structview.sty: Structures and Views in SIEX*

Michael Kohlhase
FAU Erlangen-Niirnberg
FAU Erlangen-Niirnberg
http://kwarc.info/kohlhase

March 20, 2019

Abstract

The structview package is part of the SIEX collection, a version of
TEX/ITEX that allows to markup TEX/IWTEX documents semantically with-
out leaving the document format, essentially turning TEX/ITEX into a doc-
ument format for mathematical knowledge management (MKM).

This package supplies infrastructure for OMDOC structures and views:
complex semantic relations between modules/theories.

Contents

[L__Introduction| 2

2 The User Interfacel
2.1 Package Options] o L.
2.2 Theory Morphisms| o L.

W wN NN

E

4 The Implementation|
4.1 Package Options|
4.2 Theory Morphisms by Assignments|.

S ot gt gt G

*Version v1.4 (last revised 2019/03/20)

http://kwarc.info/kohlhase

EdN:1

1 Introduction

Structures and views constitute ways of defining and relating theories in a theory
graph that considerably extend the “object-oriented inheritance” constituted by
the imports relation given by the §[EX module package.

Structures are like imports, only that they allow to define new theories via in-
heritance with renaming. Views relate pre-existing theories and model conceptual
refinements, framing, and implementation relations, again via a mapping between
the languages defined by the source and target theories; we call these mappings
theory morphisms.

For details about theory morphisms we refer to [RK13], but hope to make the
underlying concepts clear with examples.

va:
> view mon/op - + or mon — v
> import . mon /unit — 0 !
inv— —
M
ring cgp integers
add, mul ring?add mon, inv V2 +,0,—,-,1
. cgp?mon
ring?mu
vy

lm:xopyﬁyopm M P =
op, unit unit — 0

Figure 1: A Theory Graph with Structures and Views

2 The User Interface

The main contributions of the modules package are the module environment, which
allows for lexical scoping of semantic macros with inheritance and the \symdef
macro for declaration of semantic macros that underly the module scoping.

2.1 Package Options
The mh option turns on MathHub support.

2.2 Theory Morphisms

A theory morphism is a mapping between the languages of its source and target
theory. This can be described mathematically using all the structures in the

IEDNOTE: explain the contribution of structures and views to theory graphs and synchronize with
Figure El

EdN:2
\vassign
\fassign
\tassign
EdN:3
structure
view
EdN:4
EdN:5

STEX distribution. However, in many situations, the language transformation of a
morphism can be given in form of assignments that map symbols of the source
theory to expressions of the target theory.

There are three kinds assignments:?2

symbol assignments via \vassign{(sym)}{(ezp)}, which maps a symbol {sym)
from source theory an expression (exp) in the target theory.

function assignments via \fassign{(bvars)}{(pat)}{{exp)}, is a variant which
maps a function symbol (sym) by mapping a pattern expression (pat) ({sym)
applied to (bvars)) to an expression (exp) in the target theory on bound
variables (bvars).

term assignments via \tassign{(sym)}{(tname)}, another special case, where
the value is the symbol with name (tname) in the target theory.

Figure [1| shows a concrete example®

The assignments above can be seen as abbreviations for a simple, formal defi-
nitions, which define a symbol of the source theory by an expression in the target
theory.

2.3 Structures
Structures are specified by the sstructureﬂ environment:
\begin{sstructure} [{(keys)]{{name)}{(sthy)}(morph)\end{sstructure}

gives the structure the name (name), specifies the “source theory” via its identifier
(sthy), and the morphism (morph). The structure environment takes the same
keys as the \importmodule macro, which it generalizes. The morphism {morph)
in the body of the structure environment specifies the morphism (seeabove).
In a structure, we take the target theory to be the current theory.

2.4 Views

A view is a mapping between modules, such that all model assumptions (axioms)
of the source module are satisfied in the target module. For marking up views
the structview package supplies the view environment; see Figure 2] for the §TEX
markup of view v; from Figure [The view environment takes one optional
key/value argument followed by two mandatory ones: the names of the source
and target modules. The view environment takes the following keys: id for a
name, title and display for visual presentation, loadfrom, loadto, and ext*
for specifying the source files that supply the source and target modules, creators,
contributors, srccite for document metadata, and type®.

2EDNOTE: MK: we need better macros here.

SEDNOTE: adapt when we fully understand this, and the implementation works.

IThe old importmodulevia environment is now deprecated.

4EDNOTE: MK: we probably need toext and fromext here, but this never came up yet.
SEpNoTE: 77?77

\begin{module} [id=ring]
\symdef{rbase}{R}
\symdef{rtimes} [2]{\infix\cdot{#1}{#2}}
\symdef{rone}{1}
\begin{sstructure}{mul}{monoid}
\tassign{magbase}{rbase}
\fassign{a,b}{\magmaop{atb}{\rtimes{alv}
\tassign{monunit}{rone}
\end{sstructure}
\symdef{rplus} [2] {\infix+{#1}{#2}}
\symdef{rminus} [1]{\infix-{#1}{#2}}
\begin{sstructure}{add}{cgroup}
\fassign{a,b}{\magmaop{atb}{\rplus{a}tb}
\tassign{monunit}{rzero}
\tassign{cginvOp}{\rminus}
\end{sstructure}

\end{module}

Example 1: A Module for Rings with inheritance from monoids and commutative
groups

\begin{view}{monoid}{integers}
\vassign{magbase}{base}
\fassign{a,b}{\magmaop{atb}{\inttimes{a,b}}
\tassign{monunit}{\intzero}
\begin{assertion}

The Integers with addition form a monoid in the obvious way.

\end{assertion}

\end{view}

Example 2: A view from monoids to integers

3 Limitations & Extensions

In this section we will discuss limitations and possible extensions of the modules
package. Any contributions and extension ideas are welcome; please discuss ideas,
requests, fixes, etc on the STEX TRAC [sTeX].

4 The Implementation

4.1 Package Options

We declare some switches which will modify the behavior according to the package
options. Generally, an option xxx will just set the appropriate switches to true
(otherwise they stay false). The options we are not using, we pass on to the sref
package we require next.

1 (xpackage)

2 \newif\if@structview@mh@\@structview@mh@false

3 \DeclareOption{mh}{\@structview@uh@true

4 \PassOptionsToPackage{\CurrentOption}{modules}}

5 \DeclareOption*{\PassOptionsToPackage{\CurrentOption}{modules}}

6 \ProcessOptions

The next measure is to ensure that the sref and xcomment packages are loaded
(in the right version). For LATEXML, we also initialize the package inclusions.

7 \if@structview@mh@\RequirePackage{structview-mh}\fi
8 \RequirePackage{modules}

4.2 Theory Morphisms by Assignments

EdN:6 *assign
9 \newrobustcmd\vassign[3] []{\ifmod@show\ensuremath{#2\mapsto #3}, \fil}},

10 \newrobustcmd\fassign[4] []{\ifmod@show \ensuremath{#3(#2)\mapsto #4}, \fil}},
11 \newrobustcmd\tassign[3] [J{\ifmod@show \ensuremath{#2\mapsto} #3, \fil}/

4.3 Structures

sstructure The structure environment just calls \importmodule, but to get around the
group, we first define a local macro \@@doit, which does that and can be
called with an \aftergroup to escape the environment grouping introduced by
structure.
12 \newenvironment{sstructure} [3] [1{%
13 \gdef\@@doit{\importmodule [#1]{#3}}/
14 \ifmod@show\par\noindent importing module #3 via \@@doit\fi%
15 H%
16 \aftergroup\@@doit\ifmod@show end import\fij
17 Y

SEDNOTE: probably get rid of the optional argument

importmodulevia This is now deprecated, we give an error, but punt to structure.

18 \newenvironment{importmodulevia}[2] [1%

19 {\PackageError{structview}’%

20 {The {importmodulevial} environment is deprecated}{use the {sstructure} instead!}%
21 \begin{sstructure} [#1]{missing}{#2}}

22 {\end{sstructure}}

4.4 Views

We first prepare the ground by defining the keys for the view environment.

23 \srefaddidkey{view}

24 \addmetakey*{view}{title}

25 \addmetakey{view}{display}

26 \addmetakey{view}{loadfrom}

27 \addmetakey{view}{loadto}

28 \addmetakey{view}{creators}

29 \addmetakey{view}{contributors}
30 \addmetakey{view}{srccite}

31 \addmetakey{view}{type}

32 \addmetakey [sms] {view}{ext}

\view@heading Then we make a convenience macro for the view heading. This can be customized.

33 \ifdef{\thesection}{\newcounter{view}[section] }{\newcounter{view}}
34 \newrobustcmd\view@heading[4]{/
35 \if@importing}

36 \elsel,

37 \stepcounter{view}

38 \edef\@display{#3}\edef\@title{#4}%

39 \noindentY

40 \ifx\@display\st@flow

41 \else%

42 {\textbf{View} {\thesection.\theview} from \textsf{#1} to \textsf{#2}}/
43 \sref@label@id{View \thesection.\theviewl}
44 \ifx\@title\Qempty¥

45 \quad%

46 \else%

47 \quad(\@title)%

48 \fi%

49 \par\noindent/,

50 \fi%

51 \ignorespacesy

52 \fil

53 }%ifmod@show

view The view environment relies on the @view environment (used also in the §TEX
module signatures) for module bookkeeping and adds presentation (a heading and
a box) if the showmods option is set.

54 \newenvironment{view}[3] [J{% keys, from, to
55 \metasetkeys{view}{#1}J

EdN:7

Qview

viewsketch

\obligation

56 \sref@target

57 \begin{@view}{#2}{#31}%

58 \view@heading{#2}{#3}{\view@display}{\view@titlel}},
59

60 \end{@view}/,

61 \ignorespaces/,

62 }%

63 \ifmod@show\surroundwithmdframed{view}\fi%

The @view does the actual bookkeeping at the module level.

64 \newenvironment{@view} [2]{/ifrom, to

65 \@importmodule [\view@loadfrom] {#1}{\view@extl}},
66 \@importmodule[\view@loadto] {#2}{\view@extl}/,
67 H}%

The viewsketch environment is deprecated, we give an error

68 \newenvironment{viewsketch}[3] [1%

69 {\PackageError{structviewl}/,

70 {The {viewsketch} environment is deprecated}{use the {view} instead!}}
71 \begin{view} [#1]{#2}{#3}}

72 {\end{view}}

The \obligation element does not do anything yet on the latexml side.”

73 \newrobustcmd\obligation[3] [1{%

74 \if@importingy

75 \else Axiom #2 is proven by \sref{#3}/
76 \fi%

77 Yh

78 (/package)

"EDNOTE: document above

	Introduction
	The User Interface
	Package Options
	Theory Morphisms
	Structures
	Views

	Limitations & Extensions
	The Implementation
	Package Options
	Theory Morphisms by Assignments
	Structures
	Views

