
cmath.sty: An Infrastructure for building Inline

Content Math in STEX
∗

Michael Kohlhase
FAU Erlangen-Nürnberg

http://kwarc.info/kohlhase

Deyan Ginev
Authorea

March 20, 2019

Abstract

The cmath package is a central part of the STEX collection, a version
of TEX/LATEX that allows to markup TEX/LATEX documents semantically
without leaving the document format, essentially turning TEX/LATEX into a
document format for mathematical knowledge management (MKM).

This package supplies an infrastructure that allows to build content math
expressions (strict content MathML or OpenMath objects) in the text. This
is needed whenever the head symbols of expressions are variables and can
thus not be treated via the \symdef mechanism in STEX.

∗Version v0.1 (last revised 2019/03/20)

1

http://kwarc.info/kohlhase

Contents

1 Introduction 3

2 The User Interface 3
2.1 Variable Names . 3
2.2 Applications . 4
2.3 Binders . 4
2.4 Sharing . 4

3 Limitations 5

4 The Implementation 5
4.1 Package Options . 5
4.2 Variable Names . 5
4.3 Applications . 6
4.4 Binders . 6
4.5 Sharing . 6

2

1 Introduction

STEX allows to build content math expressions via the \symdef mechanism [KGA16]
if their heads are constants. For instance, if we have defined \symdef{lt}[2]{#1<#2}

in the module relation1, then an invocation of \lt3a will be transformed to

<OMA>

<OMS cd="relation1" name="lt"/>

<OMI>3</OMI>

<OMV name="a"/>

</OMA>

If the head of the expression (i.e. the function symbol in this case) is a vari-
able, then we cannot resort to a \symdef, since that would define the functional
equivalent of a logical constant. Sometimes, LaTeXML can figure out that when
we write f(a, b) that f is a function (especially, if we declare them to be via the
functions= key in the dominating statement environment [Koh16]). But some-
times, we want to be explicit, especially for n-ary functions and in the presence of
elided elements in argument sequences. A related problem is markup for complex
variable names, such as xleft or ST ∗.

The cmath package supplies the LATEX bindings that allow us to achieve this.

2 The User Interface

2.1 Variable Names

In mathematics we often use complex variable names like x′, gn, f1, φ̃ji or even
foo; for presentation-oriented LATEX, this is not a problem, but if we want to gen-
erate content markup, we must show explicitly that those are complex identifiers
(otherwise the variable name foo might be mistaken for the product f · o · o).
In careful mathematical typesetting, sin is distinguished from \sin, but we
cannot rely on this effect for variable names.

\vname identifies a token sequence as a name, and allows the user to provide an\vname

ASCII (Xml-compatible) identifier for it. The optional argument is the identifier,
and the second one the LaTeX representation. The identifier can also be used
with \vnref for referencing. So, if we have used \vnname[xi]{x_i}, then we\vname

can later use \vnref{xi} as a short name for \vname{x_i}. Note that in output
formats that are capable of generating structure sharing, \vnref{xi} would be
represented as a cross-reference.1EdN:1

Since indexed variable names make a significant special case of complex identi-
fiers, we provides the macros \livar that allows to mark up variables with lower\livar

indices. If \livar is given an optional first argument, this is taken as a name.
Thus \livar[foo]{x}1 is “short” for \vname[foo]{x_1}. The macros \livar,\livar

1EdNote: DG: Do we know whether using the same name in two vname invocations, would refer
to two instances of the same variable? Presumably so, since the names are the same? We should
make this explicit in the text. A different variable would e.g. have a name “xi2”, but the same body

3

\nappa{f}{a_1,a_2,a_3} f(a1, a2, a3)
\nappe{f}{a_1}{a_n} f(a1, . . . , an)

\symdef{eph}[1]{e_{#1}^{\varphi(#1)}} g(e
ϕ(1)
1 , . . . , e

ϕ(4)
4)

\nappf{g}\eph14

\nappli{f}a1n f(a1, . . . , an)
\nappui{f}a1n f(a1, . . . , an)

Figure 1: Application Macros

serve the analogous purpose for variables with upper indices, and \ulivar for up-\ulivar

per and lower indices. Finally, \primvar and \pprimvar do the same for variables\primvar

\pprimvar with primes and double primes (triple primes are bad style).

2.2 Applications

To construct a content math application of the form f(a1, . . . , an) with con-
crete arguments ai (i.e. without elisions), then we can use the \nappa macro.\nappa

If we have elisions in the arguments, then we have to interpret the argu-
ments as a sequence of argument constructors applied to the respective po-
sitional indexes. We can mark up this situation with the \nappf macro:\nappf

\nappf{〈fun〉}{〈const〉}{〈first〉}{〈last〉} where 〈const〉 is a macro for the con-
structor is presented as 〈fun〉(〈const〉〈first〉, . . . , 〈const〉〈last〉); see Figure 1 for a
concrete example, and Figure 1.2EdN:2

For a simple elision in the arguments, we can use \nappe{〈fun〉}{〈first〉}{〈last〉}\nappe

will be formatted as 〈fun〉(〈first〉, . . . , 〈last〉). Note that this is quite un-semantic
(we have to guess the sequence), so the use of \nappe is discouraged.

A solution to this situation is if we can think of the arguments as a finite
sequence a =: (ai)l≤i≤h, then we can use \nappli{〈fun〉}{〈seq〉}{〈start〉}{〈end〉},\nappli

where 〈seq〉 is the sequence, and the remaining arguments are the start and end
index. The works like \nappli, but uses upper indices in the presentation.\nappui

2.3 Binders
3EdN:3

2.4 Sharing

We (currently) use the

2EdNote: MK@MK: we need a meta-cd cmath with the respective notation definition here. It
is very frustrating that we cannot even really write down the axiomatization of flexary constants in
OpenMath.

3EdNote: MK: document

4

\symdef{eph}[1]{e_{#1}^{\phi(#1)}}

\nappf{g}\eph14

currently generates

<OMA>

<OMS cd="cmath" name="apply-from-to"/>

<OMV name="g"/>

<OMBIND>

<OMS cd="fns1" name="lambda"/>

<OMBVAR><OMV name="x"/></OMBVAR>

<OMA><OMS cd="???" name="eph"/><OMV name="x"/></OMA>

</OMBIND>

<OMI>1</OMI>

<OMI>4</OMI>

</OMA>

Example 1: Application Macros

3 Limitations

In this section we document known limitations. If you want to help alleviate
them, please feel free to contact the package author. Some of them are currently
discussed in the STEX GitHub repository [sTeX].

1. none reported yet

4 The Implementation

4.1 Package Options

The cmath package does not take options (at the moment), but we pass any we
get to the presentation package.

1 〈∗package〉
2 \DeclareOption*{\PassOptionsToPackage{\CurrentOption}{presentation}}

3 \ProcessOptions

The next measure is to ensure that some STEX packages are loaded. For La-
TeXML, we also initialize the package inclusions, there we do not need ntheorem,
since the XML does not do the presentation.

4 \RequirePackage{presentation}

4.2 Variable Names

\vname a name macro; the first optional argument is an identifier 〈id〉, this is standard for
LATEX, but for LaTeXML, we want to generate attributes xml:id="cvar.〈id〉"

5

and name="〈id〉". However, if no id was given in we default them to xml:id="cvar.〈count〉"
and name="name.cvar.〈count〉".

5 \newcommand\vname[2][]{#2%

6 \def\@opt{#1}%

7 \ifx\@opt\@empty\else\expandafter\gdef\csname MOD@name@#1\endcsname{#2}\fi}

\vnref

8 \def\vnref#1{\csname MOD@name@#1\endcsname}

4EdN:4

\uivar constructors for variables.

9 \newcommand\primvar[2][]{\vname[#1]{#2^\prime}}

10 \newcommand\pprimvar[2][]{\vname[#1]{#2^{\prime\prime}}}

11 \newcommand\uivar[3][]{\vname[#1]{{#2}^{#3}}}

12 \newcommand\livar[3][]{\vname[#1]{{#2}_{#3}}}

13 \newcommand\ulivar[4][]{\vname[#1]{{#2}^{#3}_{#4}}}

4.3 Applications

\napp* 5EdN:5

14 \newcommand\nappa[3][]{\prefix[#1]{#2}{#3}}

15 \newcommand\nappe[4][]{\nappa[#1]{#2}{#3,\ldots,#4}}

16 \newcommand\nappf[5][]{\nappe[#1]{#2}{#3{#4}}{#3{#5}}}

17 \newcommand\nappli[5][]{\nappe[#1]{#2}{#3_{#4}}{#3_{#5}}}

18 \newcommand\nappui[5][]{\nappe[#1]{#2}{#3^{#4}}{#3^{#5}}}

\anapp* 6EdN:6

19 \newcommand\anappa[3][]{\assoc[#1]{#2}{#3}}

20 \newcommand\anappe[4][]{\anappa[#1]{#2}{#3,\ldots,#4}}

21 \newcommand\anappf[5][]{\anappe[#1]{#2}{#3{#4}}{#3{#5}}}

22 \newcommand\anappli[5][]{\anappe[#1]{#2}{#3_{#4}}{#3_{#5}}}

23 \newcommand\anappui[5][]{\anappe[#1]{#2}{#3^{#4}}{#3^{#5}}}

4.4 Binders

4.5 Sharing

These macros are lifted from Bruce Miller’s latexml.sty, we do not want the
rest.

\LXMID

24 \def\LXMID#1#2{\expandafter\gdef\csname xmarg#1\endcsname{#2}\csname xmarg#1\endcsname}

4EdNote: the following macros are just ideas, they need to be implemented and documented
5EdNote: document keyval args above and implement them in LaTeXML
6EdNote: document anapp* and implement in LaTeXML (i.e. get the presentation information

into the OM/MathML).

6

\LXMRef

25 \def\LXMRef#1{\csname xmarg#1\endcsname}

26 〈/package〉

7

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

LaTeXML, 3, 5 Xml, 3

8

Change History

v0.2
General: First Version with

Documentation, extracted
variables stuff from

presentation.dtx 1

reinstating id macros from
latexml.sty 1

References

[KGA16] Michael Kohlhase, Deyan Ginev, and Rares Ambrus. modules.sty: Se-
mantic Macros and Module Scoping in sTeX. Tech. rep. Comprehensive
TEX Archive Network (CTAN), 2016. url: http://www.ctan.org/
get/macros/latex/contrib/stex/modules/modules.pdf.

[Koh16] Michael Kohlhase. omtext: Semantic Markup for Mathematical Text
Fragments in LATEX. Tech. rep. Comprehensive TEX Archive Network
(CTAN), 2016. url: http : / / mirror . ctan . org / macros / latex /

contrib/stex/sty/omtext/omtext.pdf.

[sTeX] KWARC/sTeX. url: https://github.com/KWARC/sTeX (visited on
05/15/2015).

9

http://www.ctan.org/get/macros/latex/contrib/stex/modules/modules.pdf
http://www.ctan.org/get/macros/latex/contrib/stex/modules/modules.pdf
http://mirror.ctan.org/macros/latex/contrib/stex/sty/omtext/omtext.pdf
http://mirror.ctan.org/macros/latex/contrib/stex/sty/omtext/omtext.pdf
https://github.com/KWARC/sTeX

	Introduction
	The User Interface
	Variable Names
	Applications
	Binders
	Sharing

	Limitations
	The Implementation
	Package Options
	Variable Names
	Applications
	Binders
	Sharing

