presentation.sty: An Infrastructure for
Presenting Semantic Macros in SIEX*

Michael Kohlhase FAU Erlangen-Niirnberg & Deyan Ginev
http://kwarc.info/kohlhase Authorea

March 20, 2019

Abstract

The presentation package is a central part of the SIEX collection, a
version of TEX/IXTEX that allows to markup TEX/KTEX documents seman-
tically without leaving the document format, essentially turning TEX/ETEX
into a document format for mathematical knowledge management (MKM).

This package supplies an infrastructure that allows to specify the presen-
tation of semantic macros, including preference-based bracket elision. This
allows to markup the functional structure of mathematical formulae without
having to lose high-quality human-oriented presentation in KXTEX. Moreover,
the notation definitions can be used by MKM systems for added-value ser-
vices, either directly from the §TEX sources, or after translation.

*Version v1.0 (last revised 2019/03/20)

http://kwarc.info/kohlhase

Contents

[1I__Introductionl 3

B Timitations 11
[4__The Implementation| 11
.1 ackage Options|, 11

4.2 The System Commands| 12
4.3 Prefix & Postfix Notations|. 12
4.4 Mixfix Operators| Lo 13
A5 General Elision]« . o o o 16
4.6 Other Layout Primitives| 17
eprecate nctionality]o 18

\prefix

\postfix

\prefixa
\postfixa

1 Introduction

The presentation package supplies an infrastructure that allows to specify the
presentation of semantic macros, including preference-based bracket elision. This
allows to markup the functional structure of mathematical formulae without hav-
ing to lose high-quality human-oriented presentation in KXTEX. Moreover, the
notation definitions can be used by MKM systems for added-value services, either
directly from the §IEX sources, or after translation.

JIEX is a version of TEX/I4TEX that allows to markup TEX/I4TEX documents
semantically without leaving the document format, essentially turning TEX /KBTEX
into a document format for mathematical knowledge management (MKM).

The setup for semantic macros described in the §I'rX modules package works
well for simple mathematical functions: we make use of the macro application
syntax in TEX to express function application. For a simple function called “foo”,
we would just declare \symdef{foo}[1]{foo(#1)} and have the concise and intu-
itive syntax \foo{x} for foo(z). But mathematical notation is much more varied
and interesting than just this.

2 The User Interface

In this package we will follow the §IEX approach and assume that there are four
basic types of mathematical expressions: symbols, variables, applications and
binders. Presentation of the variables is relatively straightforward, so we will
not concern ourselves with that. The application of functions in mathematics
is mostly presented in the form f(ai,...,a,), where f is the function and the
a; are the arguments. However, many commonly-used functions from this pre-
sentational scheme: for instance binomial coefficients: (Z), pairs: (a,b), sets:
{x € S|z? # 0}, or even simple addition: 3 + 5+ 7. Note that in all these cases,
the presentation is determined by the (functional) head of the expression, so we
will bind the presentational infrastructure to the operator.

2.1 Prefix & Postfix Notations

The default notation for an object that is obtained by applying a function f
to arguments a; to a, is f(ay,...,a,). The \prefix macro allows to spec-
ify a prefix presentation for a function (the usual presentation in mathematics).
Note that it is better to specify \symdef{uminus} [1]{\prefix{-}{#1}} than just
\symdef{uminus}[1]{-#1}, since we can specify the bracketing behavior in the
former (see Section [2.4)).

The \postfix macro is similar, only that the function is presented after the
argument as for e.g. the factorial function: 5! stands for the result of applying the
factorial function to the number 5. Note that the function is still the first argument
to the \postfix macro: we would specify the presentation for the factorial function
with \symdef{factorial}[1]{\postfix{!}{#1}}.

\prefix and \postfix have n-ary variants \prefixa and \postfixa that take

EdN:1

EdN:2

\funapp

\mixfix*

\infix

an arbitrary number of arguments (mathematically; syntactically grouped into one
TEX argument). These take an extra separator argument.’

Note that in §IFEX the \prefix and \postfix macros should primarily be used
in \symdef declarations. For marking up applications of symbolic functions in
text we should use the \symdef-defined semantic macros direct. For applications
of function variables we have two options:

1. direct prefix markup of the form f (x), where we have declared the symbol £
to be a function via the function key of the enclosing environment — e.g.
omtext (see [Kohl16]).

2. using the \funapp macro as in \funapp{f}{x}, which leads to the same
effect and is more general (e.g. for complex function variables, such as f7).
Note that the default prefix rendering of the function is sufficient here, since
we can otherwise make use of a user-defined application operator.

2.2 Mixfix Notations

For the presentation of more complex operators, we will follow the approach used
by the Isabelle theorem prover. There, the presentation of an n-ary function (i.e.
one that takes n arguments) is specified as (pre) (argo) (midy)- - - (mid,,){arg,)(post),
where the (arg;) are the arguments and (pre), (post), and the (mid;) are presen-
tational material. For instance, in infix operators like the binary subset opera-
tor, (pre) and (post) are empty, and (mid;) is C. For the ternary conditional
operator in a programming language, we might have the presentation pattern
if(arg;)then(argy)else(args)fi that utilizes all presentation positions.

The presentation package provides mixfix declaration macros \mixfixi,
\mixfixii, and \mixfixiii for unary, binary, and ternary functions. This covers
most of the cases, larger arities would need a different argument patternﬂ The
call pattern of these macros is just the presentation pattern above. In general,
the mixfix declaration of arity ¢ has 2n + 1 arguments, where the even-numbered
ones are for the arguments of the functions and the odd-numbered ones are for
presentation material. For instance, to define a semantic macro for the subset
relation and the conditional, we would use the markup in Figure

For certain common cases, the presentation package provides shortcuts for
the mixfix declarations. For instance, we provide the \infix macro for binary
operators that are written between their arguments (see Figure .2

2.3 n-ary Associative Operators

Take for instance the operator for set union: formally, it is a binary function
on sets that is associative (i.e. (51 U S2) U S3 = 51 U (S2 U S3)), therefore the
brackets are often elided, and we write S; U Sy U S3 instead (once we have proven
associativity). Some authors even go so far to introduce set union as a n-ary

LEDNOTE: think of a good example!
LIf you really need larger arities, contact the author!
2EDNOTE: really?

EdN:3

EdN:4

\mixfixa

\assoc

\mixfixia
\mixfixai

\symdef{sseteq} [2] {\mixfixii{}{#1}{\subseteq}{#2}{}}
\symdef{sseteq} [2] {\infix\subseteq{#1}{#2}}
\symdef{ite} [2] {\mixfixiii{{\tt{if}}\;}{#1}

I\ A\ tt{then}}\; F{#2}

{\; A\ tt{else}}\; H#3H\; {\tt{fi}}}}

source presentation
\sseteq{S}T (SCT)
\ite{x<0}{-x}x | ifz < Othen — xelsexfi

Example 1: Declaration of mixfix operators

operator, i.e. a function that takes an arbitrary (positive) number of arguments.
We will call such operators n-ary associative.

Specifying the presentation® of n-ary associative operators in \symdef forms
is not straightforward, so we provide some infrastructure for that. As we can-
not predict the number of arguments for n-ary operators, we have to give them
all at once, if we want to maintain our use of TEX macro application to specify
function application. So a semantic macro for an n-ary operator will be applied
as \nunion{(a1),...,{a,)}, where the sequence of n logical arguments (a;) are
supplied as one TEX argument which contains a comma-separated list. We pro-
vide variants of the mixfix declarations presented in section [2:2] which deal with
associative arguments. For instance, the variant \mixfixa allows to specify n-ary
associative operators. \mixfixa{(pre)}{(arg)}{(post)}{(op)} specifies a presen-
tation, where (arg) is the associative argument and (op) is the corresponding
operator that is mapped over the argument list; as above, (pre), (post), are prefix
and postfix presentational material. For instance, the finite set constructor could
be constructed as

\newcommand\fset [1] {\mixfixa{\{F{#1}{\}},}

The \assoc macro is a convenient abbreviation of a \mixfixa that can be
used in cases, where (pre) and (post) are empty (i.e. in the majority of cases).
It takes two arguments: the presentation of a binary operator, and a comma-
separated list of arguments, it replaces the commas in the second argument with
the operator in the first one. For instance \assoc\cup{S_1,5_2,5_3} will be
formatted to S; U Sy U S3. Thus we can use \def\nunion#1{\assoc\cup{#1}}
or even \def\nunion{\assoc\cup}, to define the n-ary operator for set union in
TEX. For the definition of a semantic macro in §IEX, we use the second form,
since we are more conscious of the right number of arguments and would declare
\symdef{nunion} [1]1{\assoc\cup{#1}}.*

The \mixfixii macro has variants \mixfixia and \mixfixai which allow to
make one or two arguments in a binary function associative. A use case for the

3EDNOTE: introduce the notion of presentation above
4EDNOTE: think about big operators for ACI functions

second macro is an nary function type operator \fntype, which can be defined
via

\def\fntype#1#2{\mixfixai{}{#1\rightarrow{#2}{}\times}

and which will format \fntype{\alpha, \beta, \gamma}\delta as (a x 8 X v —
5)

Finally, the \mixfixiii macro has the variants \mixfixaii, \mixfixiai,
and \mixfixiia as aboveﬂ For instance we can use the first variant for a typing
judgment using

\def\typej#i#2#3{\mixfixaii{}{#1}{\vdash_{\Sigma}}{#2}\colon{#3}{}{,}}

which formats \typej{\Gamma, [x:\alphal, [y:\betal }{f (x,y)}{\beta} as
(Fv [SL‘ : a]? [y : /8] Fs f(x,y): 5)

2.4 Precedence-Based Bracket Elision

In the infrastructure discussed above, we have completely ignored the fact that
we use brackets to disambiguate the formula structure. The general baseline rule
here is that we enclose any presented subformula with (round) brackets to mark
it as a logical unit. If we applied this to the following formula that combines set
union and set intersection

\nunion{\ninters{a,b},\ninters{c,d}} (1)

this would yield ((a Nb) U (¢cNd)), and not aNbUcNd as we are used to. In
mathematics, brackets are elided, whenever the author anticipates that the reader
can understand the formula without them, and would be overwhelmed with them.
To achieve this, there are set of common conventions that govern bracket elision
— “N binds stronger than U” in . The most common is to assign precedences
to all operators, and elide brackets, if the precedence of the operator is larger than
that of the context it is presented in (or equivalently: we only write brackets,
if the operator precedence is smaller or equal to the context precedence). Note
that this is more selective that simply dropping outer brackets which would yield
anbUcnd for ([2)), where we would have liked (a U b) N (c U d)

\ninters{\nunion{a, b}, \nunion{c,d}} (2)

In our example above, we would assign N a larger precedence than U (and both a
larger precedence than the initial precedence to avoid outer brackets). To compute
the presentation of we start out with the \ninters, elide its brackets (since
the precedence n of U is larger than the initial precedence i), and set the context
precedence for the arguments to n. When we present the arguments, we present

2If you really need larger arities with associative arguments, contact the package author!

EdN:5

p

pi
pii
piii

\iprec
\niprec

lbrack
rbrack

the brackets, since the precedence of nunion is larger than the context precedence
n.

This algorithm — which we call precedence-based bracket elision — goes
a long way towards approximating mathematical practice. Note that full bracket
elision in mathematical practice is a reader-oriented process, it cannot be fully
mechanical, e.g. in (aNbNcNdNeN fNg)Uh we better put the brackets around
the septary intersection to help the reader even though they could have been elided
by our algorithm. Therefore, the author has to retain full control® over bracketing
in a bracket elision architecture. Otherwise it would become impossible to explain
the concept of associativity in (a o b) oc = ao (boc), where we need the brackets
for this one time on an otherwise associative operation o.

| Precedence | Operators | Comment |
800 +,- unary
800 " exponentiation
600 *, A\, N multiplicative
500 +,—,V,U additive
400 / fraction
300 =,#,<,<,>,> | relation

Figure 1: Common Operator Precedences

Furthermore, we supply an optional keyval arguments to the mixfix declara-
tions and their abbreviations that allow to specify precedences: The key p key is
used to specify the operator precedence, and the keys p(i) can be used to spec-
ify the argument precedences. The latter will set the precedence level while
processing the arguments, while the operator precedence invokes brackets, if it
is smaller than the current precedence level — which is set by the appropriate
argument precedence by the dominating operators or the outer precedence. The
values of the precedence keys can be integers or \iprec for the infinitely large
precedence or \niprec for the infinitely small precedence.

If none of the precedences is specified, then the defaults are assumed. The
operator precedence is set to the default operator precedence, which defaults to 0.
The argument precedences default to the operator precedence.

Figure [1] gives an overview over commonly used precedences. Note that most
operators have precedences higher than the default precedence of 0, otherwise the
brackets would not be elided. For our examples above, we would define

\newcommand\nunion[1]{\assoc [p=500]{\cup}{#1}}
\newcommand\ninters[1]{\assoc[p=600]{\cap}{#1}}

to get the desired behavior.
Note that the presentation macros uses round brackets for grouping by default.
We can specify other brackets via two more keywords: lbrack and rbrack.

SEDNOTE: think about how to implement that. We need a way to override precedences locally

Note that formula parts that look like brackets usually are not. For instance,
we should not define the finite set constructor via

\newcommand\fset [1]{\assoc[1brack=\{,rbrack=\}1{,}{#1}} (3)

where the curly braces are used as brackets, but as presented in section [2.3] even
though both would format \fset{a,b,c} as {a,b,c}. In the encoding here, an
operator with suitably high operator precedence (it is the best practice u)would
be able to make the brackets disappear. Thus the correct version of is

\newcommand\fset [1]{\mixfixa[p=\iprec,pi=0] {\{}I{#1}{\}}{,}} (4

Note that \prefix and \postfix and their variants declared in section have
brackets that do not participate (actively) in the precedence-based elision: function
application brackets are not subject to elision. But the operator precedence p
is still taken into account for outer brackets. The argument precedence pi has
negative infinity as a default to avoid spurious brackets for arguments.

There is another use case for the \mixfixi macro that is not apparent at first
glance. In some cases, we would naively construct presentations without a mixfix
declaration, e.g.

\newcommand\half [1]{\frac{#1}2} (5)

The the problem here is that the fraction does not participate in the precedence-
based bracketing system, and in particular, the numerator will often have too many
brackets (the incoming precedence is just passe through the \half macro). A bet-
ter way is to wrap the intended presentation in a (somewhat spurious) \mixfixi,
which we give the precedence nobrackets, which suppresses all (outer and argu-
ment) brackets for one level:

\newcommand\half [1]{\mixfixi [nobrackets]{}{\frac{#1}2}{}} (6)

2.5 Flexible Elision

There are several situations in which it is desirable to display only some parts of
the presentation:

e We have already seen the case of redundant brackets above

e Arguments that are strictly necessary are omitted to simplify the notation,
and the reader is trusted to fill them in from the context.

e Arguments are omitted because they have default values. For example
log,o « is often written as log z.

e Arguments whose values can be inferred from the other arguments are usu-
ally omitted. For example, matrix multiplication formally takes five argu-
ments, namely the dimensions of the multiplied matrices and the matrices
themselves, but only the latter two are displayed.

\elide

\setegroup

Typically, these elisions are confusing for readers who are getting acquainted
with a topic, but become more and more helpful as the reader advances. For ex-
perienced readers more is elided to focus on relevant material, for beginners repre-
sentations are more explicit. In the process of writing a mathematical document
for traditional (print) media, an author has to decide on the intended audience
and design the level of elision (which need not be constant over the document
though). With electronic media we have new possibilities: we can make elisions
flexible. The author still chooses the elision level for the initial presentation, but
the reader can adapt it to her level of competence and comfort, making details
more or less explicit.

To provide this functionality, the presentation package provides the \elide
macro allows to associate a text with an integer visibility level and group them
into elision groups. High levels mean high elidability.

Elision can take various forms in print and digital media. In static media like
traditional print on paper or the PostScript format, we have to fix the elision
level, and can decide at presentation time which elidable tokens will be printed
and which will not. In this case, the presentation algorithm will take visibility
thresholds T for every elidability group g as a user parameter and then elide
(i.e. not print) all tokens in visibility group g with level | > T,. We specify this
threshold for via the \setegroup macro. For instance in the example below, we
have a two type annotations par for type parameters and typ for type annotations
themselves.

$\mathbf{I}\elide{par}{500}{"\alpha}\elide{typ}{100}{_{\alpha\to\alpha}}
:=\lambda{X\elide{typ}{500}{_\alphal}}.X$

Example 2: Elision with Elision Groups

The visibility levels in the example encode how redundant the author thinks
the elided parts of the formula are: low values show high redundancy. In our
example the intuition is that the type parameter on the I combinator and the
type annotation on the bound variable X in the A expression are of the same
obviousness to the reader. So in a document that contains \setegroup{typ}{0}
and \setegroup{par}{0} Figure [2| will show I := AX.X eliding all redundant
information. If we have both values at 600, then we will see I* := AX,.X and
only if the threshold for typ rises above 900, then we see the full information:
IS, = A X..X.

In an output format that is capable of interactively changing its appearance,
e.g. dynamic XHTML+MathML (i.e. XHTML with embedded Presentation
MATHML formulas, which can be manipulated via JavaScript in browsers), an
application can export the information about elision groups and levels to the tar-
get format, and can then dynamically change the visibility thresholds by user
interaction. Here the visibility threshold would also be used, but here it only
determines the default rendering; a user can then fine-tune the document dy-
namically to reveal elided material to support understanding or to elide more to
increase conciseness.

The price the author has to pay for this enhanced user experience is that she has

\provideEdefault
\fromEcontext

setEdefault

to specify elided parts of a formula that would have been left out in conventional
TEX. Some of this can be alleviated by good coding practices. Let us consider
the log base case. This is elided in mathematics, since the reader is expected
to pick it up from context. Using semantic macros, we can mimic this behavior:
defining two semantic macros: \logC which picks up the log base from the context
via the \logbase macro and \logB which takes it as a (first) argument.

\provideEdefault{logbase}{10}
\symdef{logB} [2]{\prefix{\mathrm{log}\elide{base}{100} {_{#1}}}{#2}}
\abbrdef{logC}[1]{\logB{\fromEcontext{logbase}}{#1}}

Here we use the \provideEdefault macro to initialize a IATEX token register
for the logbase default, which we can pick up from the elision context using
\fromEcontext in the definition of \1ogC. Thus \1ogC{x} would render as log;,(z)
with a threshold of 50 for base and as log,, if the local TEX group e.g. given by
the assertion environment contains a \setEdefault{logbase}{2}.

2.6 Other Layout Primitives

Not all mathematical layouts are producible with mixfix notations. A prime
example are grid layouts which are marked up using the array element in
TEX/ETEX, e.g. for definition by cases as the (somewhat contrived) definition
of the absolute value function in the upper part of Figure We will now mo-
tivate the need of special layout primitives with this example. But this does

|x|\colon=\1left\{

\begin{array}{rl}
v ifz>0 x & x>0\\
o 3 . -x & x<0\\
lz|: = f) 1flx <0 0 & \text{else}
else \end{array}
\right.

\symdef{piece} [2]{\parrayline{\parraycell{#1}}{\text{if}\;#2}}
\symdef{otherwise}[1]{\parrayline{\parraycell{#1}}{\text{else}}}
\symdef{piecewise} [1]{\left\{\begin{array}{r1}#1\end{array}\right.}
$1x|\colon=\piecewise{\piece{x}{x>0}\piece{-x}{x<0}\otherwise{0}}$

Example 3: A piecewise definition of the absolute value function

not work for content markup via semantic macros [KGA16], which wants to
group formula parts by function. For definition by cases, we may want to fol-
low the OpenMath piecel content dictionary [|, which groups “piecewise” def-
initions into a constructor piecewise, whose children are a list of piece con-
structors optionally followed by an otherwise. If we want to mimic this by
semantic macros in SIEX (these are defined via \symdef; see [KGA16| for de-
tails), we would naturally define \piecewise by wrapping an array environment

10

\parrayline

\parraycell

(see the last line in Figure [3)). Then we would naturally be tempted to define
\piece via \symdef{piece} [2]{#1&\text{if}\;{#2}\\} and \otherwise via
\symdef{otherwise} [1]{#1&\text{else}}. But this does not support the gen-
eration of separate notation definitions for \piece and \otherwise: here LA-
TeEXMLhas to generate presentational information outside of the array context
that provides the & and \\ command sequencesﬂ Therefore the presentation
package provides the macros \parrayline and \parraycell that refactor this
functionality.

\parrayline{(cells)}{{cell)} is WTEX-equivalent to (cells)&{cell)\\ and can
thus be used to create array lines with one or more array cells: (cell) is the last
array cell, and the previous ones are each marked up as \parraycell{{cell)},
where (cell) is the cell content. In last lines of Figure |3| we have used them
to create the array lines for \piece and \otherwise. Note that the array cell
specifications in \parrayline must coincide with the array specification in the
main constructor (here rl in \piecewise).

3 Limitations

In this section we document known limitations. If you want to help alleviate
them, please feel free to contact the package author. Some of them are currently
discussed in the §TEX GitHub repository [sTeX].

1. none reported yet

4 The Implementation

4.1 Package Options

The presentation package does not take options (at the moment), but we accept
any and ignore them.

1 (xpackage)

2 \DeclareOption*{}

3 \ProcessOptions

We first make sure that the KeyVal package is loaded (in the right version).

For LATEXML, we also initialize the package inclusions.

4 \RequirePackage{keyval}[1997/11/10]

5 \RequirePackage{amsmath}
We will first specify the default precedences and brackets, together with the macros
that allow to set them.

6 \def\pres@default@precedence{0}

7 \def\pres@infty{1000000}
8 \def\pres@infty@minusone{999999}

3Note that this is not a problem when we only run latex if we assume that \piece and
\otherwise are only used in arguments of \piecewise.

11

EdN:6

EdN:7

\withprecx*

\PrecSet

\PrecWrite

\prefix

\postfix

9 \def\iprec{\pres@infty}

10 \def\niprec{-\pres@infty}

11 \def\pres@initial@precedence{0}

12 \def\pres@current@precedence{\pres@initial@precedence}

13 \def\pres@default@lbrack{(}\def\pres@lbrack{\pres@default@lbrack}
14 \def\pres@default@rbrack{) }\def\pres@rbrack{\pres@default@rbrack}

4.2 The System Commands

\withprec will set the current precedence.%

15 \newcommand\withpreci[1]{\edef\pres@current@precedence{#1}}
16 \newcommand\withprecii[1]{\edef\pres@current@precedence{#1}}
17 \newcommand\withpreciii[1]{\edef\pres@current@precedence{#1}}

\PrecSet will set the default precedence.”
18 \newcommand\PrecSet [1]{\edef\pres@default@precedence{#1}}

\PrecWrite will write a bracket, if the precedence mandates it, i.e. if \pres@p is
greater than the current precedence specified by \pres@current@precedence

19 \def\PrecWrite#1{\ifnum\pres@p>\presQcurrent@precedence\else{#1}\fi}
20 \def\PrepostPrecWrite#1{\ifnum\pres@p@key>\pres@infty@minusone\else{#1}\fi}

4.3 Prefix & Postfix Notations

We first define the keys for the keyval arguments for \prefix and \postfix.

21 \def\prepost@clearkeys{\def\pres@pkey{\pres@default@precedence}\def\pres@pikey{\niprec}
22 \def\pres@lbrack{\pres@default@lbrack}\def\pres@rbrack{\pres@default@rbrack}}

23 \define@key{prepost}{lbrack}{\def\pres@lbrack{#1}}

24 \define@key{prepost}{rbrack}{\def\pres@lbrack{#1}}

25 \define@key{prepost}{p}{\def\pres@p@key{#1}}

26 \define@key{prepost}{pit{\def\pres@pi@key{#1}}

27 \define@key{prepost}{nobrackets} [yes] {\def\pres@p@key{\pres@inftyl}

28 \def\pres@pi@key{-\pres@infty}}

In prefix we always write the brackets.

29 \newcommand\prefix[3] []1%key, fn, arg
30 {\prepost@clearkeys\setkeys{prepost}{#1}
31 {#2}\PrepostPrecWrite\pres@lbrack{\edef\pres@current@precedence{\pres@pilkey}#3}\PrepostPreclri

32 \newcommand\postfix[3] [1%key, fn, arg
33 {\prepost@clearkeys\setkeys{prepost}{#1}
34 \PrepostPrecWrite\pres@lbrack{\edef\pres@current@precedence{\pres@pi@key}#3}\PrepostPrecWrite\p

SEDNOTE: need to implement this in LATEXML! it is used in power in
smglom/smglom/source/arithmetcis.tex. We also need to document it above

"EDNOTE: need to implement this in LATEXML! Also document it above! On the other hand
it is never used.

12

4.4 Mixfix Operators

We need to enable notation definitions of the operators that have argument- and
precedence-aware renderings. To this end, we circumvent LATEXML’s limita-
tions induced by its internal processing stages, by pulling most of the argument
rendering functionality to the XSLT which produces the final OMDOC result.

In the LATEXML bindings, the internal structure of the mixfix operators
is generically preserved, via the symdef_presentation_pmml subroutine in the
Modules package. Nevertheless, in the current module we add the promised
syntactic enhancements to each element of the mixfix family. Also, we use the
argument_precedence subroutine to store the precedences given by the 'pi’, ’pii’,
etc. keys as a temporary argprec attribute of the rendering, to be abolished
during the final OMDOC generation. This setup is finally utilized by the XSLT
stylesheet which combines the operator structure with the preserved precedences
to produce the proper form of the argument render elements.

35 \def\clearkeys{\let\pres@p@key=\relax

36 \let\pres@pi@key=\relax

37 \let\pres@pi@key=\relax’,

38 \let\pres@piiGkey=\relax%

39 \let\pres@piii@key=\relax}

40 \define@key{mil}{nobrackets} [yes]{\def\pres@p@key{\pres@infty}y

41 \def\pres@pi@key{-\pres@infty}}

42 \define@key{mi}{lbrack}{\def\pres@lbrack@key{#1}}

43 \define@key{mi}{rbrack}{\def\pres@lbrack@key{#1}}

44 \define@key{mi}{p}{\def\pres@p@key{#1}}

45 \define@key{mi}{pi}{\def\pres@piCkey{#1}}

46 \def\prepQkeys@miy

47 {\edef\pres@lbrack{\@ifundefined{pres@lbrack@key}\pres@default@lbrack\pres@lbrack@key}
48 \edef\pres@rbrack{\@ifundefined{pres@rbrack@key}\pres@default@rbrack\pres@rbrack@key}
49 \edef\pres@p{\@ifundefined{pres@p@key}\pres@default@precedence\pres@pkey}

50 \edef\pres@pi{\@ifundefined{pres@pi@key}\pres@p\pres@piCkey}}

\mixfixi
51 \newcommand\mixfixi[4] [1%key, pre, arg, post
52 {\clearkeys\setkeys{mi}{#1}\prep@keys@miy,
53 \PrecWrite\pres@lbracky
54 #2{\edef\pres@current@precedence{\presQpil}#3}#4J,
55 \PrecWrite\pres@rbrack}

\@assoc We are using functionality from the IATEX core packages here to iterate over the
arguments.

56 \def\Qassoc#1#2#3{), precedence, function, argv

57 \let\@tmpop=\relax), do not print the function the first time round
58 \@for\@I:=#3\do{\@tmpop’, print the function

59 % write the i-th argument with locally updated precedence

60 {\edef\pres@current@precedence{#1}\0I}%

61 \def\@tmpop{#2}}}/update the function

13

EdN:8

EdN:9

\mixfixa

\mixfixA

\mixfixii

\mixfixia

\mixfixiA

62 \newcommand\mixfixa[5] [1%key, pre, arg, post, assocop
63 {\clearkeys\setkeys{mi}{#1}\prep@keys@miy,
64 \PrecWrite\pres@lbrack{#2}{\@assoc\presQpi{#5}{#3}}{#4}\PrecWrite\pres@rbrack}

A variant of \mixfixa that puts the arguments into an array.®

65 \newcommand\mixfixA[5] [1%key, pre, arg, post, assocop

66 {\clearkeys\setkeys{mi}{#1}\prep@keys@mi%

67 \renewcommand\do [1] {\@assoc\pres@pi{#5}{##1}{#5}\tabularnewline},
68 \PrecWrite\pres@lbracky, write bracket if necessary

69 #2{\begin{array}{1}\docsvlist{#3}\end{array}l}/

70 #4\PrecWrite\pres@rbrack}

71 \define@key{mii}{nobrackets}[yes]{\def\pres0p@key{\presQ@inftyl}y
72 \def\pres@pi@key{-\pres@infty}\def\pres@pii@key{-\pres@infty}}
73 \define@key{mii}{lbrack}{\def\pres@lbrack@key{#1}}

74 \define@key{mii}{rbrack}{\def\pres@lbrack@key{#1}}

75 \define@key{mii}{p}{\def\pres@pCkey{#1}}

76 \define@key{mii}{pi}{\def\pres@pi®key{#1}}

77 \define@key{mii}{pii}{\def\pres@pii@key{#1}}

78 \def\prep@keys@mii{\prepQkeysOmiy,

79 \edef\pres@pii{\@ifundefined{pres@pii@key}\pres@p\pres@piikey}}

80 \newcommand\mixfixii[6] [1%key, pre, argl, mid, arg2, post
81 {\clearkeys\setkeys{mii}{#1}\prep@keys@miiy,

82 \PrecWrite\pres@lbracky, write bracket if necessary

83 #2{\edef\pres@current@precedence{\pres@pil}i#3}/,

84 #4{\edef\pres@current@precedence{\pres@piil}#5}#67,

85 \PrecWrite\pres@rbrack}

86 \newcommand\mixfixial[7] []1%key, pre, argl, mid, arg2, post, assocop
87 {\clearkeys\setkeys{mii}{#1}\prep@keys@mii%,

88 \PrecWrite\pres@lbracky, write bracket if necessary

89 #2{\edef\pres@current@precedence{\pres0pil}#31}/,

90 #4{\@assoc\pres@pii{#7}{#5}}#6

91 \PrecWrite\pres@rbrack}

A variant of \mixfixia that puts the arguments into an array.”

92 \newcommand\mixfixiA[7] [1%key, pre, argl, mid, arg2, post, assocop
93 {\clearkeys\setkeys{mii}{#1}\prep@keys@mii%

94 \renewcommand\do [1] {\@assoc\pres@pi{#7}{##1}{#7}\tabularnewline},
95 \PrecWrite\pres@lbracky, write bracket if necessary

96 #2{\edef\pres@current@precedence{\pres@pi}#31}J,

SEDNOTE: MK: this is very experimental now, if this works, we need to document this above and
extend this to the other mixfix declarations. Also we could use a key for the array format argument.
9EDNOTE: MK: this is very experimental now, if this works, we need to document this above and
extend this to the other mixfix declarations. Also we could use a key for the array format argument.

14

97 #4{\begin{array}{1}\docsvlist{#5}\end{array}}#67
98 \PrecWrite\pres@rbrack}

\mixfixai

99 \newcommand\mixfixail[7] [1%key, pre, argl, mid, arg2, post, assocop
100 {\clearkeys\setkeys{mii}{#1}\prep@keys@mii

101 \PrecWrite\pres@lbracky, write bracket if necessary

102 #2{\@assoc\pres@pi{#7}{#3}}%

103 #4{\edef\presQcurrent@precedence{\pres@pii}#5}#67

104 \PrecWrite\pres@rbrack}

105 \define@key{miii}{nobrackets} [yes]{\def\pres@p@key{\pres@infty}y
106 \def\pres@piQkey{-\pres@infty}

107 \def\pres@pii@key{-\pres@infty}

108 \def\pres@pii@key{-\pres@infty}}

109 \define@key{miii}{lbrack}{\def\pres@lbrack@key{#1}}

110 \define@key{miii}{rbrack}{\def\pres@lbrack@key{#1}}

111 \define@key{miii}{p}{\def\pres@p@key{#1}}

112 \define@key{miii}{pi}{\def\pres@piCkey{#1}}

113 \define@key{miii}{pii}{\def\pres@pii@key{#1}}

114 \define@key{miii}{piii}{\def\pres@piii@key{#1}}

115 \def\prep@keys@miii{\prep@keys@miiy,

116 \edef\pres@piii{\@ifundefined{pres@piii@key}{\pres@p}{\pres@piiikey}}}

\mixfixiii
117 \newcommand\mixfixiii[8] [1%key, pre, argl, midl, arg2, mid2, arg3, post
118 {\clearkeys\setkeys{miii}{#1}\prep@keys@miii%,
119 \PrecWrite\pres@lbracky, write bracket if necessary
120 #2{\edef\pres@current@precedence{\pres@pil}#3}/,
121 #4{\edef\pres@current@precedence{\pres@pii}#5}/,
122 #6{\edef\presQcurrent@precedence{\pres@pii}#7}#8%
123 \PrecWrite\pres@rbrack}

\mixfixaii
124 \newcommand\mixfixaii[9] [1%key, pre, argl, midl, arg2, mid2, arg3, post, sep
125 {\clearkeys\setkeys{miii}{#1}\prep@keys@miii%,
126 \PrecWrite\pres@lbracky, write bracket if necessary
127 #2{\@assoc\pres@pi{#9}{#3}}%
128 #4{\edef\pres@current@precedence{\pres@piil}#5}%
129 #6{\edef\presQcurrent@precedence{\pres@pii}#7}#8%
130 \PrecWrite\pres@rbrack}

\mixfixiai
131 \newcommand\mixfixiai[9] [1%key, pre, argl, midl, arg2, mid2, arg3, post, assocop
132 {\clearkeys\setkeys{miii}{#1}\prep@keys@miii,
133 \PrecWrite\pres@lbrack), write bracket if necessary
134 #2{\edef\pres@current@precedence{\pres@pil}#3}J,
135 #4{\@assoc\pres@pi{#9}{#5}}%
136 #6{\edef\pres@current@precedence{\pres@pii}#7}#8%
137 \PrecWrite\pres@rbrack}

15

\mixfixiia
138 \newcommand\mixfixiia[9] []1/key, pre, argl, midl, arg2, mid2, arg3, post,assocop
139 {\clearkeys\setkeys{miii}{#1}\prep@keys@miii%,
140 \PrecWrite\pres@lbrack), write bracket if necessary
141 #2{\edef\presQcurrent@precedence{\pres@pi}#3}%
142 #4{\edef\pres@current@precedence{\pres@piil}#5}%
143 #6{\@assoc\presCpi{#9}{#7}}#8%
144 \PrecWrite\pres@rbrack}

\prefixa In prefix we always write the brackets.

145 \newcommand\prefixa[4] [1%keys, fn, arg, sep
146 {\prepost@clearkeys\setkeys{prepost}{#1}%
147 {#2}\pres@lbrack{\@assoc\pres@pi@key{#4}{#3}}\pres@rbrack}

\postfixa

148 \newcommand\postfixa[4] [1%keys, fn, arg, sep
149 {\prepost@clearkeys\setkeys{prepost}{#1}J,
150 \pres@lbrack{\@assoc\pres@piQkey{#4}{#3}}\pres@rbrack{#2}}

EdN:10 \infix \infix!'Y is a simple special case of \mixfixii.
151 \newcommand\infix [4] [J{\mixfixii [#1]{F{#3-{#2{#4}{}}

\assoc
152 \newcommand\assoc [3] [1{\mixfixa [#1]{}{#3}{3{#2}}

4.5 General Elision
EdN:11 1

\setegroup The elision macros are quite simple, a group foo is internally represented by a
macro foo@egroup, which we set by a \gdef.

153 \def\setegroup#1#2{\expandafter\def\csname #1Qegroup\endcsname{#2}}

\elide Then the elision command is picks up on this (flags an error) if the internal macro

does not exist and prints the third argument, if the elision value threshold is
EdN:12 above the elision group threshold in the paper.'? We test the implementation

with Figure

154 \def\elide#1#2#3{\@ifundefined{#1Qegrouply,

155 {\def\@elevel{0}

156 \PackageError{presentation}{undefined egroup #1, assuming value 0}%

157 {When calling \protect\elide{#1}... the elision group #1 has be have\MessageBreak

158 been set by \protect\setegroup before, e.g. by \protect\setegroup{an}{0}.}}%

159 {\edef\@elevel{\csname #1Qegroup\endcsname}}’,

160 \ifnum\@elevel>#2\else{#3}\fi}

I0EDNOTE: need infixl as well, use counters for precedences here.
H1EDNOTE: all of these still need to be tested and implemented in LaTeXML.
12EpDNOTE: do we need to turn this around as well?

16

EdN:13

\provideEdefault

\setEdefault

\fromEcontext

\parray

\parrayline

\prmatrix

\pmrow

’ par \ typ \ result \ expected

0 0 I 0 = AX . X | I:= 20X X
600 | 600 I.=)X.X I .=) \X,. X
600 | 1000 | I:=)XX.X I¢ ., = A Xo. X

Figure 2: Testing Elision with the example in Figure

The \provideEdefault macro sets up the context for an elision default by locally
defining the internal macro (default)@edefault and (if necessary) exporting it
from the module.

161 \def\provideEdefault#1#2{\expandafter\def\csname#1@edefault\endcsname{#2}
162 \@ifundefined{this@module}{}%
163 {\expandafter\g@addto®macro\this@module{\expandafter\def\csname#1@edefault\endcsname{#2}}}}

The \setEdefault macro just redefines the internal {default)@edefault in the
local group

164 \def\setEdefault#1#2{\expandafter\def\csname #1@edfault\endcsname{#2}}

The \fromEcontext macro just calls internal (default)@edefault macro.
165 \def\fromEcontext#1{\csname #1Q@edefault\endcsname}

4.6 Other Layout Primitives

The \parray, \parrayline and \parraycell macros are simple refactorings of
the array functionality on the BTEX side.

166 \newcommand\parray [2] {\begin{array}{#1}#2\end{array}}

167 \newcommand\parrayline [2] {#1#2\\}

168 \newcommand\prmatrix [1]{\begin{matrix}#1\end{matrix}}
13

169 \def\pmrow#1{\expandafter\Q@gobble\x@mrow#1\endx@mrow, }

170 \def\x@mrow#1,{\x@mrow}

171 \def\endx@mrow#1{\\}

172 \def\pmrowh#1{\expandafter\@gobble\xOmrowh#1\endx@mrowh, }
173 \def\x@mrowh#1, {\x@mrowh}

174 \def\endx@mrowh#1{\\\hline}

IBEDNOTE: this does not work together with the robustification (using newrobustcmd) in symdef

17

4.7 Deprecated Functionality

These macros may go away at any time.

\parraylineh
175 \newcommand\parraylineh [2] {#1#2\\\hline}

\parraycell

176 \newcommand\parraycell [1] {#1&}
177 (/package)

18

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

* [] n-ary OMDoc, 3]
LATEXML, assotciii- operator
MATHML, O operator, B associative (n-ary),

19

Change History

v0.9 v0.9g
General: First Version with General: getting the LaTeXML
Documentation 1 Hght o
v0.9a
General: Completed v0.9h)
Documentation 1 General: adding brackets to the
v0.9b generated notation elements
General: Complete functionality considering done now
and Updated Documentation .. 1 turning the precedence order
v0.9¢ around to make this
General: more packaging 1 compatible with the latest
v0.9d OMDoc, change all
General: adding mixfix precedences n to 1000 —n
declarations 1 410
dealing with precedences in) .
keyword arguments 1 General: adding \funapp 1
v0.9¢ moving \funapp and \vname
General: fixing argument (and friends) to new package
precedences, adding LaTeXML cmath 1
bindings 1 Moving LaTeXML bindings into
v0.9f presentation.sty.ltxml and
General: adding general elision ... 1 disabling generation 1

References

(l piecel. Tech. rep. The OpenMath Society. URL: http : / / wuw .
openmath.org/cd/piecel.ocd (visited on 10/07/2010).

[KGA16] Michael Kohlhase, Deyan Ginev, and Rares Ambrus. modules. sty: Se-
mantic Macros and Module Scoping in sTeX. Tech. rep. Comprehensive
TEX Archive Network (CTAN), 2016. URL: http://www.ctan.org/
get/macros/latex/contrib/stex/modules/modules.pdf.

[Koh16] Michael Kohlhase. omtezt: Semantic Markup for Mathematical Text
Fragments in ETgX. Tech. rep. 2016. URL: https://github. com/
KWARC/sTeX/raw/master/sty/omtext/omtext.pdfl

[sTeX] KWARC/sTeX. URL: https://github.com/KWARC/sTeX| (visited on

05/15/2015).

20

http://www.openmath.org/cd/piece1.ocd
http://www.openmath.org/cd/piece1.ocd
http://www.ctan.org/get/macros/latex/contrib/stex/modules/modules.pdf
http://www.ctan.org/get/macros/latex/contrib/stex/modules/modules.pdf
https://github.com/KWARC/sTeX/raw/master/sty/omtext/omtext.pdf
https://github.com/KWARC/sTeX/raw/master/sty/omtext/omtext.pdf
https://github.com/KWARC/sTeX

	Introduction
	The User Interface
	Prefix & Postfix Notations
	Mixfix Notations
	n-ary Associative Operators
	Precedence-Based Bracket Elision
	Flexible Elision
	Other Layout Primitives

	Limitations
	The Implementation
	Package Options
	The System Commands
	Prefix & Postfix Notations
	Mixfix Operators
	General Elision
	Other Layout Primitives
	Deprecated Functionality

