
The tikzsymbols package∗

Ben Vitecek
b.vitecek@gmx.at

GitHub

February 8, 2019

Abstract

Some symbols created using tikz.
For differences between the releases see section 2.

English is (still) not my native language so there (still) might be some
errors1 .

Contents
1 Introduction 2

2 Important changes 3

3 Options 3
3.1 Load-time Options . 3

3.1.1 marvosym (true/false) . 3
3.1.2 prefix (〈string〉) . 4

3.2 Normal Options . 4
3.2.1 draft (true/false) . 4
3.2.2 final (true/false) . 5
3.2.3 tree (true/false/on/off) . 5
3.2.4 after-symbol (〈string or command〉) 5
3.2.5 global-scale (〈number〉)

symbol-scale (〈key-value list〉) 6
3.2.6 append-style (〈tikz’ keyval〉) 6
3.2.7 usebox (true/false) . 7
3.2.8 baseline (true/false) . 7
3.2.9 remember-picture (true/false) 7

∗This document corresponds to tikzsymbols v4.10c, dated 2019/02/08.
1They are – of course – on purpose (expect for “avaiable” (sic!)).

1

mailto:b.vitecek@gmx.at
https://github.com/Vidabe/tikzsymbols

4 Symbols 7
4.1 Cooking-symbols . 8
4.2 Emoticons . 9

4.2.1 “Normal” Emoticons . 9
4.2.2 “3D” Emoticons . 11

4.3 Other Symbols . 12
4.4 Trees . 13

5 FAQ (Known errors and problems) 14
5.1 How to get rid of the space after each symbol? 14
5.2 Using the symbols causes unwanted 〈problem〉. How could I get

rid of it? . 14
5.3 I am getting the error-message Argument of \pgffor@next has

an extra } . 14
5.4 Another package I load already defines 〈symbol〉. 15
5.5 Does this package store symbols in boxes and reuses them instead

of creating a new picture every time? 15
5.6 Are the symbols created with the environment tikzpicture? . . 15

6 Nobody is perfect 15

7 Danksagung 15

8 Changes 16

1 Introduction
As far as I can remember this package is the result of me writing a cooking book2.
Back then I wasn’t able to find the cooking symbols I wanted and using time, tikz,
lot’s of magic (also known as “programming”, but only if the respective person
knows what’s going on) and a documentation in bad grammar3 I somehow ended
up with this package.

During time LATEX3 became known to me and I started experimenting and
programming in this (I would say due to its simplicity compared to LATEX2ε far
superior) language. Well, long story short: I was impressed. And so the idea of
writing my package in LATEX3 was born.

I finally took my time and started rewriting my code using LATEX3. This
process can be summarized as: “What does this command?”, “Why did I define
this command?” and more generally “What have I done?!” Well, let’s hope my
code (and grammar) is better this time4.

Well . . . that’s it, have fun!
2Well, it’s one result, the other one is a cooking book.
3Not that it’ now any better.
4Looking at own risk. You have been warned.

2

2 Important changes
The package should behave the same way as the “old” LATEX2ε release.

2018 Option draft and final are now local.

2017 Option usebox can be used during the document.

old The horribly named command \tikzsymbolsaftersymbolinput is not de-
fined anymore by this package. Please use the new option after-symbol,
in combination with the new command \tikzsymbolsset, see section 3 for
more information.

very old The option draft=absolute is now obsolete and replaced by the much
simpler option draft=true.

3 Options
Options can either be set as package options or using \tikzsymbolsset. Some
options can only be set as package options, those are described in section 3.1.

It is recommended to use the option draft=true while working on the
document.

\tikzsymbolsset {〈keys = values〉}

Most keys, except for the load-time options (section 3.1), can be set using
this command.

\tikzsymbolsset

3.1 Load-time Options

The following options cannot be set using \tikzsymbolsset.

3.1.1 marvosym (true/false)

marvosym = true / false

Please load tikzsymbols after marvosym.
marvosym also defines \Smiley and \Coffeecup. If you prefer those symbols

(©, K) over the tikzsymbols ones (,) you can use this option. If set to true
tikzsymbols cancels the definition of its \Smiley and \Coffeecup:

Without option “marvosym”: With option “marvosym”: © K

\usepackage{marvosym} \usepackage{marvosym}
\usepackage{tikzsymbols} \usepackage[marvosym]{tikzsymbols}

This option raises an error if set true without loading package marvosym.
Can only be set as load-time option.
You may also use the option prefix (section 3.1.2).

3

3.1.2 prefix (〈string〉)

This option takes a string as value: prefix=〈string〉 and adds this prefix to every
command defined by this package. So setting prefix=〈prefix〉 adds 〈prefix〉 to
all commands of this package: \〈prefix〉command.
〈prefix〉 should neither contain any special characters (e.g., ä, ü, ß, etc.) nor

spaces.
By default it is empty, so no prefix is given, if this option is given without an

argument 〈prefix〉 is set to tikzsymbols.
Can only be set as a load-time option.
For example:

\usepackage[prefix=tikzsym]{tikzsymbols}

defines \Smiley as \tikzsymSmiley, \Kochtopf as \tikzsymKochtopf, \pot
as \tikzsympot, etc.

If you use this option or think about using this option the following command
may be handy:

\tikzsymbolsuse{〈Symbolname〉}

This command takes the name of the symbol without backslash and prints the
symbol (or raises an error if the symbol is not defined). Using this command
you don’t have to worry about a 〈prefix〉, just write the command name and this
command adds automatically the given prefix to the command name.

\tikzsymbolsuse

Examples: \tikzsymbolsuse{Smiley}[2]
\tikzsymbolsuse{BasicTree}[1.2]{black}{red!50!black}{red}{leaf}
\tikzsymbolsuse{Ofen}
\tikzsymbolsuse{Fire}[-1.3]
etc.

3.2 Normal Options

Most of these options can be set either as a package-option or with \tikzsymbolsset.

3.2.1 draft (true/false)

draft = 〈true/false〉

While working on the document it is recommended to set this option to true
because creating many symbols may takes some time to compile and by setting
this option to true the symbols are replaced by plain vanilla rectangles (with
approximately the same height and width as the symbols) which are faster to
create.

You can also set this option during the document.
The old option draft=absolute is obsolete and should therefore not be used.

draft

4

3.2.2 final (true/false)

final= 〈true/false〉

This key has the opposite behavior of the option draft.
It is a boolean key and therefore accepts only true or false and is set to

true by default. Setting it to true prints all symbols normally. Setting it to false
prints plain vanilla draft-boxes instead which speeds up the compile-process.

final

3.2.3 tree (true/false/on/off)

tree= 〈true/on/false/off〉

This key accepts true, false and furthermore on and off (for historical
reasons). The latter do exactly the same as the first ones.

This option has only an effect on the command \BasicTree and its derivates
(\Springtree, \Summertree, \Autumntree and \Wintertree) and substitutes
them with tikz drawn boxes.

So while draft=true replaces the output of all commands with simple black
boxes, tree=true/on only replaces the output of “tree”-commands with boxes.

It is recommended to use draft=true, but if you want you can use this
option.

tree

3.2.4 after-symbol (〈string or command〉)

after-symbol = {〈string or command〉}

Is more stable if set using \tikzsymbolsset. The value of this key is inserted
after every command of this package. By default it is set to \xspace.

after-symbol

5

3.2.5 global-scale (〈number〉)
symbol-scale (〈key-value list〉)

global-scale = {〈number〉}
symbol-scale = {〈symbol-1=number-1, symbol-2=number-2,...〉}
global-scale can be used to scale all commands by given 〈number〉.

If only some specific symbols should be scaled, you may use the second option
and specify which symbol or symbols (name of the symbol without backslash)
should be scaled. Using the german name (if available) has the same effect as
using the english one.

Note: You can scale the symbols in this package in three different ways: The first
is to scale all symbols using global-scale, the second is scaling specific symbols
using symbol-scale and the third is by using the optional argument provided by
the symbols (which I call local-scale; e.g. \Smiley[2]).

The important thing is that those scaling methods do not cancel each other,
but behave multiplicative.

If a local scale is given (e.g. \Smiley[2]) with global-scale=3 the resulting
scaling will be 3 · 2 = 6. Is furthermore this specific symbol is also scaled (e.g. by
1.1), the resulting scaling (for this symbol) will be 3 · 1.1 · 2 = 6.6.

global-scale
symbol-scale

Examples: \tikzsymbolsset{symbol-scale={ Smiley= 1.5 }}

\tikzsymbolsset{symbol-scale={ Smiley= 5 }}

\tikzsymbolsset{symbol-scale={ Smiley= 2, Schneebesen=2.1 }}
\tikzsymbolsset{global-scale=3,symbol-scale={ Smiley= 2, Schneebesen=2.1 }}

Note: Using “eggbeater” instead of “Schneebesen” does the same thing.

3.2.6 append-style (〈tikz’ keyval〉)

append-style = {〈tikz’ keyval〉}

With this option you can append tikz’ 〈keyval〉 to tikzsymbols internal style.

Note: The style is called __tikzsymbols and while the name will probably not
change, you are discouraged to use it directly unless it is really necessary (e.g. if I
did something wrong).

append-style

6

3.2.7 usebox (true/false)

usebox = {〈true/false〉}

In tikzsymbols all symbols are stored inside boxes (\sbox) and while I still have
no idea what exactly happens, it shortens the compilation time of the document.
By default this option is true.

The drawback is that LATEX has only a limited number of box registers. If
you come across an error message regarding boxes try setting usebox=false.

usebox

3.2.8 baseline (true/false)

baseline = {〈true/false〉}

This option mainly exists to let the commands of this package work inside todonotes’
\todo command. If set to true it adds to each symbol of this package the tikz
option baseline=default. If you do not want this, set this option to false. It
is set to true by default.

baseline

3.2.9 remember-picture (true/false)

remember-picture = {〈true/false〉}

Adds to each symbol created by this package the tikz option remember
picture=〈true/false〉. It is not added by default.

remember-picture

4 Symbols

In this section the symbols are introduced. They all change
automatically with text-size .

7

4.1 Cooking-symbols

The following table shows all available cooking-symbols and their respective
commands. The first column shows the command-names (german & english), the
second the optional parameter(s). The optional parameter(s) are for both the
german and the english commands the same.
〈scale〉 can be a number between (not exactly) −1400 and (also not exactly)

1400, default is 1.
Da Umlaute nicht in Befehlsnamen vorkommen dürfen, werden die Umlaute

ö, ä, ü durch o, a, u ersetzt.

German & English Commands Optional parameter(s) Output
\Kochtopf \pot [〈scale〉]
\Bratpfanne \fryingpan [〈scale〉]
\Schneebesen \eggbeater [〈scale〉]
\Sieb \sieve [〈scale〉]
\Purierstab \blender [〈scale〉]
\Dreizack \trident [〈scale〉]
\Backblech \bakingplate [〈scale〉]
\Ofen \oven [〈scale〉]
\Pfanne \pan [〈scale〉]
\Herd \cooker [〈scale〉]
\Saftpresse \squeezer [〈scale〉]
\Schussel \bowl [〈scale〉]
\Schaler \peeler [〈scale〉]
\Reibe \grater [〈scale〉]
\Flasche \bottle [〈scale〉]
\Nudelholz \rollingpin [〈scale〉]
\Knoblauchpresse \garlicpress [〈scale〉]

\Kochtopf
\pot
\Bratpfanne
\fryingpan
\Schneebesen
\eggbeater
\Sieb
\sieve
\Purierstab
\blender
\Dreizack
\trident
\Backblech
\bakingplate
\Ofen
\oven
\Pfanne
\pan
\Herd
\cooker
\Saftpresse
\squeezer
\Schussel
\bowl
\Schaler
\peeler
\Reibe
\grater
\Flasche
\bottle
\Nudelholz
\rollingpin
\Knoblauchpresse
\garlicpress

8

4.2 Emoticons

4.2.1 “Normal” Emoticons

First column shows the commands, the second the (optional) parameter(s),
the third the default-output (the only command with a mandatory argument is
\Changey).

〈scale〉 can be a number between (not exactly) −2000 and (not exactly) 2000,
default is 1.
〈color〉 can be every defined color. Note: The color names shouldn’t contain

special characters like ß, ä, ö, . . .
\Changey’s 〈mood〉 has to be between −2 and 2 (1 equals \Smiley, −1 \Sadey

and 0 \Neutrey).
\SchrodingersCat’s 〈case〉 can either be 1 (alive), 0 (unknown) or −1 (dead).

Commands (Optional) parameter(s) Output
\Smiley [〈scale〉][〈color〉]
\Sadey [〈scale〉][〈color〉]
\Neutrey [〈scale〉][〈color〉]
\Changey [〈scale〉][〈color〉]{〈mood〉}
\cChangey [〈scale〉][〈color1 〉][〈color2 〉][〈color3 〉]{〈mood〉}
\Annoey [〈scale〉][〈color〉]
\Laughey [〈scale〉][〈color〉][〈mouth color〉]
\Winkey [〈scale〉][〈color〉]
\oldWinkey [〈scale〉][〈color〉]
\Sey [〈scale〉][〈color〉]
\Xey [〈scale〉][〈color〉]
\Innocey [〈scale〉][〈color〉][〈halo color〉]
\wInnocey [〈scale〉]
\Cooley [〈scale〉][〈color〉]
\Tongey [〈scale〉][〈color〉][〈tongue color〉]
\Nursey [〈scale〉][〈color〉][〈cap color〉][〈cross color〉]
\Vomey [〈scale〉][〈color〉][〈vomit color〉]
\Walley [〈scale〉][〈color〉][〈wall color〉]
\rWalley“r” for “random generated

cracks”.
[〈scale〉][〈color〉][〈wall color〉]

\Cat [〈scale〉]
\SchrodingersCat [〈scale〉]{〈case〉}
\Ninja [〈scale〉][〈color〉][〈headband color〉][〈eye color〉]
\Sleepey [〈scale〉][〈color〉][〈cap color〉][〈star color〉]
\NiceReapey [〈scale〉]

\Smiley
\Sadey
\Neutrey
\Changey
\cChangey
\Annoey
\Laughey
\Winkey
\oldWinkey
\Sey
\Xey
\Innocey
\wInnocey
\Cooley
\Tongey
\Nursey
\Vomey
\Walley
\rWalley
\Cat
\SchrodingersCat
\Ninja
\Sleepey
\NiceReapey

Examples: \Sadey[][red]

9

\Cooley[-3][cyan]
\Vomey[1.5][green!80!black][olive]
\Nursey[][yellow][blue][red] .
\Ninja[1.3][][violet][red] .
\colorbox{yellow}{\Winkey \Annoey[-1]\Neutrey}
\textcolor{blue}{\Sey}
\Sleepey[1][white][blue][yellow!95!black]
\SchrodingersCat{1}
\SchrodingersCat{0}
\SchrodingersCat{-1}
\Changey{-2} \Changey{-1.367} \Changey{-1} \Changey{0}

\Changey{1} \Changey{1.41} \Changey{2}
\cChangey{2} \cChangey{1} \cChangey{0.5} \cChangey{0.1}

\cChangey{0} \cChangey{-0.5} \cChangey{-1} \cChangey{-2}
\cChangey[][][blue]{-1} \cChangey[][][blue]{0.5}
If you intent to change the color of \cChangey you may define a new command

so that you do not have to write those brackets each time.

10

4.2.2 “3D” Emoticons

First column shows the commands (note: the “3D” Emoticons begin with
\d...), the second shows the (optional) parameter(s), the third shows the default-
output (the only command with a mandatory argument is \dChangey).
〈scale〉 can be a number between a small number (under −500 for sure) and

a large number (over 500 for sure), default is 1.
〈color〉 can be every defined color (see examples below). Note: The color

names shouldn’t contain special characters like ß, ä, ö, . . .
\Changey’s 〈mood〉 has to be between −2 and 2 (1 equals \dSmiley, −1

\dSadey and 0 \dNeutrey).

Commands Optional parameter(s) Output
\dSmiley [〈scale〉][〈color〉]
\dSadey [〈scale〉][〈color〉]
\dNeutrey [〈scale〉][〈color〉]
\dChangey [〈scale〉][〈color〉]{〈mood〉}
\dcChangey [〈scale〉][〈color1 〉][〈color2 〉][〈color3 〉]{〈mood〉}
\dLaughey [〈scale〉][〈color〉][〈mouth color〉]
\dAnnoey [〈scale〉][〈color〉]
\dWinkey [〈scale〉][〈color〉]
\olddWinkey [〈scale〉][〈color〉]
\dSey [〈scale〉][〈color〉]
\dXey [〈scale〉][〈color〉]
\dInnocey [〈scale〉][〈color〉][〈halo color〉]
\dCooley [〈scale〉][〈color〉]
\dTongey [〈scale〉][〈color〉][〈tongue color〉]
\dNursey [〈scale〉][〈color〉][〈cap color〉][〈cross color〉]
\dVomey [〈scale〉][〈color〉][〈vomit color〉]
\dWalley [〈scale〉][〈color〉][〈wall color〉]
\drWalley“r” for “random generated

cracks”.
[〈scale〉][〈color〉][〈wall color〉]

\dNinja [〈scale〉][〈color〉][〈headband color〉][〈eye color〉]
\dSleepey [〈scale〉][〈color〉][〈cap color〉][〈star color〉]

\dSmiley
\dSadey
\dNeutrey
\dChangey
\dcChangey
\dAnnoey
\dLaughey
\dWinkey
\dSey
\dXey
\dInnocey
\dCooley
\dNinja
\drWalley
\dWalley
\dVomey
\dNursey
\dTongey
\dSleepey
\olddWinkey

Examples: \dSadey[][red]

\dCooley[-3][cyan]
\dVomey[1.5][green!70!black][olive]
\dNursey[][yellow][blue][red] .
\dNinja[1.3][][violet][red] .
\dChangey{-2} \dChangey{-1.367} \dChangey{-1} \dChangey{0}

\dChangey{1} \dChangey{1.41} \dChangey{2}

11

\dcChangey{2} \dcChangey{1} \dcChangey{0.5} \dcChangey{0.1}
\dcChangey{0} \dcChangey{-0.5} \dcChangey{-1} \dcChangey{-2}

\dcChangey[][][blue]{-1} \dcChangey[][][blue]{0.5}
If you intent to change the color of \dcChangey you may define a new

command so that you do not have to write those brackets each time.

4.3 Other Symbols

\Strichmaxerl’s optional parameters 2–5 (〈left arm〉 to 〈right leg〉) can be
a number between −360 and 360 (of course the number can be even greater or
even smaller.). The parameters are the angles between the body and the separate
parts of \Strichmaxerl (see examples).
〈scale〉 can be a very great and a very small negative number (but I don’t

think, that you need so large symbols).
〈color〉 can be every defined color. Note: The color names shouldn’t contain

special characters like ß, ä, ö,

Commands Optional parameter(s) Output
\Strichmaxerl [〈scale〉][〈left arm〉][〈right arm〉][〈left leg〉][〈right leg〉]
\Candle [〈scale〉]
\Fire [〈scale〉]
\Coffeecup [〈scale〉]
\Chair [〈scale〉]
\Bed [〈scale〉]
\Moai [〈scale〉]
\Tribar [〈scale〉][〈color 1 〉][〈color 2 〉][〈color 3 〉]
\Snowman [〈scale〉]

\Strichmaxerl
\Candle
\Fire
\Coffeecup
\Chair
\Bed
\Tribar
\Moai
\Snowman

\Tribar[-10][blue][red][green]

\Tribar[2.1][blue][blue!50][blue!20]

\Strichmaxerl[1][10][30][40][4] ,
\Strichmaxerl[1.4][210][310][10][90] ,
\Strichmaxerl[2][510][110][190][990] ,
\Strichmaxerl[0.9][54][28][95][16]
\Strichmaxerl[][54][28]

12

\Strichmaxerl[][45][45][45][45]

4.4 Trees

〈scale〉 can be a number between (not exactly) −900 and (again not exactly) 900,
default is 1.
〈color〉 can be every defined color (see examples below). Note: The color

names shouldn’t contain special characters like ß, ä, ö,
{〈leaf 〉} uses the colors of {〈leaf color a〉} and {〈leaf color b〉}, you can leave

this one empty if you don’t want leaves (\Wintertree is without leaf, see examples
below).

If you are using those trees, LATEX needs longer to produce the output. So
you may use the package option tree=off, or (better) draft=true (see section
section 3.2.1 and section 3.2.3) to make LATEX faster.

Furthermore those trees are pretty much stolen from the tikz manual.

Commands Optional/Needed parameter(s) Output
\BasicTree [〈scale〉]{〈trunk color〉}{〈leaf color a〉}{〈leaf color b〉}{〈leaf 〉} see below
\Springtree [〈scale〉]
\Summertree [〈scale〉]
\Autumntree [〈scale〉]
\Wintertree [〈scale〉]
\WorstTree [〈scale〉]

\BasicTree
\Springtree
\Summertree
\Wintertree
\WorstTree

\BasicTree examples Some “normal” trees:
\colorbox{green}{\BasicTree{red}{orange}{yellow}{leaf}}
\BasicTree[5]{orange!95!black}{orange!80!black}{orange!70!black}{leaf}

\BasicTree[2]{blue!65!white}{cyan!50!white}{cyan!50!white}{}
\BasicTree[-1.54]{green!20!black}{green!50!black}{green!70!black}{leaf}

\colorbox{black}{\BasicTree[3.75]{gray!80}{gray!50}{gray!40}{leaf}}

draftbox \BasicTree examples Some “draftbox” trees (using tree=false):
. . . and using the same trees with tree=off/false or draft(=true):
\colorbox{green}{\BasicTree{red}{orange}{yellow}{leaf}}

13

\BasicTree[5]{orange!95!black}{orange!80!black}{orange!70!black}{leaf}

\BasicTree[2]{blue!65!white}{cyan!50!white}{cyan!50!white}{}
\BasicTree[-1.54]{green!20!black}{green!50!black}{green!70!black}{leaf}

\colorbox{black}{\BasicTree[3.75]{gray!80}{gray!50}{gray!40}{leaf}}

I think it’s better if you define your own trees using \newcommand and
\BasicTree:

\newcommand{\Myicetree}[1][1]{%
\BasicTree[#1]{blue!65!white}{cyan!50!white}{cyan!50!white}{}}

5 FAQ (Known errors and problems)
Or “Questions I assume would be frequently asked, if people would frequently ask
questions”.

5.1 How to get rid of the space after each symbol?

By default the package adds \xspace after each command. To remove it use the
option after-symbol. Using

\tikzsymbolsset{after-symbol={}}

removes the \xspace command and thus the unwanted space.

5.2 Using the symbols causes unwanted 〈problem〉. How could I
get rid of it?

This could have something to do with question 5.5 (after you made sure that
the symbols cause the problem). Try using setting the option usebox=false and
recompile a few times. If the problem persists, please send a bug report (section 6).

5.3 I am getting the error-message Argument of \pgffor@next
has an extra }

If you encounter an error message like

Argument of \pgffor@next has an extra }

14

while using babel with e.g. language “francais” and for example \Cooley you may
add

\usetikzlibrary{babel}

to your preamble. This should (hopefully) fix the problem.

5.4 Another package I load already defines 〈symbol〉.
You can override pretty much every symbol simply by loading tikzsymbols last as
it defines the symbols via \DeclareDocumentCommand (see xparse).

If you want to use the symbols of both packages you may have a look at
option prefix.

5.5 Does this package store symbols in boxes and reuses them
instead of creating a new picture every time?

Yes, it does. It can become a problem if LATEX runs out of boxes. If this happens,
use usebox=false.

Furthermore, tikz allows to reference pictures using e.g. remember picture.
This also influences the symbols of tikzsymbols. As those symbols are stored and
copied for printing, labels attached to the symbols get repeated. In this case, also
try using usebox=false (or try the option remember-picture=false).

5.6 Are the symbols created with the environment tikzpicture?

Yes, they are.

6 Nobody is perfect
If you find a bug please send me a mail (or report it on GitHub) involving a
minimal example showing the bug and a short description (english or german).
Please mention (if you are writing a mail) “tikzsymbols” in the header, “gmx” has
a habit of putting mails into the spam-folder and it helps me to recognize those
mails faster. This can also be the reason why I may need some time to answer
the mail.

As I am also new to GitHub, I also may take longer to answer, at least until
I figured out how to get a mail if a new issue is created.

Suggestions are also welcome.

7 Danksagung
I would like to thank all users for providing bug reports and helping to improve
this package.

Furthermore many thanks to my brother helping me improving the symbols.

15

8 Changes
See the “README.md” file.

16

	Contents
	1 Introduction
	2 Important changes
	3 Options
	3.1 Load-time Options
	3.1.1 marvosym (true/false)
	3.1.2 prefix (<string>)

	3.2 Normal Options
	3.2.1 draft (true/false)
	3.2.2 final (true/false)
	3.2.3 tree (true/false/on/off)
	3.2.4 after-symbol (<string or command>)
	3.2.5 global-scale (<number>) : symbol-scale (<key-value list>)
	3.2.6 append-style (<tikz' keyval>)
	3.2.7 usebox (true/false)
	3.2.8 baseline (true/false)
	3.2.9 remember-picture (true/false)

	4 Symbols
	4.1 Cooking-symbols Kochtopf
	4.2 Emoticons Smiley
	4.2.1 "Normal" Emoticons Cat
	4.2.2 "3D" Emoticons dSmiley dSadey

	4.3 Other Symbols Moai
	4.4 Trees BasicTree

	5 FAQ (Known errors and problems)
	5.1 How to get rid of the space after each symbol?
	5.2 Using the symbols causes unwanted <problem>. How could I get rid of it?
	5.3 I am getting the error-message Argument of \pgffor@next has an extra }
	5.4 Another package I load already defines <symbol>.
	5.5 Does this package store symbols in boxes and reuses them instead of creating a new picture every time?
	5.6 Are the symbols created with the environment tikzpicture?

	6 Nobody is perfect
	7 Danksagung
	8 Changes

