
pst­layout

Michael Sharpe

msharpe at ucsd.edu

1 Quick overview

This package uses pstricks and related packages for a single purpose: to ease the

design of quasi-tabular documents of a speci�ed size. For a couple of examples,

consider (a) a business card; (b) a form, assumed to be available as an eps graphic,

that must be �lled out by overprinting it with LATEX text. A much more complex

example that was constructed using this package is shown at

http://cseweb.ucsd.edu/~gill/MissingGeoSite/index.html.

In essence, you specify the canvas size and the units, you de�ne a number of loca-

tions on the canvas to serve as alignment guides, and then enter arrays of parameters

that govern the positions and appearances of dots, lines, frames, fragments of text

and pictures. A�er entering these arrays of data, type, for example

\psset{unit=1in,picwidth=4in,picheight=6in}

\begin{pslayout}

<optional: other graphics commands>

\end{pslayout}

then run LaTeX+dvips+ps2pdf to view the result. Because the data arrays are not

erased a�er the canvas is drawn, it is not intended as an environment for creation of

more than a single canvas, though with care, that is possible. Units may be speci�ed

separately by setting xunit and yunit instead of unit.

A few packages are required.

pst­node A recent version is essential.

pst­layout This package.

arrayjobx This is almost the same as the arrayjob package that is part of TEX Live,

but with the name \array altered in three places (lines 108, 148, 164) so as not

to con�ict with the usage of \array in LATEX and related parts of amsmath, or

with \Array in pdftricks. This command is normally only used internally, so

there is little reason not to use arrayjobx in place of arrayjob.

1

http://cseweb.ucsd.edu/~gill/MissingGeoSite/index.html

2 Coordinates and Node Expressions

The origin is the southwest corner of the canvas so the x axis runs along the bottom

edge and the y axis along the le� edge. Two macros—\xmax and \ymax are de�ned

within the pslayout environment, so that, for example, the top right corner may be

referred to as (\xmax,\ymax). Positions of points may be speci�ed in any form ac-

ceptable to \SpecialCoor, or as a node expression, by which is meant an expression

like

.25(1cm,3)+.333(2;90)­1.2([nodesep=.5cm]Q)

which speci�es a linear combination of points (the items enclosed in parenthe-

ses) speci�ed in any manner acceptable to \SpecialCoor. The parenthesized items

themselves cannot themselves be node expressions, as those are not acceptable to

\SpecialCoor. As a reminder, \SpecialCoor understands the following forms:

Cartesian Eg, (3,4), (3pt,2).

Polar Eg, (2;90), (1cm;45).

Mixed Eg, (2;90 | 3,4), (P | Q)—x coordinate from �rst point, y coordinate

from second—very useful form in pslayout.

Node Eg, (P), where P is a previously de�ned node.

Node relative Eg, ([nodesep=2pt,offset=1cm]P)—2pt to the right and 1cm up from

P.

Node segment relative Eg, ([nodesep=1,offset=2pt]{P}Q. Relative to directed line

segment from Q toward P, 1 unit from Q and 2pt to le� (normal to QP.)

Postscript (! <PostScript code>) Code must leave two items on the stack, in-

terpreted as x and y coordinates. Eg, (! 90 sin 90 cos) gives same result

as (1,0).

Note that coordinates with an unspeci�ed unit take the appropriate unit, so (1cm,3)

means the point 1cm to the right and 3 yunit from the origin.

2.1 Prede�ned points

Some points on the canvas are already named—the corners andmidpoints are named

PSPbl (bottom le�), PSPtl, PSPtr, PSPbr, PSPbl, PSPbc, PSPtc, PSPcl, PSPcr, PSPcc,

whose meanings should be clear. Three of these have alternative names—R0=PSPtl,

C­1=PSPbr, and C­2=PSPbc. These names are special and should not normally be

2

rede�ned, though you may if you are obstinate. If the choice seems odd, think of

R0 as the row above the �rst row of the canvas, C­1 as the last column, and C­2 as

half way across. Names of the form R<natural number> and C<natural number>

are reserved for special use. They should be de�ned by you as alignment points

along the y axis and x axis respectively. Then pslayout constructs all possible pairs

like R15C2 (think of it as row 15, column 2) to serve as named positions. Do NOT

use either R or C alone as the name of a point. Note that R0C­1 will be the same as

PSTtr and R0C­2 will be the same as PSTtc.

3 An example �le

%&latex

\documentclass[dvips,10pt]{article}

\usepackage[dvipsnames]{pstricks}

\usepackage{pst­layout}

\pagestyle{empty}

\setlength\parindent{0pt}

\begin{document}

% Remember that C­1, C­2, R0 are predefined­­­do not change

\NumPoints=2 % ignore higher indices

\PointName(1)={TR}\PointPos(1)={PSPtr}

\PointName(2)={R1}\PointPos(2)={(R0)­(0,.25)}

\def\MaxR{1}\def\MaxC{0}

\NumFrames=1

\FrameStart(1)={0,0}\FrameEnd(1)={PSPtr}

\NumFragments=1 %

\Frag(1)={Some text}\FragRefPt(1)={B}%Baseline, center

\FragPos(1)={R1C­2}

\psset{unit=1in,picwidth=3in,picheight=2in}

\begin{pslayout}

\end{pslayout}

\end{document}

Between \begin{document} and \begin{pslayout} one enters the data speci�cations.

NumPoints The entry \NumPoints=2 directs the program to look for points with

index from 1 to 2. Non-existent entries are ignored.

Point... The next two lines de�ne the points with indices 1 and 2. The �rst line

says, in e�ect, let TR be an alternative name for PSPtr. The second says to

de�ne R1 to be .25(in) below R0, on the y axis.

3

MaxR, MaxC The following line instructs the program to create names of the for

R<i>C<j> for i<=1, j<=0.

NumFragments The entry \NumFrags=1 says to read \Frag... entries with index 1.

NumFrames The entry \NumFrames=1 says to read \Frame... entries with index 1.

Frame(1) The items \FrameStart(1) and \FrameEnd(1) de�ne opposite corners of a

rectangular frame.

psset The \psset{} line de�nes the settings to be used in constructing the canvas.

pslayout The command \begin{pslayout} initiates processing the arrays of data

and inserts them one by one onto the canvas, Following that, the the graph-

ics commands between \begin{pslayout} and \end{pslayout}are performed,

overprinting all that went before. (There are none in this example.) The red

items in the following picture were added but are not shown in the example

code.

b b

bbb

bbb

b b b

PSPtc

R1

C-2

PSPcc
PSPcrPSPcl

PSPbl C-1

PSPtrR0

R1C-2

Sample text

Figure 1: Output (including dots and labels)

The remaining sections describe in detail how to enter graphics, points, frames,

lines, dots and text fragments. (That is the order inwhich they are processed.)

4 Graphics

External graphics must be in .eps format. The �les should if possible be at natural

size so that line widths and text sizes match those of other elements. The Graphics

section may have the following items.

4

\NumGraphics=<maximum index>% obligatory

\Graphic(1)={<filename>}% omit the .eps

\GraphicPos(1)={<position>}% may be any form, even node expression

\GraphicOpts(1)={<list of options>}% eg, width=2in

\GraphicRefPt(1)={<reference pt>}% eg, bl, b

If \Graphic(1) is de�ned and non-empty, \GraphicPos(i)must be speci�ed. If \GraphicOpts()

and \GraphicRefPt() are empty, the e�ect is to place the graphic using the graphicx

version of \includegraphics, so that its center is at \GraphicPos(). If \GraphicOpts()

is not empty, its contents are passed along as options to \includegraphics. If \GraphicRefPt()

is not empty, its contents are used to specify the reference point of the graphic—the

point which is to be translated to \GraphicPos(). Typical values are bl (bottom le�),

b (bottom center).

5 Points

The Points section of the data may have the following elements.

\NumPoints=<maximum index>% obligatory

\PointName(1)={<your choice>}

\PointPos(1)={<position>}% may be any form, even node expression

\PointSeries(1)={<min>;<max>}% first, last indices

\PointInc(1)={<increment between points in series>}

If \PointName(i) is de�ned and non-empty, \PointPos(i)must be speci�ed. The re-

sult is to create a node of speci�ed name at the speci�ed location. If \PointSeries(i)

is de�ned, then \PointInc(i) must be de�ned. here is the meaning, by exam-

ple.

\PointName(4)={P}

\PointPos(4)={1,2}

\PointSeries(4)={5;8}

\PointInc(4)={.1in,.2cm}

The result is that nodes named P5...P8 are de�ned, with P5 set to (1,2). Then the re-

maining nodes are set at increments of (.1in,.2cm), so that P8 is at (1,2)+(.3in,.6cm).

While \PointPos() may be speci�ed as a node expression, \PointInc() may not—it

may however use any form understood by \SpecialCoor.

5

6 Frames

The Frames section of the data may have the following elements.

\NumFrames=<maximum index>% obligatory

\FrameStart(1)={<position>}% one corner

\FrameEnd(1)={<position>}% opposite corner

\FrameDelta(1)={<position>}% can specify width,height instead

\FrameOpts(1)={<list of options>}%eg, linewidth, linecolor

\FrameSolid(1)={<non­empty value for solid frame>}

If \FrameEnd(i) is de�ned and non-empty, \FrameDelta(i) is ignored, otherwise the

latter must be speci�ed. The value of \FrameSolid determines whether the frame

is solid not. If \FrameSolid(i) is non-empty ({1}, say) the result will be a solid

frame with color given by linecolor, otherwise there is an outer rectangular frame

in linecolor, and the interior is �lled in fillcolor using fillstyle. For exam-

ple.

\FrameStart(4)={2,3}

\FrameDelta(4)={1cm,2}

\FrameOpts(4)={fillstyle=solid,fillcolor=yellow}

results in a black frame around a solid yellow interior. (By default, fillstyle

=none,fillcolor=white.)

7 Lines

The Lines section of the data may have the following elements.

\NumLines=<maximum index>% obligatory

\LStart(1)={<position>}% initial point

\LEnd(1)={<position>}% other end

\LDelta(1)={<position>}% can specify increment instead

\LOpts(1)={<list of options>}%eg, linewidth, linecolor

\LArrow(1)={<arrow specification>}

If \LEnd(i) is de�ned and non-empty, \LDelta(i) is ignored, otherwise the latter

must be speci�ed. The value of \LArrow determines the arrows, if any. The default

here is {­}, an ordinary line with no arrows. Other common options are {­>}, {<­>}.

The value of the option arrowscale (default value 1) a�ects the size of the arrow-

head.) All of \LStart(), \LEnd(), \LDelta() may be speci�ed as node expressions.

For example.

6

\LStart(4)={2,3}

\LDelta(4)={1cm,2}

\LOpts(4)={linewidth=.5pt,linecolor=red}

\LArrow(4)={­>}

results in a red line from (2,3) to (2,3)+(1cm,2) with an arrowhead at the latter.

8 Dots

The Dots section of the data may have the following elements.

\NumDots=<maximum index>% obligatory

\DotPos(1)={<position>}% position

\DotOpts(1)={<list of options>}%eg, linecolor, dotstyle, dotsize

The position may be speci�ed by a a node expression. The options available for

a dot are many. By default, dotstyle=*, which makes a solid circular dot. Other

common choices are dotstyle=o and dotstyle=Bo, both of which produce circular

dots, the latter a little bolder. With the default values of linecolor and fillcolor,

you get a black edge with white �ll. The size depends on dotscale and dotsize.

See the pstricks documentation.

9 Fragments

The Fragments section of the data may have the following elements.

\NumFragments=<maximum index>% obligatory

\Frag(1)={<text fragment>}

\FragPos(1)={<position>}% where to position it

\FragRefPt(1)={<one of B, c, t, r, b, tr, tl, br, bl, Bl, Br, etc>}

%\FragRefPt can also be polar offset from \FragPos

\FragRotation(1)={<rotation angle>}% eg 90

\FragBlankBG(1)={<non­empty value blanks background>}

The position \FragPos() may be speci�ed by a node expression. \Frag() speci-

�es the text that is printed. (It may be a \parbox or other LATEX construct.) The

fragment is rotated through \FragRotation(), if speci�ed. There are two di�erent

placement regimes, depending on the form of \FragRefPt(). If omitted (in which

case it defaults to c) or it one of the string values listed above, then that reference

point is translated to \FragPos(). On the other hand, if \FragRefPt() contains the

; character, it is assumed to specify a polar o�set from \FragPos(). For example,

7

\FragRefPt(3)={8pt;30} speci�es a polar o�set of 8pt at an angle of 30 degrees.

(The form {;30} uses the value of labelsep for the radius, which by default is 5pt.)

These behaviors correspond to those of the pstricks \rput and \uput macros re-

spectively.

If \Frag(i) is speci�ed, then \FragPos(i) is obligatory. The other items are optional,

but the default value of \FragRefPt(i) is not usually appropriate in the layout con-

text. Most commonly, you will wish to align text fragments by baseline, centered

{B} or by baseline, le� {Bl}. Columns of numbers may require {Br}.

10 Type

Dots, Frames and Lines have another feature not yet mentioned—an optional Type.

There are arrays \DotType(), \FrameType() and \LType() which behave the same way

in each case, so we discuss only \DotType().

Suppose you have several di�erent types of Dots you wish to use in your design, with

di�erent parameters. Instead of entering these parameters each time in \DotOpts(),

you de�ne a number of types incorporating those parameters. Let’s suppose we

want to use two di�erent Dots that don’t use just the default settings. We de�ne

two types, say A and B. In the document preamble, de�ne them with, say,

\newpsobject{psdotA}{psdot}{dotstyle=Bo,dotsize=5pt}

\newpsobject{psdotB}{psdot}{dotstyle=o,dotsize=2pt}

Then, if \DotType(i)={A}, the Dot will use the �rst set of parameters. You may of

course make changes and changes to those new defaults in \DotOpts(i).

There is one further complication in using \LType. In order to prepare for a new

Type A, you need to add two line to the preamble of your document, like

\newpsobject{pslineA}{psline}{linecolor=red,arrows=­>}

\newpsobject{psrlineA}{psrline}{linecolor=red,arrows=­>}

because layoutmay use themacro \psrline from pst­node instead of \psline.

11 Other issues

From the user’s point of view, the pslayout environment works as follows.

8

• If there is a macro by the name \AtLayoutStart, insert its contents so that it

applies to the entire layout. Eg,

\def\AtLayoutStart{\small \psset{Linewidth=.6pt,arrowscale=1.5}}

• If showfullcanvas was speci�ed by, eg,

\psset{unit=1in,picwidth=3.5in,picheight=2in,showfullcanvas}

then an invisible o�-white frame is drawn around the canvas so that if white

space is trimmed from the resulting graphic, no part of the canvas will be

trimmed.

• All nodes de�ned by \PointName() are constructed.

• All external graphic �les listed in \Graphic() are placed.

• If there is a macro by the name \FrameSettings, and if \NumFrames>0, its code

is inserted here. Most commonly, this will be a \psset{} to control the ap-

pearance of all frames. It could be any pstricks command, if you needed

to have an object appear before frames were drawn. The code is grouped so

that it applies only within the Frames section.

• All frames de�ned by \Frame...() are constructed.

• If there is a macro by the name \LineSettings, and if \NumLines>0, its code

is inserted here. Most commonly, this will be a \psset{} to control the ap-

pearance of all lines. It could be any pstricks command, if you needed to

have an object appear before lines were drawn. The code is grouped so that

it applies only within the Lines section.

• All lines de�ned by \L...() are drawn.

• If there is a macro by the name \DotSettings, and if \NumDots>0, its code is

inserted here. Most commonly, this will be a \psset{} to control the appear-

ance of all dots. It could be any pstricks command, if you needed to have an

object appear before dots were drawn. The code is grouped so that it applies

only within the Dots section.

• All dots de�ned by \Dot...() are drawn.

• If there is a macro by the name \FragSettings, and if \NumFragments>0, its

code is inserted here. Most commonly, this will be a \psset{} to control

the appearance of all fragments. It could be any pstricks command, if you

need to have an object appear a�er dots are rendered but before fragments

9

are drawn. The code is grouped so that it applies only within the Fragments

section.

• All fragments de�ned by \Frag...() are drawn.

• All pstricks commands between \begin{pslayout} and \end{pslayout} are

carried out. This the where you place items that must be on the top layer.

In particular, the command \showRC will show the de�ned R and C nodes and

their combinations using green lines, as a temporary guide in your design.

• The pair

\begin{pslayout*}

\end{pslayout*}

behaves the same way as the pslayout environment, but clips all material to

the boundary of the canvas.

12 Drawing at a �xed location on the paper

In LATEX, this is handled most easily using the geometry package. See the last exam-

ple below. You may use to print on custom-sized paper, placing the canvas as you

wish by specifying the appropriate margin parameters and nohead to geometry so

that the rectangle that remains is exactly the size of your canvas. Remember then

to set \parindent=0pt.

13 Examples

The followingwouldmake an eps graphic the size of a standard business card.

%&latex

%process with latex+dvips+ps2eps(+epstopdf)

\documentclass[dvips,10pt]{article}

\usepackage[dvipsnames]{pstricks}

\usepackage{pst­layout}

\usepackage{mathptmx}

\font\lfA=ptmr at 9.5pt %

\font\lfB=ptmr at 9pt %

\font\lfC=ptmr at 8.5pt %

\font\lfD=ptmr at 7.5pt %

% With 10pt as \normalsize, \small is 9pt

%\scriptsize is 7pt. The above provide more choices

10

\pagestyle{empty}

\setlength\parindent{0pt}

\begin{document}

% Remember that C­1, C­2, R0 are predefined­­­do not change

\def\AtLayoutStart{\scriptsize }

\NumPoints=5 % ignore higher indices

\PointName(1)={TR}\PointPos(1)={PSPtr}

% The next lines define nodes R1..R7 to specify rows

\PointName(2)={R}\PointPos(2)={0,1.03}%

\PointInc(2)={0,­.138in}\PointSeries(2)={1;7}

\PointName(3)={C0}\PointPos(3)={.19,0}%start column for name etc

\PointName(4)={C1}\PointPos(4)={3.31,0}%end column for name etc

\PointName(5)={C2}\PointPos(5)={2.22,0}%start column for email etc

\def\MaxR{8}\def\MaxC{2}

\NumGraphics=1

\Graphic(1)={mygraphic}%requires mygraphic.eps

\GraphicPos(1)={.453,1.49}

\GraphicRefPt(1)={c}

\GraphicOpts(1)={width=43pt,height=44pt}

\NumFragments=9 %

\Frag(1)={\normalsize YOUR OWN NAME}\FragRefPt(1)={B}%Baseline, center

\FragPos(1)={R1C­2}

\Frag(2)={\lfB Your Position}\FragPos(2)={R2C­2}\FragRefPt(2)={B}

\Frag(3)={\lfB Your Department}\FragPos(3)={R3C­2}\FragRefPt(3)={B}

\Frag(4)={YOUR INSTITUTION}\FragPos(4)={R6C0}\FragRefPt(4)={Bl}

\Frag(5)={\lfD Your Address}\FragPos(5)={R7C0}\FragRefPt(5)={Bl}

\Frag(6)={\lfD Phone:} \FragPos(6)={R6C2}\FragRefPt(6)={Bl}

\Frag(7)={\lfD email:}\FragPos(7)={R7C2}\FragRefPt(7)={Bl}

\Frag(8)={\lfD Your phone}\FragPos(8)={R6C1}\FragRefPt(8)={Br}

\Frag(9)={\lfD Your email}\FragPos(9)={R7C1}\FragRefPt(9)={Br}

\psset{unit=1in,picwidth=3.5in,picheight=2in,showfullcanvas}

\begin{pslayout}

\end{pslayout}

\end{document}

Once this graphic is created and saved in .eps format, say as mycard.eps, you may

print out ten cards per page using the following.

%&latex

%latex+dvips+epstopdf

\documentclass[dvips,10pt]{article}

\usepackage{graphicx}

\usepackage{pstricks­add}

\usepackage[vmargin=.5in,hmargin=.75in,nohead]{geometry}

\usepackage{mathptmx}

11

\pagestyle{empty}

\setlength\parindent{0pt}

\begin{document}

\psset{xunit=3.5in,yunit=2in}

\begin{pspicture}(2,5)

\multido{\iA=0+1}{5}{%

\multido{\iB=0+1}{2}{\rput[bl](\iB,\iA){\includegraphics{mycard}}}}

\end{pspicture}

\end{document}

12

	Quick overview
	Coordinates and Node Expressions
	Predefined points

	An example file
	Graphics
	Points
	Frames
	Lines
	Dots
	Fragments
	Type
	Other issues
	Drawing at a fixed location on the paper
	Examples

