperref’s mechanism for disabling commands within the
bookmarks. For example:

\pdfstringdefDisableCommands{%
\let\capitalisewords\@firstofone

}

See the hyperref manual for further details.

3.2 Excluding Words From Case-Changing

As from v1.09, you can specify words which shouldn’t be capitalised unless they occur
at the start of 〈text〉 using:

14

\MFUnocap{〈word 〉}\MFUnocap

This only has a local effect. The global version is:

\gMFUnocap{〈word 〉}\gMFUnocap

For example:

\capitalisewords{the wind in the willows}

\MFUnocap{in}%
\MFUnocap{the}%

\capitalisewords{the wind in the willows}

produces:

The Wind In The Willows
The Wind in the Willows

The list of words that shouldn’t be capitalised can be cleared using

\MFUclear\MFUclear

You can also simply place an empty group in front of a word if you don’t want that
specific instance to be capitalised. For example:

\MFUclear
\capitalisewords{the {}wind in the willows}

produces:

The wind In The Willows

This is also a useful way of protecting commands that shouldn’t be parsed. For ex-
ample:

\capitalisewords{this is section {}\nameref{sec:nocap}.}

produces

This Is Section Excluding Words From Case-Changing.

(No case-changing is applied to \nameref{sec:nocap}. It just happens to already
be in title case.)

The package mfirstuc-english loads mfirstuc and uses \MFUnocap to add common
English articles and conjunctions, such as “a”, “an”, “and”, “but”. You may want to add

15

other words to this list, such as prepositions but, as there’s some dispute over whether
prepositions should be capitalised, I don’t intend to add them to this package.

If you want to write a similar package for another language, all you need to do is
create a file with the extension .sty that starts with

\NeedsTeXFormat{LaTeX2e}

The next line should identify the package. For example, if you have called the file
mfirstuc-french.sty then you need:

\ProvidesPackage{mfirstuc-french}

It’s a good idea to also add a version in the final optional argument, for example:

\ProvidesPackage{mfirstuc-french}[2014/07/30 v1.0]

Next load mfirstuc:

\RequirePackage{mfirstuc}

Now add all your \MFUnocap commands. For example:

\MFUnocap{de}

At the end of the file add:

\endinput

Put the file somewhere on TEX’s path, and now you can use this package in your
document. You might also consider uploading it to CTAN in case other users find it
useful.

16

http://ctan.org/upload

4 UTF-8

The \makefirstuc command works by utilizing the fact that, in most cases, TEX
doesn’t require a regular argument to be enclosed in braces if it only consists of a
single token. (This is why you can do, say, \frac12 instead of \frac{1}{2} or x^2
instead of x^{2}, although some users frown on this practice.)

A simplistic version of the \makefirstuc command is:

\newcommand*{\FirstUC}[1]{\MakeUppercase #1}

Here

\FirstUC{abc}

is equivalent to

\MakeUppercase abc

and since \MakeUppercase requires an argument, it grabs the first token (the char-
acter “a” in this case) and uses that as the argument so that the result is: Abc.

The glossaries package needs to take into account the fact that the text may be
contained in the argument of a formatting command, such as \acronymfont, so
\makefirstuc has to be more complicated than the trivial \FirstUC shown above,
but at its basic level, \makefirstuc uses this same method and is the reason why, in
most cases, you don’t need to enclose the first character in braces. So if

\MakeUppercase 〈stuff 〉
works, then

\makefirstuc{〈stuff 〉}
should also work and so should

\makefirstuc{\foo{〈stuff 〉}}
but if

\MakeUppercase 〈stuff 〉
doesn’t work, then neither will

\makefirstuc{〈stuff 〉}
nor

17

\makefirstuc{\foo{〈stuff 〉}}
Try the following document:

\documentclass{article}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

\begin{document}

\MakeUppercase ãbc

\end{document}

This will result in the error:

! Argument of \UTFviii@two@octets has an extra }.

This is why \makefirstuc{ãbc} won’t work. It will only work if the character ã is
placed inside a group.

The reason for this error message is due to TEX having been written before Unicode
was invented. Although ã may look like a single character in your text editor, from
TEX’s point of view it’s two tokens. So

\MakeUppercase ãbc

tries to apply \MakeUppercase to just the first octet of ã. This means that the second
octet has been separated from the first octet, which is the cause of the error. In this
case the argument isn’t a single token, so the two tokens (the first and second octet
of ã) must be grouped:

\MakeUppercase{ã}bc

Note that X ETEX (and therefore X ELATEX) is a modern implementation of TEX de-
signed to work with Unicode and therefore doesn’t suffer from this drawback. Now
let’s look at the X ELATEX equivalent of the above example:

\documentclass{article}

\usepackage{fontspec}

\begin{document}

\MakeUppercase ãbc

\end{document}

18

This works correctly when compiled with X ELATEX. This means that \makefirstuc{ãbc}
will work provided you use X ELATEX and the fontspec package.

Version 2.24 of datatool-base added the command \dtl@getfirst@UTFviiiwhich
attempts to grab both octets. If this command has been defined, mfirstuc will use it
when it tries to split the first character from the rest of the word. See the datatool
documented code for further details.

19

http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-code.pdf
http://mirrors.ctan.org/macros/latex/contrib/datatool/datatool-code.pdf

Index

C
\capitalisewords 8

D
datatool-base package 6, 19

E
\ecapitalisefmtwords

. 12
\ecapitalisewords . . 12
\emakefirstuc 7

F
fontspec package 19

G
glossaries package . . 6, 7, 17
\glsmakefirstuc 7
\gMFUnocap 15

H
hyperref package 14

I
\ifMFUhyphen 8
inputenc package 6

M
\makefirstuc 5
mfirstuc package 6, 19

mfirstuc-english package 15
\MFUcapword 8
\MFUclear 15
\MFUhyphenfalse 8
\MFUhyphentrue 8
\MFUnocap 15

T
textcase package 7

X
\xcapitalisefmtwords

. 12
\xcapitalisewords . . 12
\xmakefirstuc 7

20

	Introduction
	Capitalising the First Letter of a Word
	Capitalise the First Letter of Each Word in a Phrase or Sentence (Title Case)
	PDF Bookmarks
	Excluding Words From Case-Changing

	UTF-8
	Index

